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Magnetic excitations and femtomagnetism of FeRh: A first-principles study
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(Received 1 February 2011; published 3 May 2011)

The paper is partly motivated by recent pump-probe experiments with ultrashort laser pulses on antiferromag-
netic FeRh that have shown the generation of magnetization within a subpicosecond time scale. On the other hand,
the physical mechanism of the thermal antiferromagnetic-ferromagnetic (AFM-FM) phase transition in FeRh,
known for many decades, remains a topic of controversial discussions. The selection of the magnetic degrees
of freedom as well as the treatment of the magnetic excited states differ strongly in recent models by different
authors. We report a density functional theory (DFT) investigation of FeRh. For the study of excited states,
DFT calculations with constraints imposed on the directions and values of the atomic moments are employed.
We show that the formation of the Rh moment as a consequence of the AFM-FM phase transition cannot be
described within the Stoner picture. Instead, an implicit spin splitting of the Rh states takes place in the AFM
phase, resulting in the intra-atomic spin polarization of the Rh atoms. This property is a consequence of the
strong hybridization between Rh and Fe states. The Fe-Rh hybridization is an important factor in the physics of
FeRh. We demonstrate that the ferromagnetic Fe-Rh exchange interaction is robust with respect to the crystal
volume variation, whereas the antiferromagnetic Fe-Fe exchange interaction is strongly volume dependent. These
different volume dependencies of the competing exchange interactions lead to their strong compensation at certain
crystal volume. We perform Monte Carlo simulations and show that the calculated thermodynamics depends
on the way the magnetic degrees of freedom are selected. We argue that the excited states resulting from the
variation of the value of the Rh moment treated as degree of freedom are important for both the equilibrium
thermodynamics of FeRh and the femtomagnetic phenomena in this system. We also study the spin mixing
caused by spin-orbit coupling. The obtained value of the Elliott-Yafet spin-mixing parameter is comparable with
earlier calculations for the ferromagnetic 3d metals. We draw the conclusion that the Elliott-Yafet mechanism
of the angular-momentum transfer between electrons and lattice plays an important role in the femtomagnetic
properties of FeRh.
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I. INTRODUCTION

The progress in the development of femtosecond lasers
has lead to the emergence of a new branch of solid-state
magnetism often referred to as femtosecond magnetism or
femtomagnetism. Pump-probe experiments on the elemental
3d ferromagnets have shown that substantial demagnetization
takes place within subpicosecond time intervals (see, e.g.,
Refs. 1–3). Since the angular momentum is one of the
conserved physical quantities, the question arises regarding the
mechanism of the ultrafast change of the angular momentum
of the electron system. Despite much research this question
remains the topic of intense debates. Most of the proposed
scenaria consider the spin-orbit coupling as a necessary
component of the angular-momentum dissipation.4–9 Recently,
additional arguments have been suggested5 supporting one
such scenario: the Elliott-Yafet mechanism10,11 of angular-
momentum transfer between electrons and lattice. The ef-
ficiency of the Elliott-Yafet mechanism is determined by
the parameter describing the spin mixing of the electron
states due to spin-orbit coupling (SOC). The theory, based
on first-principles calculations of this parameter, allowed the
authors to explain the demagnetization behavior of different
ferromagnetic systems.5 This point of view was, however,

challenged by Battiato et al.,12 who suggested a very different
theoretical model where SOC does not play a role and the
quenching of the magnetization appears as the consequence of
different scattering properties of the electrons with different
spin projections.

In this controversial situation the femtomagnetic phenom-
ena observed in FeRh13,14 becomes increasingly more interest-
ing. In contrast to the ferromagnetic systems with femtosecond
demagnetization, one deals here with the opposite effect of
ultrafast generation of the magnetization after laser irradiation
of the antiferromagnetic FeRh. Since in an antiferromagnet
the electron subsystems with opposite spin projections have
identical properties, the mechanism of Battiato et al.12 does
not apply. Therefore, the analysis of the efficiency of the
Elliott-Yafet mechanism in femtomagnetism of FeRh promises
not only to shed light on the properties of this particular system
but also to provide additional arguments in the discussion of
the efficiency of various mechanisms of the demagnetization
in ferromagnets.

The appearance of a net magnetization after laser irradiation
of AFM FeRh is not surprising since the system is known
to experience an AFM-FM thermal phase transition at a
temperature of ∼370 K.15 Therefore, it can be expected that the
ultrafast energy supply by the laser light will also lead to the
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transition of the system into the magnetized state. However,
since the laser light cannot serve as a source of the angular
momentum in the experiments considered16 this source must
be found within the system.

One purpose of this paper is to investigate the efficiency of
the Elliott-Yafet mechanism in the femtomagnetic properties
of FeRh. However, this question cannot be addressed without a
deep understanding of the physics of the AFM-FM phase trans-
formation. We emphasize the important difference between the
femtomagnetic phenomena in ferromagnetic 3d metals and in
FeRh: In 3d metals the effect consists of quantitative changes
within the same phase, whereas in FeRh a transformation
between different phases takes place.

The necessity to deal with phase transformation brings us
to another problem where the opinions of different researchers
are again very far from a consensus. Although the AFM-FM
phase transition in FeRh has been known for many decades17

and numerous experimental and theoretical works have been
devoted to this system (see, e.g., Refs. 18–22 for theoretical
studies based on the DFT), the physical mechanism of this
transition remains a matter of debate. In a historical view the
first attempts to understand the phase transition were based
on Kittel’s model that assumes the change of the sign of the
effective Fe-Fe interaction as a result of the thermal lattice
expansion.23 This model was nor successful since it does not
explain the experimentally detected strong entropy change
during the phase transition.24

A common point among recent theories based on the results
of DFT calculations13,20,21 is the crucial role of the Rh moments
in the stabilization of the FM phase. In other respects these
three models differ markedly. Gruner et al.20 consider both Fe
and Rh moments as Ising-type one-dimensional spins, whereas
Ju et al.13 (see also Ref. 22) and Gu and Antropov21 treat both
Fe and Rh moments as Heisenberg-type 3D vectors. On the
other hand, the approaches by Ju et al. and Gu and Antropov
differ from each other in the selection of the magnetic degrees
of freedom, in particular in the treatment of the moments of
the Rh atoms.

Pursuing our purpose to verify the efficiency of the Elliott-
Yafet mechanism in the femtomagnetism of FeRh we will look
closer at the electron properties of this system developing a
picture that differs in a number of important aspects from the
physical pictures suggested earlier. Special attention will be
devoted to the comparison with the model of Ju et al.13 as this
model is suggested in the joint experimental-theoretical paper
on femtomagnetism of FeRh and is the only model applied to
the interpretation of the femtomagnetic effects.

Since the moments of the Rh atoms play a crucial role
in the phase transformation in FeRh we will begin with a
closer look at the the physical mechanism of the Rh moment
formation (Sec. II). In Sec. III we discuss the questions
related to the selection of the magnetic degrees of freedom
and study the volume dependence of exchange parameters. In
Sec. IV, the results of Monte Carlo simulations are reported. In
Sec. V, the magnetic states obtained by means of the constraint
on the values of the Rh moments are discussed. In Sec. VI
the spin-orbit coupling is included in the consideration, and
we estimate the parameters important for the Elliott-Yafet
mechanism of the angular-momentum exchange between
electrons and lattice.

