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Abstract
Within the framework of optimal control theory we develop a simple
iterative scheme to determine optimal laser pulses with spectral and fluence
constraints. The algorithm is applied to a one-dimensional asymmetric
double well where the control target is to transfer a particle from the ground
state, located in the left well, to the first excited state, located in the right
well. Extremely high occupations of the first excited state are obtained for a
variety of spectral and/or energetic constraints. Even for the extreme case
where no resonance frequency is allowed in the pulse the algorithm achieves
an occupation of almost 100%.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last 15 years, the control of quantum mechanical systems
via light pulses has experienced considerable progress, both on
the experimental and on the theoretical side. Quantum control
experiments have been pushed forward by the improvement of
laser pulse shaping [1–3] and the implementation of closed-
loop learning (CLL) techniques [4]. Experiments using CLL
delivered highly encouraging results, ranging from the control
of chemical reactions [5–12] to the control of high-harmonic
generation [13, 14].

On the theoretical side, the most important contributions
have been the introduction of optimal control theory [15–17]
and the continuous development of rapidly converging iteration
schemes [18–20] to calculate optimal laser pulses. Recently,
some of these schemes have been generalized to include
dissipation [21], to account for multiple objectives [22] and
to deal with time-dependent control targets [23–25].

Most fruitful are investigations where theory and
experiment come together: the theoretical analysis of laser
pulses can be useful, and sometimes is essential, in deciphering
the pulse shapes obtained from experiments [26]. To speed up
the convergence process of the experimental learning cycle,

calculated pulses can be used either to provide an initial
guess or to reduce the gigantic search space by determining
the most important shape parameters [27]. Besides these
direct applications, theory and computer simulations make
it possible to explore the feasibility of future experiments
and help to determine the requirements on the laser system
and the pulse shaping device. Computer simulations can
also help in understanding new ultrafast transition processes
in laser-assisted chemistry [28, 29] and in developing new
implementations for the quantum computer [30, 31].

For all these applications it is extremely important that
the computational schemes are able to include experimental
constraints, such as limitations on the spectral bandwidth and
on the laser fluence, i.e., the time-integrated intensity. As
discussed in appendix A.1, a pulse from an unconstrained
optimization will perform much worse if the constraint is
applied by ‘brute force’ after the optimization than a pulse
coming from a scheme where the same constraints are
incorporated.

So far, only a few attempts have been made to take
restrictions of this kind into account. In [15], a scheme to
calculate the pulse for a given fluence is shown. However,
it does not make use of the immediate feedback introduced
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in [18] and suffers from a rather unstable convergence. A
constraint on the spectrum is considered in [32] for a steepest
descent method which, in the quantum control context, is found
to suffer from poor convergence and a strong dependence on
the initial pulse [33]. An elegant way to restrict the spectrum
has been presented by the authors of [34]. This scheme
preserves the rapid and monotonic convergence behaviour of
the underlying scheme [18] by projecting out undesired parts
of the time-dependent wavefunction, which are responsible
for the unwanted spectral components. However, this method
is not sufficiently general and does not easily allow for an
additional fluence constraint (as it keeps the unphysical penalty
factor).

The schemes presented in the following allow one
to incorporate fluence and/or spectral constraints in the
optimization and it shows very good convergence, when
applied to a 1D model, although a proof of monotonic
convergence similar to [19] does not go through here.
Furthermore, the scheme is very simple to implement.

An introduction to optimal control theory is given in
section 2. We then explain our schemes in section 3. In
section 4 we present a test system and discuss the numerical
details. The results from applying our algorithms to this system
are analysed in section 5.

2. Optimal control theory

In this section we sketch the basics of optimal control theory
applied to quantum mechanics. We consider an electron
in an external potential V (r) under the influence of a laser
field propagating in the z-direction. Given an initial state
�(r, 0) = φ(r), the time evolution of the electron is described
by the time-dependent Schrödinger equation with the laser field
modelled in the dipole approximation (length gauge)

i
∂

∂t
�(r, t) = Ĥ�(r, t), (1)

Ĥ = Ĥ0 − µ̂ε(t), (2)

Ĥ0 = T̂ + V̂ , (3)

(atomic units are used throughout: h̄ = m = e = 1). Here,
µ̂ = (µ̂x , µ̂y) is the dipole operator, and ε(t) = (εx (t), εy(t))
is the time-dependent electric field. The kinetic energy
operator is T̂ = −∇2

2 .
Our goal is to control the time evolution of the electron

by the external field in such a way that the expectation value
of the target operator Ô is maximized with respect to the
wavefunction �(r, T ) at the end of the pulse. Mathematically,
this goal corresponds to maximizing the functional [15, 18, 19]

J1[�] = 〈�(T )|Ô|�(T )〉. (4)

Usually Ô is assumed to be positive-semidefinite, which
guarantees monotonic convergence of the schemes discussed
in [18–20, 23]. A few examples will be discussed at the end
of this section.

The functional J1[�] will be maximized subject to
a number of physical constraints. The idea is to cast
these constraints also in a suitable functional form and then
calculate the total variation. Subsequently, we set the total

variation to zero and find a set of coupled partial differential
equations [15, 16]. The solution of these equations will yield
the desired laser field ε(t).

In more detail: optimizing J1 may possibly lead to fields
with very high, or even infinite energy. In order to avoid these
strong fields, we include an additional term in the functional
which penalizes the fluence of the field. This can be done
separately for each polarization direction:

J2[ε] = −
∑

j

∫ T

0
dt α jε j

2(t), j = x, y, (5)

where α j is a penalty factor that has to be chosen from the start.
It balances the optimization between increasing the yield and
restricting the energy to achieve the maximal value for the
combined functional J1 + J2. Note that the penalty factor α j

can be made time dependent to restrict the laser pulse to a
certain shape [35].

