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Correlating transmission and local electronic structure in planar junctions: A tool for analyzing
transport calculations
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We propose to correlate transmittance maps and spectral-density maps of planar junctions, in order to analyze
quantitatively and in detail spin-dependent transport calculations. Since spectral-density maps can be resolved
with respect to atom, angular momentum, and spin, the resulting correlation coefficients provide strong evidence
of, e. g., which layers or which orbitals determine the tunnel conductances. Our method can be used for transport
calculations within the Landauer-Biittiker formalism. Its properties and features will be discussed by means of a
pure bee Fe(001) lead as well as an extensively studied Fe(001)/MgO/Fe(001) magnetic tunnel junction.
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I. MOTIVATION

Spin electronics—or spintronics for short—is one of the
major topics in contemporary physics (see, for example,
Refs. 1 and 2). With respect to both device applications
and fundamental physics, planar junctions have been and are
being investigated experimentally and theoretically with great
effort. The spin-dependent transport properties of magnetic
tunnel junctions show up as tunnel magnetoresistance (TMR),
which is the change of the conductance upon reversal of
the magnetization direction in one of the two electrodes.’*
Replacing the insulating barrier by a ferroelectric material,
a tunnel electroresistance (TER) effect can be observed in
addition. In this case, the conductance depends as well on the
orientation of the electrical polarization in the ferroelectric
material.’

In TMR experiments, the current that is flowing through
a tunnel device is detected in dependence on external fields
and device parameters (e.g., bias voltage and individual layer
thicknesses). The current-voltage characteristics of tunnel
devices are often interpreted within the Julliere model,®
perhaps due to its simplicity. The validity of this model has
been severely questioned’ because it relates the TMR ratio
exclusively to the spin polarization of the electrodes and,
thus, neglects the interface and barrier regions completely.
If the Julliere model were valid, the tunnel conductance would
not depend on the interface material at all, in contrast to
observations. In other words, the interface region is essential
and has to be described in theory as well as possible.

From the preceding it is evident that a reliable description
of transport in planar junctions must capture the essential
properties on an atomistic level. Hence, present theoretical
investigations of transport rely on sophisticated first-principles
approaches to the electronic and magnetic structures.

Advanced first-principles approaches to transport allow
a very detailed analysis of the electronic structure and
the conductance. In particular, the probably most important
question—which orbitals in which layer determine the trans-
port properties—can be answered. However, the amount of
output data that is produced by modern computer codes
becomes often unmanageable for human beings. Therefore,
one restricts oneself to representative subsets or converts the
numerical data into manageable representations. For example,
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one puts the focus of the analysis on a single wave vector
in the two-dimensional Brillouin zone (2BZ), typically to
the 2BZ center.’ By doing so, one should be aware that
such a restriction could fail because considerable parts of the
2BZ may contribute to the conductance. Examples of data
representations are transmittance and spectral-density maps in
the 2BZ (introduced in Sec. I) which have become established
analysis tools. They allow one, in principle, to answer the
above question. Because they are compared visually, they
leave space for speculation and interpretation; or phrased
differently, they introduce ambiguity. Apparently, there is need
for an improved analysis tool which allows the analysis of
transport properties unequivocally and quantitatively, rather
than ambiguously and qualitatively.

In this paper, we propose a quantitative analysis of transport
properties which goes beyond the approaches sketched above.
We propose to correlate transmittance and spectral-density
maps. The resulting correlation coefficients provide strong
evidence of, for example, which layers or which orbitals
determine the tunnel conductances. Our method can be used for
any computer code which relies on a Landauer-Biittiker-type
approach, thus being applicable in most of the present-day
transport calculations. Its properties will be discussed for two
junctions exhibiting a planar geometry.

The paper is organized as follows. In Sec. II we introduce
our approach for analyzing transport calculations. Section
IIT gives a brief overview of our numerical approach. The
correlation analysis is applied in Sec. IV to a pure Fe(001)
lead (Sec. IV A) and to an Fe(001)/MgO/Fe(001) magnetic
tunnel junction (MTJ) (Sec. IV B). Concluding remarks are
given in Sec. V.

II. THEORETICAL ANALYSIS OF THE TUNNEL
CONDUCTANCE

We consider a planar junction which consists of a left
electrode £, an interface region Z, and a right electrode K.
Due to the translational invariance parallel to the interface
region, the Bloch states in the electrodes are indexed by the
(in-plane) wave vector k| in the 2BZ; k is conserved in the
scattering process.
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The bias voltage V opens an “energy window of transport”;
the chemical potentials us and ugr of £ and R, respectively,
differ by eV = uy — ur. Without loss of generality we
consider the case V > 0, for which incoming occupied Bloch
states in £ can be transmitted into outgoing unoccupied Bloch
states in R.