FIG. 1. (Color online) Magnetic structure of AFM (left) and FM
(right) FeRh. The corners of the cube host Fe atoms with a moment
of ∼3 μB , the center of the cube hosts a Rh atom with zero moment
in the AFM phase and ∼1 μB in the FM phase.

II. NATURE OF Rh MOMENT

Taking into account the important role played by the Rh
moments in the magnetism of FeRh,13,20–22 we begin with the
discussion of the physical nature of this moment.

Experimentally it is well established that the Fe moment
is close to 3 μB in both AFM and FM phases, whereas the
Rh moments change from zero in the AFM to about 1 μB in
the FM phase. In the AFM phase, the nearest neighborhood
of each Rh atom contains equal number of Fe atoms with
magnetic moment direction “up” and with direction “down.”
Therefore no net Rh moment can appear in the AFM state under
the influence of the Fe subsystem. The magnetic structure is
schematically represented in Fig. 1.

Because of the variation of the Rh moment from zero
in the AFM state to one in the FM state it is seemingly
straightforward to interpret the Rh moment as induced by
the Fe moments. Ju et al.13,22 suggest invoking the Stoner
model to describe the appearance of the Rh moment under the
influence of the variation of the Fe magnetic structure from
AFM to FM. The exchange field of the Fe moments at the Rh
sites is treated as an external magnetic field with respect to
the Rh states. In the AFM phase the Rh states are considered
nonmagnetic. We will, however, show that the Stoner model
misses important features of the Rh states in FeRh and does
not provide an adequate physical picture of the ground and
excited states of the system. We will also demonstrate that the
notion of the induced moment, although useful for qualitative
characterization of some features of the electronic structure of
FeRh, cannot be considered as a reason for the reduction of
the set of the relevant magnetic excited states, as suggested in
Refs. 13 and 22.

The density functional theory calculations reported in this
paper were performed within the augmented spherical waves
(ASW) method25 except in the case of the spin-density plots of
the Rh atom where the calculations were done using the full-
potential Korringa-Kohn-Rostoker Green function method.26

The local spin-density approximation27 (LSDA) was used for
the description of exchange and correlation effects. We will
specify the crystal volume used in the calculations by the
value of the Wigner-Seitz atomic radius rS . The volume of the
sphere of this radius corresponds to the volume per atom in
the crystal. Throughout the paper, atomic units are used for
length (1 a.u. = 1 aB = 0.529 Å).
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FIG. 2. The DOS of the ferromagnetic (left) and antiferromag-
netic (right) state of FeRh. (Upper panel) Total DOS. (Middle panel)
Fe-DOS. (Bottom panel) Rh-DOS. In each panel the line with positive
DOS values corresponds to the spin-up projection and the line with
negative DOS values to the spin-down projection. The total DOS is
given per chemical formula unit (FU), the partial atomic DOS per
atom.

In Fig. 2(left), the spin-polarized density of states (DOS) of
Fe and Rh atoms in FM FeRh are presented. The DOS shown
is calculated for rS = 2.77 a.u. close to the theoretical and
experimental equilibrium volume.18 For each of the atoms the
spin-up and spin-down DOS clearly differ, resulting in large
atomic magnetic moments: 3.11 μB for Fe and 1.07 μB for
Rh. The comparison of the Fe and Rh DOS corresponding to
the same spin projection shows that they have a common peak
structure. This feature reveals strong hybridization of the Fe
and Rh states in both spin channels.

In the AFM FeRh (Fig. 2, right panel), the Rh DOS
corresponding to the spin-up and spin-down projections are
equal. This is an expected result since the Rh states with a
given spin projection hybridize with the locally spin-up states
of one of the Fe sublattices and locally spin-down states of the
other Fe sublattice. As a consequence, the moment of the Rh
atoms is zero, whereas the Fe moment of 2.99 μB is close to
its value in the FM. Remarkably, however, the peak structure
of the Rh-DOS in the AFM phase reflects the peak structure
of the strongly spin-polarized Fe DOS, just as in the FM case.

This means that Rh electron states do not average the
influence of two oppositely magnetized Fe sublattices. Instead,
a part of the Rh states with a given spin projection hybridizes
mostly with the locally spin-up states of one Fe sublattice,
whereas another part of the states with the same spin projection
hybridizes mostly with the locally spin-down states of the other
Fe sublattice. As a result, the total Rh DOS for the FM and
AFM cases are similar to each other and differ substantially
from the Rh DOS of a hypothetical nonmagnetic FeRh
(Fig. 3).

A consequence of this implicit spin splitting of the
Rh states is a nonzero intra-atomic spin polarization of the
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FIG. 3. The partial Rh DOS for ferromagnetic, antiferromagnetic,
and nonmagnetic (NM) FeRh. In all cases the DOS presents the sum
of the DOS corresponding to both spin components.
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FIG. 4. (Color online) Spin density of the Rh atom in the AFM
phase of FeRh. The spin density is shown on a cut along the (110)
atomic plane of area 0.4 × 0.4 a.u.2 around the Rh nucleus. (a) Three-
dimensional plot demonstrating the peak structure of the spin density.
(b) Contour plot of the spin density in the same region demonstrating
the symmetry of the positive and negative peaks.
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Rh atom (Fig. 4). The zero value of the total moment of the Rh
atoms appears as the result of the compensation of the opposite
spin polarizations in different parts of the atomic volume.
The implicit spin splitting and intra-atomic spin polarization
make the Rh electron states in the AFM FeRh differ from
the nonmagnetic phase of the Stoner theory where the wave
functions of the electron states with opposite spin projections
are identical and neither of these two features is present.

The implicit spin polarization of the Rh states explains the
surprising property of FeRh that a relatively low temperature of
∼370 K is sufficient to transform the state of the Rh atom with
zero moment to the state with the moment of 1 μB . In the Stoner
picture the energy difference between the nonmagnetic state
and the state with a moment of this magnitude is usually the
equivalent of thousands of Kelvins. Indeed, the difference of
the energies corresponding to the nonmagnetic and FM states
of FeRh is ∼56 mRy (∼9000 K) per formula unit compared to
the value of ∼1 mRy per formula unit for the energy difference
between FM and AFM states.

These considerations show that instead of the Stoner-type
response of the nonmagnetic Rh states to the field determined
by the net magnetization of the Fe subsystem, the formation of
the Rh moment is governed by the strong covalency with the
spin-polarized Fe states. The AFM-FM transition results in a
redistribution of the local spin-up and spin-down components
in the Rh states transforming the implicit spin splitting in
the AFM FeRh to an explicit spin splitting in the FM FeRh
and, therefore, leading to the appearance of the net atomic Rh
moment.