If we wish to optimize the laser pulse with the constraint
that the laser fluence corresponds to a given value, we have to
replace equation (5) by

J̃2[α, ε] = −
∑

j

α j

[∫ T

0
dt ε2

j (t) − E0 j

]
. (6)

In this case, α j is a (time-independent) Lagrange multiplier,
i.e., we also have to vary the functional with respect to α j .
Further, instead of a value specifying α j we have to prescribe
specific values, E0 j , for the components E0x and E0y of the
laser fluence. For a time-dependent E0 j (t), we would also
need a time-dependent Lagrange multiplier α j , but this choice
would restrict the optimization to find (only) the optimal sign
for the laser field.

The constraint that the electronic wavefunction has to fulfil
the time-dependent Schrödinger equation is expressed by

J3[ε,�, χ] = −2 Im
∫ T

0
dt

〈
χ(t)

∣∣∣
(

i∂t − Ĥ
)∣∣∣ �(t)

〉
, (7)

with a Lagrange multiplier χ(r, t). �(r, t) is the wavefunction
driven by the laser field ε(t).

The Lagrange functional has the form

J [χ,�, ε] = J1[�] + J2[ε] + J3[χ,�, ε]. (8)

Setting the variations of the functional with respect to χ , � ,
and ε independently to zero yields

α jε j (t) = − Im〈χ(t)|µ̂ j |�(t)〉, j = x, y (9)

0 =
(

i∂t − Ĥ
)

�(r, t), �(r, 0) = φ(r), (10)
(

i∂t − Ĥ
)

χ(r, t) = i
(
χ(r, t) − Ô�(r, t)

)
δ(t − T ). (11)

Equation (9) determines the field from the wavefunction
�(r, t) and the Lagrange multiplier χ(r, t).

Equation (10) is a time-dependent Schrödinger equation
for �(r, t) starting from a given initial state φ(r) and driven
by the field ε(t). If we require the Lagrange multiplier χ(r, t)
to be continuous, we can solve the following two equations
instead of (11):

(
i∂t − Ĥ

)
χ(r, t) = 0, (12)
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χ(r, T ) = Ô�(r, T ). (13)

To show this we integrate over (10)

lim
κ→0

∫ T +κ

T −κ

dt
[(

i∂t − Ĥ
)

χ(r, t)
]

= lim
κ→0

∫ T +κ

T −κ

dt i
(
χ(r, t) − Ô(t)�(r, t)

)
δ(t − T ). (14)

The left-hand side of (14) vanishes because the integrand is a
continuous function. It follows that the right-hand side must
also vanish, which implies (13). From equations (13) and (11)
then follows equation (12).

Hence, the Lagrange multiplier χ(r, t) satisfies a time-
dependent Schrödinger equation with an initial condition at
t = T . The set of equations that we need to solve is now
complete: (9), (10), (12) and (13). If we use J̃2 instead of J2

we also have to perform a variation with respect to α j which
simply yields the restriction:

∫ T

0
dt ε2

j (t) = E0 j . (15)

To find an optimal field ε(t) from these equations we use an
iterative algorithm which is discussed in the next section.

We conclude this section with a discussion of the target
operator Ô . Basically, there exist two classes of target
operators, namely operators that are non-local, e.g. projection
operators, and operators that are local (multiplicative), like
the density operator. If we want to maximize the occupation
of a given target state |	 f 〉 at the end of the laser pulse, we
choose [15, 18]

Ô = |	 f 〉〈	 f |. (16)

This scheme can be extended to achieve multiple goals, i.e. to
have different states populated at the end of the pulse. In that
case one uses

Ô =
∑

k

βk |ϕk〉〈ϕk |. (17)

The factors βk allow for the possibility to ‘fine-tune’ the target
occupations among each other (multi-objective optimization),
i.e. to balance between the importance of the individual targets.
For example, if we choose βn negative the optimization will
avoid the occupation of the state |ϕn〉.

Note that this kind of multi-objective optimization
is different from the target to reproduce a (coherent)
superposition of field free eigenstates of the Hamiltonian H0

given by
Ô = |	 f 〉〈	 f |,

|	 f 〉 =
∑

k

ck |ϕk〉. (18)

Using as target operator the projection operator (16) leaves
the freedom of a purely time-dependent phase factor for the
wavefunction �(T ). It is possible to fix the phase with the
following functional:

min ‖�(T ) − 	 f ‖2 = 2
(
1 − Re〈�(T )|	 f 〉

)
(19)

⇒ max J̃1 = max Re〈�(T )|	 f 〉, (20)

where we have assumed normalization: 〈�(T )|�(T )〉 =
〈	 f |	 f 〉 = 1.

The target operator may also be local [19]. If we choose
Ô = δ(r − r0) (the density operator), we maximize the
probability density in r0 at t = T :

J1 = 〈�(T )|Ô|�(T )〉 = n(r0, T ). (21)

For this control target, the optimization process will try to
concentrate the density in the point r0 at the end of the
pulse [36]. Numerically, the δ-function can be approximated
by a sharp Gaussian function.

3. Algorithm

In this section we present iterative schemes for the optimization
of laser fields under additional constraints on the fluence and/or
on the spectral distribution.

3.1. Fluence constraint

We first describe the algorithm which yields an optimized laser
pulse producing an assigned value of E0 j (for each polarization
direction j = x, y, see equation (6)). The set of coupled
equations to be solved is given by equations (9), (10), (12)
and (13). The scheme below shows the order in which these
equations are solved in the kth iterative step.

kth step : �(k)(0)
ε(k)(t)−→ �(k)(T )

[
�(k)(T )

ε(k)(t)−→ �(k)(0)
]

χ(k)(T )
ε̃(k)

(t)−→ χ(k)(0),

(22)
with the laser fields ε(k)(t), ε̃(k)

(t) given by

ε̃
(k)
j (t) = − 1

α
(k)
j

Im〈χ(k)(t)|µ̂ j |�(k)(t)〉, (23)

ε
(k+1)
j (t) = α

(k)
j

α
(k+1)

j

ε̃
(k)
j (t), j = x, y, (24)

where the Lagrange multiplier α
(k+1)
j is defined by

α
(k+1)
j =

√√√√
∫ T

0 dt [α(k)
j ε̃

(k)
j (t)]2

E0 j

. (25)

The initial conditions in every iteration step are

�(r, 0) = φ(r), (26)

χ(r, T ) = Ô�(r, T ). (27)

The scheme starts with the propagation of �(0)(r, t)
forward in time using the laser field ε(0)(t), which has
to be guessed. The result of the propagation is the
wavefunction �(0)(r, T ), which is now used to calculate
χ(0)(r, T ) by applying the target operator (27). We continue
with propagating χ(0)(r, t) backwards in time using the laser
field ε̃(0)(t) (23). To solve equation (23) we have to know both
wavefunctions �(0)(r, t) and χ(0)(r, t) at the same time, which
makes it necessary to either store the whole time-dependent
wavefunction �(0)(r, t) or propagate it backwards with the
previous laser field ε(0)(t). The version of the algorithm that
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avoids storage is indicated by the brackets in scheme (22).
Besides that, it is necessary to provide an initial value for α

(0)
j

which we choose to be

α
(0)
j =

√√√√√
∫ T

0 dt
[
ε

(0)
j (t)

]2

E0 j

.

The result of the backward propagation χ(0)(r, t) is the laser
field ε̃(0)(t) which we now re-scale to the right value (24)
yielding ε(1)(t). This completes the first step. The second
(k = 1) or, in general, the kth iteration repeats the described
procedure starting again from the initial state �(k) (r, t) = φ(r)
and applying the rescaled field ε(k)(t).

The scheme described above has some aspects in common
with the techniques described in [15] and [18, 19]: the basic
idea of incorporating fluence constraints in the optimization
algorithm was given in [15]. However, the authors do not
make use of the immediate feedback (see equation (23)), i.e. the
backward propagation is accomplished by updating χ(r, t) and
ε(t) in a self-consistent way, which was suggested in [18, 19].
On the other hand, the technique presented by the authors
of [18, 19] does not allow us to fix the fluence to a given
value. Roughly speaking, the technique presented above is a
combination of both approaches.

3.2. Spectral constraint

The algorithm with built in spectral restrictions is similar to
the one presented above with two important differences: the
factor α j is a penalty factor. It has to be specified from the start
and remains unchanged during the optimization. Second, the
update of the field ε

(k+1)
j (t) in equation (24) has to be replaced

by

ε
(k+1)
j (t) = F−1

[
f j (ω) × F

[
ε̃

(k)
j (t)

]]
j = x, y,

(28)
where the symbol F indicates a Fourier transform. The
spectral constraint is formulated in terms of a filter function
f j (ω). Since ε j (t) is real valued we have to make sure that
f j (ω) = f j (−ω). For example, the filter function could be
chosen to be

f j (ω) = exp[−γ (ω − ω0)
2] + exp[−γ (ω + ω0)

2], (29)

so that only the frequency components around the centre, ±ω0,
of the Gaussians are allowed in the pulse. If one uses instead

f̃ j (ω) = 1 − (
exp[−γ (ω − ω0)

2] + exp[−γ (ω + ω0)
2]

)
,

(30)
one would allow every spectral component in the laser field
except the components around ±ω0.

3.3. Spectral and fluence constraint

Finally, we note that both schemes can be combined. This
combination makes it possible to incorporate even more
realistic experimental constraints in computational pulse
optimizations. This is achieved by scheme (22), equation (23)

and

ε̄
(k)
j (t) = F−1

[
f j (ω) × F

[
ε̃

(k)
j (t)

]]
j = x, y, (31)

ε
(k+1)
j (t) = α

(k)
j

α
(k+1)
j

ε̄
(k)
j (t), (32)

where α
(k+1)
j is evaluated with the filtered field ε̄

(k)
j (t)

α
(k+1)
j =

√√√√√
∫ T

0 dt
[
α

(k)
j ε̄

(k)
j (t)

]2

E0 j

, (33)

to yield the right value for E0 j . The total spectral power is
related to the fluence by Parseval’s theorem:

E0 j =
∫ +∞

−∞
dt θ(t)θ(T − t)

[
ε j (t)

]2

= 1

2π

∫ +∞

−∞
dω

∣∣ε j (ω)
∣∣2

.

In this combined form we first apply the filter function to
the laser field (31) then we rescale the field to yield the right
value for E0 j (see equation (32)).

We conclude this section with a few remarks.

• For each polarization direction one can specify a separate
filter or fluence.

• The convergence proofs of [18, 19] do not go through in
our case. This is due to the changing value for α

(k)
j and,

in the case of spectral constraints, due to the modified
field (28). However, as will be shown in section 5,
we still find a very good convergence of the presented
algorithms in the numerical examples. Even for the ‘brute-
force’ spectral filter we find a satisfying convergence
behaviour (if not too many essential features of the pulse
are suppressed by the function f j (ω)).