In the following sections we will show that the study of
the volume dependence of the exchange interactions provides
interesting information on the properties of the system.
Figure 5 presents the calculated volume dependence of the
atomic moments. The Fe spin moment increases somewhat
with increasing volume in both FM and AFM states. Such
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FIG. 5. (Color online) The dependence of atomic moments on
crystal volume. Shown are Fe spin moment in the FM (spheres)
and AFM (up-triangles) states, Rh spin moment in the FM (down-
triangles), Fe orbital moment (squares), and Rh orbital moment in
the FM (diamonds). The Fe orbital moment in the AFM practically
coincides with the corresponding curve in the FM and is not shown.
For Rh, both spin and orbital moments in the AFM are zero.

behavior is expected as a consequence of the band narrowing
accompanying the increase of the volume. The Rh spin
moment in the FM phase remains practically unchanged,
reflecting the combined influence of the increasing exchange
splitting of the Fe states and decreasing hybridization of the
Fe and Rh states.

Further insights into the nature of the Rh moment will be
gained in the next section where we discuss excited magnetic
states.

III. CONSTRAINED CALCULATIONS AND
EXCITED STATES

A. General principles

From the microscopic point of view the thermal behavior
of a system is determined by the spectrum of excited states.
Therefore an adequate treatment of the excited states is crucial
for the understanding of the processes at nonzero temperatures.
An important step in the consideration of the excited states
of a given system is the selection of the magnetic degrees
of freedom determining the excited states. In this respect it
is remarkable that the models of FeRh based on the DFT
calculations differ in how the excited states are treated. Not
only the selection of the degrees of freedom but also the
treatment of the excited states corresponding to the same
degrees of freedom differ strongly.13,20–22

In the model by Gu and Antropov21 the excitations
correspond to the excited states of the Heisenberg Hamiltonian.
In the AFM phase this is the Hamiltonian of the Fe moments
only, whereas in the FM phase it is the Hamiltonian of the
Fe and Rh moments. Neither the appearance of nonzero Rh
moments in excited states of the AFM phase nor the variation
of the value of the Rh moments in excitations of the FM phase
is taken into account. In the model by Ju et al.,13,22 only the
directions of the Fe moments are considered as degrees of
freedom. On the other hand, the formation of Rh moments
in the AFM phase and the variation of the Rh-moment value
in the FM phase are taken into account by demanding that
the moment of each Rh atom is determined by the directions
of the neighboring Fe moments: �mRh = χ

∑
i �mi

Fe, with χ a
constant and i running over the nearest neighbors. Thus, the
appearance of the Rh moment in the AFM phase caused by the
disordering of the Fe moments is considered by Ju et al. and
is argued to be the physical mechanism of the AFM-FM phase
transition.

The work by Gruner et al.,20 although most advanced in
the statistical mechanics study of the model, treats all atomic
moments as one-dimensional Ising spins, which complicates
the comparison of the results of this study with experiment and
our calculations. Therefore, in the analysis of our data we will
mostly refer to the models by Ju et al. and Gu and Antropov.

In view of the strong difference between the models based
on the DFT calculations it is worthwhile to briefly formulate
the general principles of the treatment of the excited magnetic
states within the DFT.

The consideration of the energy response to the variation
of the charge and spin densities is at the heart of the density
functional theory. The minimization of the energy with respect
to the variations of the spin density gives the magnetic
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ground state of the system. To perform the calculation of
an excited state, the energy functional must be minimized
under certain constraining conditions specifying this state. The
mathematical procedure of constrained minimization results in
the introduction of an external magnetic field stabilizing the
desired magnetic state.28 The directions of the moments are
stabilized by the fields orthogonal to these directions, whereas
the values of the moments are stabilized by the fields parallel
to the moments. Therefore, in a general treatment, all states
obtained under constraint on the directions and values of the
atomic moments should be considered as possible excited
states of the system. Turning back to FeRh, we conclude
that within this general scheme there is no basis for a priori
reduction of the magnetic degrees of freedom to the directions
of the Fe moments as well as for the neglect of the variation
of the value of the Rh moment in the excited states of the FM
and AFM phases.

The calculation of a complete set of constrained states of
a solid is a problem of formidable complexity and cannot be
solved in a direct way. The possible approximations involve
the restrictions of both the number of excited states studied by
the DFT methods and the accuracy of the study of the selected
excited states. It is worth noting here that the calculation of the
excited states is not a final purpose of a physical study. This
information is needed in the statistical mechanics investigation
of the system outside the ground state. Therefore one needs
to deal with a compromise between, on the one hand, the
necessity of a sufficiently simple parametrization of the excited
states in a model magnetic Hamiltonian to make the statistical
mechanics calculations feasible and, on the other hand, the
necessity to take into consideration all physically relevant
features of the excited states.

Coming back to the models of Refs. 13 and 20–22 we
can characterize the selection of constrained states adopted
in these models as follows. Ju et al.13,22 suggest restricting
the consideration of the excited states to the states determined
by the constrained directions of the Fe moments. The states
obtained by constraining the value of the Fe moments and
by any constraint on the Rh moments are excluded from the
consideration. The argumentation for this restricted choice of
the excited states is based on the induced nature of the Rh
moments. However, in the previous section we have shown
that the feature that can be referred to as induced nature of the
Rh moment reflects strong hybridization between Rh and Fe
states and by itself imposes no restrictions on the set of excited
states or on their relative importance. In Sec. IV we study the
influence of the selection of degrees of freedom on magnetic
thermodynamics. In Sec. V we argue that the account for only
the states determined by the constraint on the directions of the
Fe moments excludes from the consideration the excitations
important for the interpretation of femtomagnetic experiments.

Gu and Antropov21 calculate the exchange parameters
by the estimation of the energy price of the infinitesimal
deviations of the directions of atomic moments from an
equilibrium magnetic configuration.29 In these calculations
the constraint is imposed on the directions of the atomic
moments. The DFT calculation of the energy differences is
based on the so-called magnetic force theorem and reduces to
the evaluation of the band part of the energy. The appearance
of the Rh moment in the AFM phase or the variation of the

value of the Rh moment in the FM phase are not considered.
Finally, Gruner et al.20 perform DFT calculations only for
collinear FM and AFM states. This means that constraints are
imposed on the directions of the atomic moments. Because of
the symmetry properties of both collinear structures they do
not need effective magnetic fields for their stabilization. We
deal in this case with a symmetry constraint.30

B. Constrained calculations

We begin the consideration of the excited states with
a simple constrained calculation that provides information
on the exchange interactions between Fe and Rh moments.
We start with the ferromagnetic FeRh and, keeping both Fe
and Rh subsystems to be separately ferromagnetic, vary the
angle between Fe and Rh moments from 0◦ to 90◦. For each
angle a self-consistent calculation is performed. The result of
such calculations is presented in Fig. 6. It is similar to the
corresponding result discussed by Ju et al.13 and presented
by Mryasov.22 For the sake of comparison of different
approaches it is worth noting that, although Ju et al. use such
configurations to study exchange interactions between Fe and
Rh moments, they are not taken into account in the discussion
of statistical mechanics. Indeed, if the constraint on the angle
between the directions of the Rh and Fe moments is removed
the configurations shown in Fig. 6 become unstable and
the DFT calculation started with arbitrary initial θ results in the
same collinear ferromagnetic state. According to the general
approach to the excited states within DFT there is no basis for
this variance in the treatment of the constrained states, namely
to consider them in the calculation of exchange parameters
but exclude them from the magnetic excitations contributing
to the statistical mechanics of the system.