• Note that if the target operator is a projection operator, as
in equation (16) a different choice for the functional J3 (7)
is possible, namely one can choose the functional [18]:

J̃3[ε,�, χ]

= −2 Im

{〈
�(T )|φ f

〉 ∫ T

0
dt 〈χ(t)|(i∂t − Ĥ)|�(t)〉

}
.

(34)

If we choose this functional, the control equation (13) has
to be replaced by

χ(r, T ) = 	 f (r). (35)

With this choice we have two options, namely we can start
the algorithm by propagating the initial state �(r, 0) =
	i(r) forward in time, or we start with propagating
χ(r, T ) = 	 f (r) backwards, as is done in [18]. We have
chosen the functional J3 (7) because it is more general,
i.e., the local target operator can also be used.

• Since we do not expect a monotonic convergence we
have to add some additional intelligence to the algorithm,
i.e. we store the field which produces the pulse with the
highest yield and consider this field as the result of the
optimization.
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Figure 1. The plot shows the model potential with the ground state
(——), the first excited state (- - - -), the second excited state
(· · · · · ·) and the third excited state (— · —). Each state is shifted
according to its eigenvalue.

Table 1. Excitation energies in atomic units (au) for the 1D
asymmetric double well, calculated by imaginary time propagation.

|0〉 |1〉 |2〉 |3〉
|0〉 0.
|1〉 0.1568 0.
|2〉 0.7022 0.5454 0.
|3〉 1.0147 0.8580 0.3125 0.
|4〉 1.5294 1.3726 0.8273 0.5147

Table 2. Dipole matrix elements for the 1D asymmetric double
well, calculated by imaginary time propagation.

|0〉 |1〉 |2〉 |3〉 |4〉
|0〉 −2.5676
|1〉 0.3921 2.3242
|2〉 0.6382 −0.7037 −0.5988
|3〉 −0.3865 −0.4630 1.7051 0.1958
|4〉 −0.1414 0.2118 0.1593 −1.7862 −0.0939

4. Computational details and model system

We choose a one-dimensional asymmetric double well to test
our algorithms. The double well is similar to [37] but has an
additional cubic term:

V (x) = w4
0

64B
x4 − ω2

0

4
x2 + βx3, (36)

with ω0 corresponding to the classical frequency at the bottom
of the well and the parameter B adjusting the barrier height.
The number of pairs of states below the barrier is approximately
B/ω0. Here, we choose B = ω0 = 1.0 and β = 1/256 which
leads to two states below the barrier, as shown in figure 1.
In order to analyse the laser pulses from the optimization
runs we calculate the excitation energies (see table 1) and
dipole moments (see table 2) of the system by propagating
in imaginary time.

The time-dependent Schrödinger equation for the 1D
double well is solved on an equidistant grid, where the
infinitesimal time-evolution operator is approximated by the
second-order split-operator (SPO) technique [38]:

Table 3. In ordinary runs the listed numerical parameters (given in
atomic units) were employed. For the scans in section 5.1.2 we have
used a coarser grid in space and time, as indicated in the second
column.

Parameter Single run Scan

T 400.0 400.0 Pulse length
xmax 30.0 20.0 Grid size
dx 0.1172 0.1563 Grid spacing
dt 0.001 0.005 Time step
ε(0) −0.2 −0.2 Initial guess

Û t+�t
t = T exp

(
−i

∫ t+�t

t
dt ′ Ĥ(t ′)

)

≈ exp

(
− i

2
T̂ �t

)
exp(−i V̂ (t)�t)

× exp

(
− i

2
T̂ �t

)
+ O(�t3).

Following the scheme described in section 3, one needs three
propagations per iteration (if we want to avoid storing the
wavefunction). Within the second-order split-operator scheme
each time step requires four fast Fourier transforms (FFTs) [39]
for the backward propagations, because we have to know the
wavefunction and the Lagrange multiplier in real space at every
time step to be able to evaluate the field from equation (9). For
the forward propagation we only need two FFTs. This sums
up to ten FFTs per time step and iteration.

The parameters used in the runs are summarized in table 3.
The initial guess for the laser field was ε(0)(t) = −0.2 in all
calculations. This choice is arbitrary but has the advantage of
producing a significant occupation in the target state at the end
of the pulse, necessary to get the iteration working. Although
the simple choice ε(0)(t) = 0.0 will work as well in most cases,
it represents a minimum of the functional since initial and target
state are orthonormal. Therefore the algorithm could get stuck
in principle. The obtained solutions, which are presented in
the following section, are all far away from the initial guess.
This suggests that the solutions do not depend on the initial
guess for the laser field.

5. Results

In this section we apply the algorithms described above to our
1D model for electron transfer. We start in the ground state
|0〉 (t = 0), where the electron is localized in the left well, and
demand that at the end of the laser pulse (t = T ) it will be
transferred to first excited state |1〉, which is mainly located in
the right well (see figure 1). The target operator in this case is
a projection operator onto the first excited state: Ô = |1〉〈1|.
Therefore, the success is measured by |〈�(T )|1〉|2 which we
simply refer to as the ‘yield’. The pulse length is chosen to be
T = 400 (≈ 9.7 fs).