We see (Fig. 6) that the value of the Fe moment depends very
weakly on θ , whereas the Rh moment decreases monotonously
from the value close to 1 μB to zero. In a rough approximation
mRh(θ ) is proportional to cos θ . The strong increase of the
energy of the system with increasing θ reveals a ferromagnetic
exchange interaction between Fe and Rh moments. Since the
energy curve is roughly proportional to (m0

Rh)2 − [mRh(θ )]2, Ju
et al.13,22 suggest treating this energy contribution as the Stoner
energy of the Rh subsystem. Our energy curve is very close
to the curve reported by Mryasov.22 However, in this case we
also consider the reference to the Stoner model as physically
not well founded. The same type of the θ dependence follows
from a Heisenberg-type bilinear interaction between Fe and Rh
moments JFeRhmFe · mRh if the dependence of mRh on angle
θ between Fe and Rh moments is taken into account. Since
the estimation of the Stoner parameter31 of the Rh atom gives
a value of 50 mRy that is much larger than the parameter
evaluated from the calculations presented in Fig. 6 we conclude
again that the conventional Stoner picture is not adequate to
describe the magnetism of the Rh atoms in FeRh.

The dashed energy curve presented in the bottom panel of
Fig. 6 is obtained by applying the magnetic-force theorem.29

This theorem suggests that the energy price of the deviation
of the atomic moments from the ground-state directions can
be estimated as the difference between band energies of the
ground and excited magnetic configurations calculated with
the use of the same ground-state atomic potentials. Therefore,
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in this calculation the dependence of the Rh moment on
angle θ between Fe and Rh moments is not taken into
account. The curve obtained with the magnetic-force-theorem
calculation gives the estimation of the parameter of the
exchange interaction between Fe and Rh moments JFe−Rh

∼1.2 mRy.
To describe the energy dependence obtained self-

consistently (bottom panel of Fig. 6, full curve), we need two
terms. The first term gives the exchange interaction between
Fe and Rh moments

HFeRh = −
∑

i,ν

J iν
FeRheimν, (1)

where i runs over the Fe atoms and ν runs over the Rh atoms.
Here ei is the unit vector in the direction of the magnetic
moment of the ith atom and mν gives the magnetic moment
of the νth Rh atom. In the ferromagnetic state mRh ≈ 1 μB.
In the form of the Hamiltonian given by Eq. (1) the values of
the Fe atomic moments are included in the definition of the
exchange parameters J iν

FeRh. Since the values of the Fe moments
do not vary during simulations, this form of the Hamiltonian is
convenient. It is, however, essential for the simulations that the
Rh moments can assume different values. The Fe-Rh exchange
parameter remains unchanged and valid for all values of
the Rh moment in Eq. (1). Only the interaction between nearest
Fe and Rh atoms is considered, since all estimations show
that the interactions between more distant neighbors are much
weaker.
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FIG. 6. (Color online) Angle dependence of the Fe moment, Rh
moment, and energy of the state. The angle between Fe and Rh
moments is θ . Both Fe and Rh sublattices are kept ferromagnetic (see
insert in the upper panel). The broken energy curve in the bottom
panel is the result of the non-self-consistent calculation based on the
magnetic force theorem that does not take into account the change of
the Rh moment (see the text). � in the bottom panel marks the on-site
energy contribution [Eq. (2)].

The second energy term,

HRh =
∑

ν

Jon−sitem
2
ν, (2)

does not have an explicit dependence on the Fe moment and
can be treated as the change of the energy of the Rh atom caused
by the variation of the Rh atomic moment. The estimation on
the basis of two energy curves in the bottom part of Fig. 6
gives Jon−site ∼ 6 mRy.

Note that two contributions [Eqs. (1) and (2)] have opposite
types of the variation with the change of the Rh moment.
The bilinear term assumes the lowest value for the maximal
projection of the Rh moment on the exchange field of the Fe
environment, whereas the on-site term is minimal for the zero
value of the Rh moment. These contributions will be discussed
in more detail in Sec. IV.

An interesting piece of information about the system is ob-
tained by the study of the volume dependence of the exchange
interactions. When the calculations of the type presented in
Fig. 6 are performed for larger atomic volumes, they show a
weak volume dependence that reveals the robustness of the
Fe-Rh exchange interaction with respect to the change of the
volume.

The configurations considered above (Fig. 6) do not provide
information on the Fe-Fe exchange interactions since the Fe
moments remain parallel to each other. Next we consider a type
of magnetic state that, although still rather simple, contains
information on the interaction of the Fe moments belonging
to different sublattices. We begin with the AFM structure and
assume the Fe moments to be collinear to the x axis. The
constrained states are obtained by rotating the moments of
the two Fe sublattices toward the z axis by the same angle
up to the ferromagnetic state (Fig. 7). The angle θ between
the Fe moments and the z axis varies from 90◦ to 0◦. At
θ = 0 the system becomes ferromagnetic. There is a number
of interesting observations that follow from these calculations,
which are performed at two different crystal volumes.

The lowest energy corresponds to the AFM structure in
agreement with experiment. The shape of the θ dependence
varies strongly with the change of the volume. In Fig. 7 we
present the results of calculations for two different volumes.
For the smaller volume (Fig. 7, left), the energy curve is
monotonous with a minimum at the AFM state and maximum
at the FM state. With increasing volume the maximum at
θ = 0 (FM state) is replaced by local minimum (Fig. 7, right).
The energy difference between AFM and FM states decreases
with increasing volume. We obtain a kind of metamagnetic
situation with a global minimum at the AFM state and a local
minimum at the FM state. On the basis of the experimental
information about thermal AFM-FM phase transition such
a two-minima energy landscape should be considered to be
in better correspondence to the experimental data than the
smaller-volume monotonous curve. Apparently, the LSDA
overestimates the energy difference between the AFM and FM
states at the equilibrium volume. Gu and Antropov also came
to this conclusion and have shown that the nonlocal correction
to the energy functional suggested by Langreth and Mehl32

improves the situation and makes the FM state energetically
stable with respect to small deviations of the atomic moments
from the parallel orientation for the crystal volume close to
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the experimental one. It is an interesting problem to compare
the performance of different types of DFT schemes beyond
LSDA in the case of FeRh. In this paper, however, we
restrict the investigation to the LSDA, augmenting it with the
study of the volume dependence of the exchange interactions.
As already mentioned, this procedure allows us to study
different magnetic-energy landscapes, from those at smaller
volumes that are far from the experimental situation to the
landscapes at larger volumes that are in good correlation with
experiment.

For the magnetic configurations presented in Fig. 7, both
Fe-Rh and Fe-Fe interactions contribute to the θ dependence
of the energy since with the variation of θ the angles between
Fe and Rh moments as well as between Fe moments of
different sublattices vary. Taking into account the weak volume
dependence of the Fe-Rh interactions established above we can
conclude that the volume dependence of the E(θ ) curve is a
consequence of the strong volume dependence of the exchange
interactions between atoms of different Fe sublattices.

To verify this point we consider the energy of the magnetic
states where the Fe moments form a configuration identical
to the one shown in Fig. 7 while the Rh moments are
zero (see inset in Fig. 8). Technically, these calculations are
performed by constraining the direction of the Rh moments
to be orthogonal to the plane of the Fe moments, immediately
leading to their zero value. The corresponding energy curves
are marked as “Fe-Fe” in Fig. 8, denoting that they are
determined by the Fe-Fe exchange interactions only. Although
the cosine-type shape of the both Fe-Fe curves is similar at the
two volumes, the scales differ strongly. The maximum values
at θ = 0 are 17.3 and 11.7 mRy, respectively, for the atomic
radii of 2.77 and 2.91 a.u.. The difference of these two energies,
5.6 mRy, is very close to the difference of energies calculated
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FIG. 7. (Color online) Angle dependence of the Fe moment, Rh
moment, and energy of the state. The angle between Fe and Rh
moments is θ . The magnetic configurations used in the calculations
are schematically presented in the insert in the upper panel. The
calculations are performed at a lattice constant corresponding to rS =
2.77 a.u. (left) and rS = 2.91 a.u. (right). Note the difference in energy
scale between the two cases.
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rS = 2.91 a.u. (right). In the inset, the magnetic configuration with
zero Rh moment is schematically depicted.

with nonzero Rh moments (Fig. 7). The corresponding energy
curves are reproduced in Fig. 8 as “Fe-Fe + Fe-Rh” curves.
This notation emphasizes that both the Fe-Fe and Fe-Rh
exchange interactions contribute to the form of the curves.

Subtracting “Fe-Fe” curves from the “Fe-Fe + Fe-Rh”
curves, we obtain the contribution to the energy from the Fe-Rh
exchange interaction. Comparison of Fig. 8 and Fig. 6 shows
that the Fe-Rh exchange interaction is very robust with respect
to both the crystal volume and the magnetic configurations
used in the calculations.

Thus, our calculations lead to the conclusion that the
ferromagnetic Fe-Rh exchange interaction is weakly vol-
ume dependent, whereas the antiferromagnetic intersublattice
Fe-Fe exchange interaction is strongly volume dependent and
becomes weaker for larger volumes.

For rS = 2.91 a.u. the Fe-Rh and Fe-Fe exchange inter-
actions strongly compensate each other, resulting in a non-
monotonous “Fe−Fe+Fe−Rh” energy curve. The different
volume dependencies of two competing interactions leads to
their strong compensation at a certain volume. This finding
reveals the physical origin of the specific properties of FeRh
as a competition between AFM and FM phases. The LSDA
allows us to establish this important property, although the
volume where the strong compensation takes place is larger
than the experimental or theoretical equilibrium volume.

The calculations presented in Fig. 8 provide the information
about the exchange interactions between Fe sublattices in a
cumulative form. To resolve individual interatomic exchange
interactions, we employed the frozen-magnon technique de-
scribed in earlier publications (see, e.g., Ref. 33) and based on
the calculation of spin-spiral configurations for various wave
vectors accompanied by a back-Fourier transformation of the
energy functions. The Fe-Fe interatomic exchange parameters
are shown in Fig. 9. The leading inter-sublattice exchange
interactions are antiferromagnetic interactions JFeFe[100] and
JFeFe[111], where [100] and [111] are the vectors separating
Fe atoms and expressed in the units of the cubic lattice
constant. These exchange parameters depend strongly on the
atomic volume. For larger volume the interactions become less
antiferromagnetic, preserving the negative sign and decreasing
in absolute value.
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FIG. 9. (Color online) Fe-Fe exchange parameters for two crystal
volumes. The exchange parameters are obtained with frozen-moment
technique with the ferromagnetic configuration as a starting magnetic
state.

IV. MONTE CARLO SIMULATIONS

As mentioned above, the previous works differ strongly
in both the selection of the degrees of freedom and in the
treatment of the excited states. Ju et al.13,22 consider the
directions of the Fe moments as the only degrees of freedom
in both FM and AFM phases. The values and directions
of the Rh atomic moments are uniquely defined by the
magnetic configuration of the Fe environment: A Rh moment is
proportional to the exchange field generated by the the nearest
Fe moments at the position of the Rh atom. According to Ju
et al. it is crucial for the understanding the AFM-FM transition
to take into account the appearance of the atomic Rh moments
in the AFM phase. They argue that the Rh moments in the
AFM phase drive the phase transition by means of inducing
an additional effective Fe-Fe interaction.

On the other hand, Gu and Antropov neglect the appearance
of the Rh moments in the AFM phase and consider these
moments as Heisenberg degrees of freedom in the FM
phase. They came to the conclusion that the driving force of
the phase transition differs temperature dependence of the
entropy of the AFM and FM phases.

On the basis of general principles of the treatment of
the excited magnetic states within DFT (see Sec. III A),
we conclude that the consequent approach to the statistical
mechanics of FeRh should include features of both models:
the Rh moments should be considered as degrees of freedom
and the variation of the value of the Rh moments in both
AFM and FM phases ought to be taken into account. Also the
excited states determined by the constraints on the values of
the atomic moments cannot be a priori excluded. The latter
states determine the longitudinal magnetic fluctuations for
given directions of the atomic moments (see Sec. V). Since in
the general formulation the problem becomes very complex
the application of simplified models is an important and
inevitable step. This step, however, should be accompanied by
the investigation of the physical consequences of the adopted
approximations.

The purpose of the Monte Carlo simulations presented in
this section is the investigation of the influence of different
treatments of the Rh moments on the thermodynamics of
FeRh. We performed a number of simulations based on
different types of models. In some of the simulations only
the Fe-Fe exchange intaractions were taken into account. The
corresponding Hamiltonian has the form

HFeFe = −
∑

i,j

J
ij

FeFeei · ej , (3)

where the sum runs over pairs of Fe moments and ei is the
unit vector in the direction of the magnetic moment of the
ith atom. Similarly to Eq. (1), in the form of the Hamiltonian
given by Eq. (3) the values of the Fe atomic moments are
included in the definition of the Fe-Fe exchange parameters.
Three leading Fe-Fe exchange parameters were considered.
They correspond to the pairs of the Fe atoms separated by the
vectors [100], [110], and [111] (Fig. 9).

In other simulations also the Rh moment is considered
either as a usual Heisenberg variable with a constant value
or as an induced moment with the value depending on the
Fe environment. The corresponding energy contributions are
evaluated using Eqs. (1) and (2). In the simulations we will
use the Fe-Fe exchange parameters for two different values
of rS (Fig. 9). Since the Fe-Rh exchange parameter and the
Rh on-site exchange parameter can be treated as volume
independent, this will allow us to study the trends due to
the variation of the relative strength of various interactions.

We begin with the discussion of the calculations per-
formed with the Fe-Fe exchange parameters corresponding to
rS = 2.77 a.u.. If the formation of the Rh moment is neglected
and only Fe-Fe exchange interactions are taken into account
we obtain the AFM ground state of the system and very high
Neel temperature of ∼1000 K [Fig. 10(a)].