5.1. Fluence constraints

5.1.1. Fixed fluence. In the following we first apply our
algorithm to find an optimal field with the fluence E0 = 0.080.
This is the value obtained by an estimate using the two-
level system (see appendix A.2). After 894 iterations we
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Figure 2. We apply the algorithm for E0 = 0.080. The optimized field is shown in (a), with its spectrum in (b). In (c) we plot the time
evolution of the occupation numbers |〈�(t)|n〉|2 (n = 0 (——), n = 1 (- - - -), n = 2 (· · · · · ·) and n = 3 (— · —)). The convergence is
shown in (d). Also shown in (d) are the values of the Lagrange multiplier α (- - - -) during the iteration which we scaled by a factor of 0.1.
The ◦ indicates the iteration with the highest yield.

obtain a yield of 99.91%, which is higher than the yield
found by the two-level estimate. The optimal laser field and
its spectrum (Fourier transform) are shown in figures 2(a)
and (b). The spectrum is dominated by three narrow peaks,
which correspond to the excitation energies ω01 = 0.156,
ω12 = 0.545 and ω02 = 0.702. This suggests that the
optimized transition process is a mixture of the direct process,
i.e. the excitation from |0〉 → |1〉, and an indirect process,
which uses the second excited state as intermediate state:
|0〉 → |2〉 → |1〉. Other indirect processes, like |0〉 →
|3〉 → |1〉, play only a minor role in this case. This
interpretation is supported by looking at the evolution of the
occupation numbers in time (figure 2(c)). First, the laser pulse
populates the second excited state (· · · · · ·) and then after half
of the pulse duration depopulates it again. Looking once
more at the spectrum (in figure 2(b)) we observe a group of
peaks around ω01 (ω ∈ [0, 0.1] and ω ∈ [0.2, 0.3]) which
do not correspond to any excitation energy of the field-free
Hamiltonian. However, these frequencies play an important
role in the transition process. If we filter out these frequency
components, rescale the fluence to E0 = 0.080 and then
propagate this modified laser pulse, we find, at the end of
the pulse, the following occupations: ground state 16%, first
excited state 38%, second excited state 44% and in all higher
levels 6%. In particular, the direct transition and the back
transfer from the intermediate level |2〉 to the target state
in the indirect process are less efficient without these extra
frequencies. Further analysis of this kind shows that the
low-frequency components and especially the zero-frequency

component (bias) are crucial since they introduce a (slight) shift
of the resonance frequencies, visible as a broadening of the ω01

peak in figure 2(b). If, on the other hand, these components
are missing, the remaining frequencies become slightly off-
resonant, resulting in the low efficiency of 44%.

If we filter out everything except the extra peaks we find a
target state occupation of 1%. Understanding these extra peaks
as a third type of transfer process (see section 5.3.3) suggests
that, in this case, a mixing of transition processes seems to
be superior in terms of the maximum target yield to a pulse
consisting of a single process only, e.g. the direct process.

The final yield 99.91% is only 0.61% better than the yield
coming from the simple monochromatic pulse estimate of the
two-level system. This gain has a high price; the optimized
pulse is hardly realizable in any experiment. Although the gain
improves with shorter pulse lengths (see appendix A.2), this
example demonstrates the typical dilemma between theory and
experiment: calculated pulses often have a far too complicated
spectrum to be produced in practice. In sections 5.2 and 5.3
we demonstrate how this dilemma can be resolved.

To conclude the analysis we look at the convergence
behaviour of the applied scheme (see figure 2(d)). We find
a fast convergence within the first 20 iterations. After these 20
iterations the improvement of the yield slows down, as is also
found in the rapid monotonic schemes presented in [18, 20].

5.1.2. Energy versus yield. We apply our method to scan
through a range of values for E0 from 0.010 . . . 1.000. The
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Figure 3. The graph shows the yield for different values of E0

ranging from 0.010 to 1.000. Each point corresponds to a single
optimization. For these runs we have used a smaller grid
(xmax = −xmin = 20.0, dx = 0.156 25) and a larger time-step
(dt = 0.005). The vertical line (- - - -) corresponds to E0 = 0.080.
Beyond this line only yields higher than 0.99 are found.

scan, displayed in figure 3, shows that there seems to be
a critical value Ẽ0 which is necessary to get very high
occupations (|〈�(T )|1〉|2 > 0.99) of the target state. For
values E0 > Ẽ0 the algorithm always finds a laser field that
produces yields above 99%.

For long pulse durations (as is the case here) we can give
a rough estimate of this critical value Ẽ0 with the help of the
two-level system:

Ẽ0 ≈ A2 T

2
= π2

2µ2
01T

(37)

with A = π/(µ01T ) (see appendix A.2).
If we take a closer look at some of the optimized fields (see

figure 4(a)) for the values E0 = 0.010, 0.050, 0.100, 0.200,
we see that the spectra (see figure 4(b)) of these pulses get
more complicated as the assigned fluence increases. In the
lower two panels (E0 = 0.010, 0.050) we find peaks at the
exact resonance frequencies. The optimized fields result in
occupations of 35.24% and 97.63%, while the pulses shown
in the two upper panels (E0 = 0.100, 0.200) produce yields
of 99.81% and 99.95%. The peaks corresponding to the direct
|0〉 → |1〉 and indirect process |0〉 → |2〉 → |1〉 are ‘Stark’
shifted. For the stronger pulses, we also find an increasing low-
frequency part. The spectrum in the top panel (E0 = 0.200) is
difficult to analyse. However, one can see that more and more
processes are taking part in the transition, i.e. peaks occur near
the other resonance frequencies.