In the next step we took into account the appearance of the
nonzero Rh moment in the excited states. In this case a Monte
Carlo step consists of several substeps: (i) a new direction of
an Fe moment is determined according to a selected pair of
random numbers, (ii) the values of the induced Rh moments
are calculated on the basis of the new local Fe environment,
and (iii) the energy of the magnetic configuration obtained in
this way is calculated accounting for Fe-Fe [Eq. (3)], Fe-Rh
[Eq. (1)], and on-site Rh exchange interactions [Eq. (2)]. The
acceptance of the configuration takes place according to the
Metropolis algorithm.34

If only the bilinear Fe-Rh interaction, but not the Rh
on-site term, is taken into account, the simulation leads
to the ferromagnetic ground state. This, on the one hand,
demonstrates the strength of the Fe-Rh interaction and, on
the other hand, shows the necessity of careful dealing with the
treatment of the effects of the induced moment. Actually, the
transformation of the AFM with high Neel temperature to FM
is not surprising in this case. The energy difference between
the FM and AFM states is about 6 mRy per formula unit
(Fig. 7) for rS = 2.77 a.u.. The neglect of the on-site term with
exchange parameter of 6 mRy decreases the energy of the FM
state with respect to the AFM state by this value.

If the on-site term is taken into account, the ground state
becomes AFM again [Fig. 10(b)]. The Neel temperature is
∼800 K, which is 200 K lower than the Neel temperature
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FIG. 10. (Color online) Results of Monte Carlo simulations for the AFM phase of FeRh under different assumptions. The Fe-Fe exchange
parameters for rS = 2.77 a.u. are used in the calculations. The magnetization curves corresponding to Fe give the sublattice magnetization in
units of the Fe atomic moment, whereas the data related to the Rh magnetic moment are in units of μB . Magnetic susceptibilities are given
in arbitrary units. (a) The generation of the Rh moment is not taken into account. (b) An induced Rh moment taken into account. Only the
directions of the Fe moments are treated as degrees of freedom, whereas the Rh moment is tightly related to the Fe magnetic configuration. The
curve labeled with |mRh| gives the average of the absolute values of the Rh moments in units of μB . (c) Both Fe and Rh moments are treated
as Heisenberg degrees of freedom. The of the Rh atomic moment has a constant value of 0.4 μB .

obtained with the neglect of the induced Rh moments.
The decrease of the Neel temperature is an expected property
since both types of simulations have the same degrees of
freedom, that is, the directions of the Fe moments, and the
appearance of the Rh moments decreases the energy of the
corresponding excited states.

The absolute value of the Rh moment increases
monotonously with increasing temperature and saturates in
the paramagnetic region at the value of about 0.4 μB

[Fig. 10(b)]. Next, we performed the simulation considering
both Fe and Rh moments as Heisenberg degrees of freedom
and taking the value of the Rh moment to be equal to 0.4 μB

in order to investigate the relative importance of two factors
on the magnetic thermodynamics: (i) the energies of the
excitations and (ii) the number of the excitations governed by
the selection of the degress of freedom. In this case [Fig. 10(c)]
the disordering of the Rh sublattice was practically completed
at 80 K, whereas the Neel temperature of the system increased
again to the value of 1000 K.35 This demonstrates that the
choice of the degrees of freedom is a very important factor of
the model.

Finally, attempting to describe the ferromagnetic state, we
performed the latter-type simulation with the experimental
value of the Rh moment of 1 μB . The ground state in this
case consists of the collinear ferromagnetic sublattice of the
Rh moments and noncollinear ferromagnetic subsystem of the
Fe moments. The disordering takes place at low temperature
of 370 K (not shown).

Now we turn to the simulations with Fe-Fe exchange
parameters obtained for rS = 2.91 a.u. (see Fig. 11). If the
appearance of the Rh moment is neglected the system is AFM
with the Neel temperature of 550 K. Treating the Rh moment
of 1 μB as Heisenberg variable we get a FM ground state
and a Curie temperature of 600 K that is in good correlation
with the experimental value of ∼670 K.36 If the Rh moment
is treated as induced and only the bilinear Fe-Rh interaction
[Eq. (1)] is taken into account, the Curie temperature increases
to a very large value of 1260 K. If both bilinear and on-site
[Eq. (2)] terms are considered the Curie temperature becomes
760 K.

A number of conclusions can be drawn on the basis of the
Monte Carlo simulations. (a) The less antiferromagnetic Fe-Fe
exchange parameters obtained for rS = 2.91 a.u. give better
correlations with experiment than the parameters obtained for
rS = 2.77 a.u. This result is expected since the two-minima
energy curve (Fig. 7) corresponding to rS = 2.91 a.u. is in
better correlation with experiment than the monotonous energy
curve for rS = 2.77 a.u. (b) The simulations in the model used
by Guo and Antropov that neglects the appearance of the Rh
moment in the AFM phase and the change of the values of
the Rh moments in the FM phase give reasonable values of
the critical temperatures. However, the neglected features are
physically important. Relying on a simplified model, it is not
clear how strongly the approximations influence the magnetic
thermodynamics. (c) The treatment of the Rh moment as
induced gives two terms to the model Hamiltonian: the bilinear
term, which describes the energy of the interaction of the
Fe and Rh moments, and the on-site term, which gives an
additional energy contribution because of the variation of the
value of the Rh moment. In the case of FM, this treatment
changes the number of the magnetic degrees of freedom. The
two terms generate opposite trends and compensate each other
considerably. In the case of AFM, the account for the induced
Rh moment decreases the Neel temperature, whereas in the
case of the FM the Curie temperature increases. (d) It is
important to develop a model that treats both the Fe and Rh
moments as degrees of freedom and that deals in a consistent
way with the fluctuations of the values and directions of the Rh
moments. Up to now we have not considered the longitudinal
fluctuations of the atomic moments, although the general
approach of constrained calculations formulated in Sec. III B
allows for this: The longitudinal fluctuations correspond to a
constraint with effective fields collinear to the directions of
the moments. Such calculations have been recently performed
for NiMnSb37 and have shown their importance. In the next
section we consider one type of such states to, first, emphasize
their relevance for the thermodynamics of FeRh and, second,
to discuss their importance for the femtomagnetic phenomena.
(e) To describe the AFM-FM phase transition, the energy
functions must not only properly describe the energetics of
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FIG. 11. (Color online) The results of the Monte Carlo simulations performed with the Fe-Fe exchange parameters for rS = 2.91 a.u. The
magnetization curves corresponding to Fe give the magnetization in units of the Fe atomic moment, whereas the data related to the Rh magnetic
moment are in units of μB . Magnetic susceptibilities are given in arbitrary units. (a) The generation of the Rh moment is not taken into account.
The system is AFM. The magnetization curve gives the sublattice magnetization. (b) The results of the Monte Carlo simulation for the FM
phase of FeRh. Both Fe and Rh moments are treated as Heisenberg degrees of freedom. The value of the Rh moment has a constant value of
1.0 μB . (c) Same as in (b) but with the Rh moments treated as induced by the Fe moments and not constituting additional degrees of freedom.
The magnetization curve of the Rh moments coincides, in this case, with the plotted Fe curve. The curve labeled with |mRh| gives the average
of the absolute value of the Rh moments.

the regions of the phase space corresponding to each of these
phases but also the relative energies of the AFM and FM
states and the energetics of the intermediate part of the phase
space serving as the barrier between AFM and FM regions.
Our calculations show that the LSDA does not provide the
correct energy landscape for the equilibrium volume. Gu and
Antropov suggest including nonlocal corrections to improve
the energy functions. A systematic study of the performance
of various functionals is highly desirable and would provide a
useful tool for the development of improved DFT schemes for
the description of magnetic systems.

V. LONGITUDINAL CONSTRAINT ON Rh MOMENTS

In the previous section we have seen that the way the excited
magnetic states are selected and treated strongly influences the
calculated magnetic thermodynamics. We also emphasized
that from the general principles of the DFT approach to
magnetic excitations there is no basis for suppressing the
parameters of the Rh moments as degrees of freedom. In
this section we further develop this idea by demonstrating the
importance of the excited states determined by the constraint
on the values of the Rh moments. Such states appear neither
in the model by Ju et al.13,22 nor in the model by Gu and
Antropov.21

Similarly to the calculations shown in Fig. 7, we start with
the ground-state AFM configuration assuming the Fe moments
to be collinear to the x axis. The condition is then applied where
the Rh moment must assume a given value, (0, 0,mz). The
corresponding magnetic state is stabilized by a constraining
effective magnetic field, (0, 0, hz), acting on the Rh atom,
that is determined in a self-consistent DFT procedure.38 These
calculations show that the appearance of the Rh moment leads
immediately to a canting of the Fe moments. The results of
the calculations for two different volumes are presented in
Fig. 12. For convenience of comparison with Fig. 7, the
abscissa gives the value of angle θ , although this is not
an independent variable as in the calculations discussed in
Sec. III B but a calculated quantity.

The similarity between data obtained with different con-
straints is remarkable (Figs. 7 and 12). The values of the
Fe moments show very weak θ dependence. The value of
the Rh moment is roughly proportional to the cosine of the
angle between Rh and Fe moments. The scale of the energy
variation again depends dramatically on the atomic volume.

Thus, in the same way as the canting of the Fe moments
from the AFM state leads to the appearance of “induced” Rh
moment, the longitudinal fluctuation of the Rh moment results
in the canting of the Fe moments. The physical reason for
both processes is a strong Fe-Rh wave-function hybridization
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FIG. 12. (Color online) The results of constrained calculations
with constraint imposed on the value of the Rh moment for rS =
2.77 a.u. and rS = 2.91 a.u.. The upper panel gives the value of
the Fe magnetic moment and the schematic picture of the magnetic
configurations used in the calculations. The middle panel presents the
values of the Rh moments and, for comparison, the cosine function.
The bottom panel shows the energies of the magnetic configurations.
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making the correlated behavior of the Rh and Fe moments
energetically advantageous. It is worth stressing, however, that
although the underlying physical mechanism shaping the two
types of excitations is the same, these are two different excited
states characterized by different constraints and, therefore,
different spin densities.

In a consequent statistical mechanics treatment, both
types of states must be taken into account. Also, in the
femtomagnetic experiments, both types of states are expected
to contribute to the appearance of the net magnetization (see
Sec. VI).

It is useful to remark that in the statistical mechanics of
the equilibrium state the contribution of an excited state is
determined by the energy of the state. The situation is more
complex in the femtomagnetic effects where the system is not
in equilibrium and the speed of angular momentum transfer
between subsystems involved is a decisive characteristic.
Within the Elliott-Yafet mechanism the efficiency of the
angular-momentum transfer is determined by the spin-orbit
coupling effects that are discussed in Sec. VI.

VI. EFFECTS OF SPIN-ORBIT COUPLING

Spin-orbit coupling lowers the symmetry of the quantum-
mechanics problem and results in a number of new effects.
First, the spin projection of the electron states ceases to be a
good quantum number. The states now contain contributions
with both spin projections. This feature is essential for the
Elliott-Yafet mechanism of the spin-flip electron scattering
by the lattice vibrations.10,11 In magnetic crystals where the
time-reversal invariance is no longer present, the spin-orbit
coupling breaks the symmetry between atomic orbitals with
opposite magnetic quantum numbers, +m and −m, and leads
to the formation of nonzero atomic orbital moments. Through
interatomic hybridization this property can be transferred from
one atom to another and lead to nonzero orbital moment even at
atoms with zero spin-orbit coupling. Therefore it is instructive
to perform a computational experiment by switching off the
spin-orbit coupling on one of the atomic species.

We begin by examining the calculated orbital mo-
ments (Table I). At an atomic volume corresponding to rS

= 2.77 a.u., the orbital moment of Fe is found to be ∼0.08 μB

in both the AFM and FM states. This value is of the order of the

TABLE I. Orbital moments in FeRh (in μB ). First column:
magnetic structure of the system. Second column: atom types
for which the spin-orbit coupling (SOC) was taken into account.
Third and fourth columns: orbital moments of Fe and Rh atoms,
respectively. The crystal volume in the calculations corresponds to
rS = 2.77 a.u..

SOC morb (Fe) morb (Rh)

FM Fe,Rh 0.078 0.066
FM Fe 0.063 0.005
FM Rh 0.017 0.060

AFM Fe,Rh 0.080 0
AFM Fe 0.066 0
AFM Rh 0.015 0

atomic orbital moment of bulk bcc-Fe.39,40 The orbital moment
of the Rh atom is nonzero only for the FM structure and has
a value of ∼0.07 μB . With the spin-orbit coupling switched
off on the Rh atoms we obtained a sizable decrease of the Fe
orbital moment and very small value of the Rh orbital moment
(Table I). In the calculations with the spin-orbit coupling
switched off on the Fe atom, the Rh orbital moment decreases
weakly, whereas the Fe moment still preserves a sizable value
of 0.02 μB (Table I). It is also worth noting that although
the spin moment of the Rh atoms is three times smaller than
the spin moment of the Fe atoms the values of the orbital
moments of the two atomic species are close to each other.
Altogether, these calculations show the importance of the
spin-orbit coupling of the Rh atom.

Next, we estimate the strength of the spin mixture caused
by the spin-orbit coupling. This characteristic varies strongly
from state to state and depends sensitively on the detailed
properties of the electronic structure. For instance, an energetic
proximity of states with opposite spin projections leads to a
strong spin-mixing under influence of the spin-orbit coupling.
For a given electron state the strength of the spin mixture is
characterized by the smaller of the two spin components,6

yielding a spin-mixing parameter

〈b2〉 = min (〈ψk| ↑〉〈↑ |ψk〉,〈ψk| ↓〉〈↓ |ψk〉). (4)

The line over the right-hand side of the formula denotes
averaging over the states. In the femtomagnetic relaxation
processes following the laser excitation of the system the
states in a certain energy interval about the Fermi energy are
involved. We performed the calculation of parameter 〈b2〉 for
the FM phase and for a number of energy intervals about the
Fermi energy. The results of the calculations are collected in
Table II. We obtained a relatively weak dependence of the
parameter on the size of the energy interval.