5.2. Spectral constraints

In the following we present the results of the algorithm with
spectral constraints and penalty factor for two examples of
the filter function. These examples are motivated by the
findings of the previous section, namely that the transfer of
the particle occurred via a mixture of a direct transition and
indirect transitions. We want to find a laser pulse that produces
a high yield and only contains spectral components centred
around the resonance frequency ω01. In the second example
we optimize a laser that is not allowed to contain the excitation
frequency ω01 of the direct process.

5.2.1. Direct transition. Using spectral constraints in the
optimization scheme allows us to explicitly select the direct
transition, i.e. we search for a pulse whose main frequency
component is the excitation energy ω01. This is done by
applying a Gaussian shaped frequency filter f (ω), according
to equation (29), centred around ω0 = ω01 and with γ = 500.

After 50 iterations the algorithm finds a laser pulse which
results in a yield of 99.97%. We set the penalty factor α = 0.05
and obtain a value of E0 = 0.090, which is slightly higher
than the estimate from the two-level model but also more
effective. The slight envelope on the field, shown in figure 5(a),
stems from the finite width of the Gaussian (see figure 5(b)).
Frequency components near ω01 are still allowed in the pulse
and result in a beat pattern. The time dependent occupation
numbers confirm that the higher states are not occupied during
the transition (see figure 5(c)). The convergence, shown in
figure 5(c), is rather smooth. Note that if we desire a sinusoidal
field with a constant envelope we have to reduce the width
of the Gaussian to allow only one single component in the
spectrum (a Kronecker delta). Using such a filter we obtain
a yield of 99.79% and E0 = 0.085. The field oscillates
with the amplitude A = 0.0207, which is slightly higher
than the amplitude derived from the two-level system (see
appendix A.2).

5.2.2. Forbidden direct transition. By choosing the
complement of the filter function from the previous example,
i.e., by allowing every frequency component except ω01, we
can optimize a field which also produces a very high yield.
The filter function is given by equation (30) with ω0 = ω01

and γ = 500.
The optimization procedure (with a penalty factor α =

2.5) results in a target state occupation of 99.60% after 269
iterations. The optimized laser field is presented in figure 6(a);
it integrates to a fluence of E0 = 0.130. Its spectrum, shown in
figure 6(b), consists of two major components, ωa = 0.581 and
ωb = 0.676, which correspond to the Stark-shifted excitation
energies ω12 and ω02, i.e. the optimization takes care of the
frequency shifts introduced by the large bias (zero-frequency
component) of the field. That the transition occurs via the
indirect process is confirmed by looking at the time-dependent
occupation numbers, shown in figure 6(c). First, the field
starts populating the second excited state and then transfers
the population to the target state. Other indirect processes,
e.g. |0〉 → |3〉 → |1〉 or |0〉 → |2〉 → |3〉 → |1〉, play only
a minor role: the occupation of the third excited state stays
below 2.5% and the frequency components corresponding to
these processes are very small.

5.3. Combination of spectral and fluence constraints

The next examples demonstrate that even more restrictions are
possible and we can still obtain very good yields. We combine
the spectral restriction with the fluence constraint and continue
the above examples by selecting among the indirect processes.
Only two frequencies are allowed in the laser pulse and in
addition we fix the fluence. In the last example we show that it
is not even necessary to have resonance frequencies inside the
laser pulse to reach very high occupations of the target state.
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Figure 4. In (a), we plot the optimized laser fields for different values of E0 = 0.010, 0.050, 0.100,0.200. Graph (b) shows the
corresponding spectra. The resonance frequencies for the transitions |0〉 → |1〉, |1〉 → |2〉 and |0〉 → |2〉 are indicated by vertical lines. In
the two upper plots of graph (b) the peaks are Stark-shifted. Note that these spectra also contain a large low-frequency part.
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Figure 5. We apply the optimization algorithm but allowing only a Gaussian frequency distribution around ω01 = 0.1568. The resulting
field is displayed in graph (a). The filter function f (ω) (- - - -) which is scaled by 0.01 is shown together with the spectrum in (b). The time
dependent occupation numbers (c) confirm that only the ground state (——) and the first excited state (- - - -) take part in the process. The
second excited state population (· · · · · ·) is hardly visible. The convergence is shown in graph (d). The ◦ indicates the iteration with the
highest yield.

5.3.1. Selective transfer via intermediate state |2〉. In the
former examples we found that the indirect process |0〉 →
|2〉 → |1〉 plays a major role in the excitation process.
Since it always appeared together with other processes, e.g. in
section 5.1.1 together with the direct process or in section 5.2.2
together with other indirect processes, we try to find a laser
field with only the two excitation energies ω02 and ω12 (γ =
500) and in addition require E0 = 0.160. For these high
requirements we have to pay a price, which is the irregular
behaviour of the yield during the iteration, shown in figure 7(d).
After 540 iterations we find a yield of 99.90%. The restriction

of the laser frequencies results exactly in the desired transition
process, which is confirmed by the time-dependent occupation
numbers, shown in figure 7(c).