As was done above for the orbital moment, we can again
verify the importance of the spin-orbit coupling of each of the
atom types by successive switching off the spin-orbit coupling
for different atoms (Table II). Remarkably, switching off the
spin-orbit coupling for Fe even increases somewhat calculated
〈b2〉, whereas switching off the spin-orbit coupling for Rh
leads to sizable decrease of the parameter. We conclude that
the spin-orbit coupling on both atoms contributes importantly
to the spin mixing although the spin-orbit coupling of Rh
appears as more efficient mixing interaction. This is expected,

TABLE II. Elliott-Yafet spin-mixing parameter for FM FeRh
integrated over different energy intervals [EF − �E,EF + �E]
about the Fermi energy. Three cases are considered: the spin-orbit
coupling for both Fe and Rh atoms and the spin-orbit coupling on
one of the atomic types. Presented are the results for atomic radius
rS = 2.77 a.u..

〈b2〉
�E (mRy) SOC Fe,Rh SOC Fe SOC Rh

5 0.027 0.018 0.029
10 0.025 0.014 0.027
50 0.020 0.011 0.023
100 0.025 0.010 0.027
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since the spin-orbit coupling strength rises, as a rule of thumb,
with the square of the atomic number, so Rh should be a much
more efficient spin-orbit scatterer than Fe.

Our value of the 〈b2〉 parameter is of the same order as the
estimation for the 3d ferromagnets calculated by Steiauf and
Fähnle,6 which was found to be sufficiently large to explain the
ultrafast demagnetization in the 3d metals. Another factor of
the Koopmans et al.5 theory to determine the efficiency of the
Elliott-Yafet mechanism is the ratio of the Curie temperature to
the value of atomic moment. In FeRh, TC ≈ 670 K. To perform
a rough estimation, we introduce effective values of the atomic
moments in FeRh

√
mFe · mRh ≈ 1.7μB , so the energy of the

Fe-Rh remains unchanged: JFeRhmi
Fe · mν

Rh = JFeRhmi
eff · mν

eff
The ratio TC/meff ∼ 376 is about 3 times smaller than in
Ni, 627/0.62 ∼ 1011 but more than 9 times larger than the
corresponding estimation for Gd, 297/7.55 ∼ 39. Since the
theory by Koopmans et al. contains an unknown multiplier
expected to vary between 1 and 10, no quantitative comparison
of the efficiency of the Elliott-Yafet mechanism in different
systems is possible. On a qualitative level, the estimations of
the spin-mixing parameter 〈b2〉 and the ratio TC/meff support
the conclusion that the Elliott-Yafet mechanism plays an
important role in the femtomagnetism of FeRh.

The calculation of the spin mixing caused by the spin-orbit
coupling in the case of AFM is less straightforward because
of the degeneracy of the states with opposite values of the spin
projection on the quantization axis. To lift this degeneracy we
performed the calculations in small external field. The resulting
spin-mixing parameter b2 was found to be similar to the values
obtained for the FM case.

Our analysis suggests two possible processes leading to the
ultrafast generation of the magnetization of FeRh. First, by
means of the Elliott-Yafet mechanism the electrons excited by
the laser light experience scattering on the lattice vibrations
resulting in the formation of the spin moment of the Rh atoms.
This, by means of strong Rh-Fe hybridization, leads to the
canting of the Fe moments resulting in a magnetized state of
FeRh. Second, the electron scattering leads to the canting of
the Fe moments and by means of the Rh-Fe hybridization to a
nonzero Rh moment.

On the qualitative level of our discussion it is not possible
to judge on the relative importance of the two processes
leading to the generation of net magnetization. A quantitative
study of the spin relaxation by means of the Elliott-Yafet
mechanism needs detailed account for the shape of the electron
wave functions as well as of the eigenstates of the lattice
vibrations. The scattering probability of the electron states on
phonons is determined by matrix elements comprising all this
infrormation. Because of the presence of two different atoms
in FeRh, the Fe and Rh sublattices will, in general, provide
different contributions to electron and phonon eigenstates.
Also spin-mixing for a given electron state, caused by the
spin-orbit coupling, differs for Fe and Rh contribution to

the state. The quantitative study of the Elliott-Yafet scatter-
ring processes in FeRh is an important task for the future
research.

An interesting, in this respect, experimental result was
recently reported by Boeglin et al..9 Using time-resolved
x-ray magnetic circular dichroism (XMCD) measurements
on ferromagnetic CoPd films, they came to the conclusion
that there is no efficient momentum transfer between Co and
Pd in the ultrashort time scale. On the other hand, a static
experimental XMCD study on FeRh led to the conclusion
about a strong connection between the values of the Fe and Rh
net moments in a broad temperature interval.41 A time-resolved
XMCD study of the ultrafast dynamics of the Fe and Rh
magnetization is of strong interest.

VII. CONCLUSIONS

We have shown that the formation of the Rh moment
under AFM-FM transformation cannot be described within
the Stoner picture. Instead, the Rh states are implicitly spin-
polarized already in the AFM state. The implicit spin splitting
is a consequence of the strong hybridization between the Fe
and Rh states that is a very important factor in the physics of
FeRh. Due to this hybridization, a canting of the Fe moments
leads to a redistribution of the locally spin-up and spin-down
components of the Rh states and to a net Rh moment.

We have demonstrated that the ferromagnetic Fe-Rh ex-
change interaction is robust with respect to the crystal volume
variation, whereas the antiferromagnetic Fe-Fe exchange
interaction is strongly volume dependent. These different
volume dependencies of the competing exchange interactions
lead to their strong compensation at certain crystal volume.
This compensation makes the AFM and FM states in FeRh
close in energy and influences strongly the physics of the
system. We have also shown that the choice of the magnetic
degrees of freedom influences the calculated thermodynamics.

We have further pointed out that the excited states resulting
from the variation of the value of the Rh moment considered
as degree of freedom are important for both equilibrium
thermodynamics of FeRh and femtomagnetic phenomena
in this system. We have estimated the Elliott-Yafet spin-
mixing parameter and obtained values comparable with earlier
calculations for the ferromagnetic 3d metals. We have drawn
the conclusion that the Elliott-Yafet mechanism of the angular-
momentum transfer between electrons and lattice plays an
important role in the femtomagnetic properties of FeRh.

ACKNOWLEDGMENTS

L.S. is greatful to Stefan Blügel for hospitality during his
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support during the project.

*lsandr@mpi-halle.de
1Uwe Bovensiepen, Nat. Phys. 5, 461 (2009).
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19J. Kübler, Theory of Itinerant Electron Magnetism (Oxford

University Press, Oxford, 2000).
20M. E. Gruner, E. Hoffmann, and P. Entel, Phys. Rev. B 67, 064415

(2003).
21R. Y. Gu and V. P. Antropov, Phys. Rev. 72, 012403 (2005).
22O. N. Mryasov, Phase Trans. 78, 197 (2005).
23C. Kittel, Phys. Rev. 120, 335 (1960).
24J. B. McKinnon, D. Melville, and E. W. Lee, J. Phys. C 3, S46

(1970).
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