5.3.2. Selective transfer via intermediate state |3〉. The
process |0〉 → |3〉 → |1〉 using the third excited state as
intermediate state played only a minor role in the examples
considered so far. Here, we try to optimize the laser pulse
so that the transition is only performed via this process. In
addition we require E0 = 0.320. Again, we use a double
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Figure 6. We prohibit the direct transition from |0〉 → |1〉 by using the complement of the previous filter function f̃ (ω) = 1 − f (ω). The
optimized field is shown in graph (a). The filter function f̃ (ω) (- - - -), scaled by 0.01, is plotted together with the spectrum in (b). The
time-dependent occupation numbers (c) confirm that now the second excited state (· · · · · ·) plays a major role in the transition (ground state
(——), first excited state (- - - -) and third excited state (— · —)). The convergence is shown in graph (d). The ◦ indicates the iteration
with largest occupation of the target-state.
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Figure 7. Here we use a double Gaussian window (γ = 500), allowing only frequencies around ω02 and ω21, and in addition demand
E0 = 0.160. The optimized field is shown in graph (a). The filter function (- - - -) f (ω), scaled by 0.01, is plotted together with the
spectrum in (b). The time-dependent occupation numbers (ground state (——), first excited state (- - - -) and third excited state (— · —)) in
(c) confirm that the transition occurs via the second excited state (· · · · · ·). Due to the stronger constraints the convergence behaviour
becomes oscillatory, shown in graph (d).
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Figure 8. We apply the optimization algorithm with a double Gaussian window, allowing only frequencies around ω03 and ω31, and in
addition set E0 = 0.320. The optimized field is shown in graph (a). The filter function f (ω) (- - - -), scaled by 0.01, is plotted together with
the spectrum (b). The time-dependent occupation numbers (ground state (——), first excited state (- - - -) and second excited state
(· · · · · ·)), shown in (c), confirm that the transition process is performed mainly via the third excited state (— · —). Due to the strong
restrictions the convergence behaviour happens to be more oscillatory, shown in graph (d).

Gaussian filter, one Gaussian centred at ω13, the other one at
ω03 and choose the width parameter γ = 500.

The results are shown in figure 8. As in the previous
example, the high requirements on the laser field result in a
rather erratic convergence (see figure 8(d)). The field, shown
in figure 8(a), produces a target state occupation of 99.89%
after 162 iterations. The time-dependent occupation numbers
(see figure 8(c)) show that the transition happens in exactly the
desired way.

5.3.3. Low-frequency pulse. Using a band filter, i.e. f (ω) =
θ(ω−ωa)θ(ωb −ω)+θ(−ωa −ω)θ(ω+ωb), with ωa = 0.000
and ωb = 0.120 we can find a laser pulse resulting in a high
yield without allowing any resonance frequency in the laser
spectrum. The allowed frequencies (ω ∈ [0.000, 0.120])
are smaller than the lowest excitation frequency ω01. The
additional constraint on the fluence in the optimization is
E0 = 0.400. The convergence of this optimization is shown
in figure 10(b). After 981 iterations, we obtain a target state
occupation of 99.93%. The spectrum of the optimized pulse,
shown in figure 10(a), exhibits contributions of all allowed
frequency components. In particular, the zero-frequency
component is dominant, being almost three times larger than
the other frequency contributions. In the time-domain the zero-
frequency component corresponds to a bias of εav = −0.028,
which is close to the value for which the potential becomes
almost symmetric: ε̄ = −0.031. The optimized pulse together
with ε̄ is shown in the middle panel of figure 9.

0 100 200 300 400
t [a.u.]

0
0.2
0.4
0.6
0.8

1

oc
cu

pa
tio

n

-0.06
-0.04
-0.02

0
0.02

ε(
t)

 [
a.

u.
]

0
0.2
0.4
0.6
0.8

1

dr
es

se
d 

oc
c.

Figure 9. In the lower panel we show the time-dependent occupation
numbers of the ground state (——), the first excited state (- - - -) and
the second excited state (· · · · · ·). The optimized laser field together
with ε̄ = −0.031 is shown in the middle panel. In the top panel
we plot the absolute values (squared) of the projections onto the
two lowest eigenfunctions of the Hamiltonian including the field ε̄.

The transfer process can be interpreted with the help of
the following simplified picture: assume the field would be
almost static with ε(t) ≈ ε̄. Then, the initial state becomes a
superposition of the dressed states

�(x, t = 0) = 1√
2

(
ϕε̄

0 − ϕε̄
1

)
eiθ1 .
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Figure 10. Graph (a) shows the spectrum of the laser field (——) and the rectangular filter (- - - -) scaled by 0.01. The convergence is
shown in (b). The ◦ indicates the iteration with the highest yield.

Small perturbations of the laser field around ε̄ rearrange the
phases of the superposition so that at the end of the pulse

�(x, T ) = 1√
2

(
ϕε̄

0 + ϕε̄
1

)
eiθ2 .

This superposition is located in the right well, which completes
the transfer. Note that the phases θ1 and θ2 are irrelevant in
this case.

The pulse we have obtained from the optimization is more
difficult to explain since the oscillations around ε̄ are not
small. To be able to analyse the transfer process in similar
terms as discussed above, we have calculated the projections
of the wavefunction �(x, t) onto the eigenfunctions of the
Hamiltonian Ĥ ε̄ including the field ε̄. These ‘dressed’
occupation numbers are shown in the upper panel of figure 9.
In the simplified interpretation we have implicitly assumed
a complete localization in the left (right) well for the initial
(target) state. Since this is not true for the potential chosen
here, the dressed occupation numbers deviate slightly from 0.5,
namely we have |〈�(x, 0)|ϕε̄

0 〉|2 = 0.57 and |〈�(x, 0)|ϕε̄
1 〉|2 =

0.43. At the end of the pulse we obtain the inverted occupation
numbers, i.e. |〈�(x, T )|ϕε̄

0〉|2 = 0.45 and |〈�(x, T )|ϕε̄
1〉|2 =

0.55, which indicates the completed transfer (necessary
condition). The laser pulse has also adjusted the phases of the
expansion coefficients in the right way (sufficient condition):
the relative phase difference of φε̄

0 and φε̄
1 between t = 0 and T

was found to be 0.8π . This deviates from the simple picture,
where we would have expected a phase difference of π .

The transfer process described above has similarities with
the one discovered in [28] where the authors have used an
asymmetric double well to model a hydrogen transfer reaction.

6. Conclusions

We have presented a simple iterative scheme which allows
for the optimization of laser pulses under constraints on the
spectrum of the laser and on its fluence. The scheme has been
described in three different versions, one incorporating a given
laser fluence, one restricting the spectrum of the laser pulse
and the third one combining both constraints. Therefore, the
scheme allows one to include realistic experimental constraints
in the numerical optimization of laser pulses.

To show that all three kinds of this scheme lead to high
occupations of the target state we have applied them to drive

the ground state of a 1D asymmetric double-well potential to
its first excited state.

For all numerical tests we have obtained a high occupation
>99% in the target state. In the case of a fixed fluence
(E0 = 0.080) we found a target state occupation of 99.91% at
the end of the pulse. Comparing the optimal laser pulses for
different fluences shows that, for fluences larger than a certain
critical value, target state occupations larger than 99% can
always be achieved. With increasing fluence the optimized
pulses employ a growing number of transition processes.
Using spectral restrictions we are able to select between the
different processes. We have calculated pulses that transfer the
ground state population to the target state only via the direct
excitation process, explicitly without the direct process or via
certain intermediate levels which are chosen indirectly by the
spectral constraints. For the optimizations via an intermediate
level we have additionally required a fixed laser fluence.

That it is possible to achieve a very high target state
occupation with laser fields not containing any of the excitation
frequencies has been clearly demonstrated by the last example.
The laser spectrum was allowed to have frequency components
only lower than the lowest resonance frequency. In addition we
required the fluence to be fixed. As in the previous cases, the
algorithm resulted in a laser pulse with a very high occupation
of the target state.

The results obtained in this work clearly demonstrate that,
in general, there exists no unique optimal laser pulse to achieve
a given control target and that selection within the set of optimal
pulses is possible by adding constraints to the optimization.
With the methods presented here, experimental constraints
can be incorporated in the pulse optimization, which makes
the interpretation and analysis of the experimentally obtained
laser pulses more reliable. The scheme allows one to study
systematically the effects of different constraints on the target
occupation and on the optimized laser field. Especially in the
strong-field regime, this leads to important insights into the
various possible ways to achieve complete population transfer.
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Appendix

A.1. Ineffectiveness of post-constraints

To show the ineffectiveness of filtering the pulse spectrum
after the optimization we have taken the optimized pulse from
section 5.1.1 and cut out the undesired frequencies. We then
transform the pulse back to the time domain and propagate
the time-dependent Schrödinger equation for the double-well
structure using this pulse. Since the pulse has a lower fluence
after this procedure we also rescale the pulse so that

∫ T

0
dt ε2(t) = 0.080. (A.1)

We apply this procedure to two cases.

(a) Case 1: Restriction to the direct process. Filtering
out all frequencies except ω ∈ [0.094, 0.236], which
corresponds to considering only the direct process |0〉 →
|1〉, results in a yield of 8%, and after rescaling we obtain
44%.

(b) Case 2: Enforcing the indirect process. By filtering out
all frequencies except ω ∈ [0.503, 0.833] we address
only the indirect process |0〉 → |2〉 → |1〉. Numerical
propagation with the modified field results in a yield of
5% and 75% after rescaling.

Comparing these numbers to the high yields found in
sections 5.2.1 and 5.3.1, we clearly see that filtering after
optimization is ineffective. It is far more powerful to use the
filtering in the optimization process.

A.2. Results from two-level systems

From the theory of two-level systems (or two-level atoms) [40]
we can extract a good estimate for an optimal pulse, if the direct
transition is allowed in dipole approximation. The estimate is
extremely good, if no more than two levels contribute to the
process. This is the case if the excitation spectrum is well
separated and the laser pulse is in the weak-response regime.
We have chosen a pulse length T = 400 which lies at the
boundary of this regime, but since the excitation energies are
far apart from each other we expect the two-level system to
be a good approximation. The optimal pulse for a two-level
system (within the rotating wave approximation (RWA)) that
transfers all population from the ground state to the excited
state is a simple sinusoidal oscillation [41, 36]:

ε(t) = A sin(ω01t) (A.2)

where ω01 is the resonance frequency and A is the (optimal)
amplitude given by

A = π

µ01T
, (A.3)

with the dipole matrix element µ01 = 〈0|µ̂|1〉 and T the length
of the pulse. In our case we find A = 0.020 03 and the

Table A.1. Comparison of the yield P = |〈1|�(T )〉|2 obtained
with the two-level (RWA) pulse estimate versus the optimal control
result. Note that the period of the oscillation with the resonance
frequency ω01 is Tp = 40.08 au.

T P2level Popt E0

400 0.9930 0.9991 0.0804
200 0.9042 0.9999 0.1608
100 0.1448 0.9999 0.3216
50 0.0199 0.9958 0.6407

corresponding fluence E0 = 0.0804. Applying this pulse to
the double-well system, initially in the ground state, yields an
occupation of 99.30% of the first excited state. In table A.1 we
compare the results obtained from this simple estimate with the
optimal control solution fixed to the same fluence. The results
show that the two-level estimate is very successful for long
times. However, for short pulse lengths where T < 5∗2π/ω01

it is not effective. This is due to the strength of the amplitude
of the oscillation; it also causes occupation of the non-resonant
levels.
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Lupulescu C, Lindinger A, Vajda Š, Weber S and
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