According to Landauer and Biittiker,
is given by

9:10 the conductance C

2l
C(V):e—/ / TRV Ekpd*kdE. (1)
h UR 2BZ

The wave-vector integral is over the 2BZ. The transmittance
T*=R(V; E,kj) is the sum over the transmission probabilities
of all incoming occupied states A in £ and outgoing unoccupied
states p in R. It is related to the scattering matrix S of the
interface region by

— — 2
TR(ViE k) =Y |SER(VIE k)| )
Ap

This transmittance is a key quantity in the proposed analysis;
it is conveniently displayed versus k; at fixed E and V, in
so-called transmittance maps (7 maps). Note that 7 can be
regarded as a global quantity since it depends on the electronic
structure of the entire junction, that is, both electrodes
(incoming and outgoing Bloch states) and the interface region
(scattering matrix).

The local electronic structure of the device is described in
terms of the spectral density

1
No(V;E k) = —;Im Tr G*(V; E.ky)|, - 3)

« is a compound index which can comprise, for example,
layer, atom, orbital, angular momentum, spin indices, or point-
group representation. For a given division of the complete
index space, the subsets of « are disjointed. The trace Tr,
of Green’s function GV is restricted to the given « and, thus,
allows a detailed analysis of the electronic structure. As for the
transmittance, the spectral density is displayed in maps versus
k (N maps).

In previous publications we analyzed the conductance by
relating pronounced features in a transmittance map to features
in the associated spectral-density maps. If these features
showed up in both the T map and an N, map, we concluded that
the chosen set @ determined the transmittance in this (V,E)
region. This way we could show that for Fe/Mn/vacuum/Fe
junctions, the topmost Mn layer governs their TMR ratio.'!
However, for more complicated systems it turns out that the
visual inspection of the maps becomes ambiguous, tedious, and
not very reliable. As a consequence, we propose to correlate
properly normalized T and N maps by means of a projection
(inner product). This procedure results in a set of a few
unambiguous numbers which allows us to determine rapidly
the set of significant « indices.

For given energy E and bias voltage V we define the
average value of a function X(V; E k) of the transmittance
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T(V;E.,k)) and the spectral density N,(V;E.k|) as the
average over the 2BZ,

AxE

f X(V; E.ky) d*k, “
Q87 Jopz

where Qg7 is the area of the 2BZ.The correlation coefficient
c«(V; E) is then defined by

Arn,

A/ ATZ ANg '
This quantity can be interpreted as an inner product of the
normalized T(V; E k) and N,(V; E k). Since the latter are
semipositive for all k;, 0 < ¢ (V; E) < 1.

Note that ¢,(V; E) is invariant with respect to scal-
ing T(V; E.ky) and No(V; E k) (explicitly T(V; E k) —
tT(V; E.ky) and No(V; E. k) — vNy(V; E ky)). Further,
for a visual inspection and comparison of the X(V; E k) on
the same scale it is convenient to normalize them by

X(V, E,k”)
sz ’

The correlation coefficient, alternatively expressible as
co(V E) = Afﬁﬂ, is a measure of the “overlap” of 7' and
N, or of T and ﬁa. (i) Consider a constant transmittance and a
constant spectral density, T(V; E k) = t and No(V; E k) =
ny, which can be viewed as “completely overlapping.” Then
A = 12, ANg = ni and Ary, = tny. Consequently, ¢, = 1,
which we will consider as a perfect correlation. (ii) Consider a
T(V; E,k)) which is nonzero only in a region Q7 of the 2BZ:

ca(ViE) = ®)

X(V;E k) = (6)

T(V;E k) =T(V; E kg, (k)), @)
with the indicator
lo, (k) = {] ky € @, (8)
0 k) &Qr.

Likewise, Ny (V; E, k) is assumed nonzero in a region Qy,
which is disjointed with Q7 (Qr N Qy, = @; zero overlap).
Consequently, A72 # 0, Ay2 # 0,and Ary, = 0, giving ¢, =
0. We consider this case as perfectly uncorrelated. We note
in passing that there may be other definitions of correlation
coefficients, as is the case for the correlation of random
variables.'?

The local partial density of states PDOS, = Ay, and
the local density of states LDOS =), Ay, (= Ap,) are
computed based on N,, respectively. With « summing up
the elements of the orbital or alternatively the point-group
index-space subsets, the LDOS represents in the following an
atom-specific, site- and spin-dependent density of states.

A high partial density of states that coincides with a
high transmission results in a large correlation, although
the electronic states which produce the PDOS might not
contribute to the transport. Therefore, it is important to note
that consideration of a single correlation coefficient could
possibly lead to a wrong conclusion, as will be clarified by
the following example. Consider a transmission map with a
maximum at the Brillouin zone center which is mainly due to
spin-up states. Interface states lie in a bulk-band gap of the
electrodes and thus do not contribute to the conductance in
the Landauer-Biittiker approach. Hence, a spin-down majority
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FIG. 1. (Color) Correlation analysis of the spin-dependent Sharvin conductance of Fe(001). Spin-resolved transmittance and spectral
density maps are shown for the entire 2BZ (top row: majority channel; bottom row: minority channel). Each map is normalized according to
Eq. (6). The Ny maps are decomposed with respect to the representations shown in Table I. The correlations ¢, are given beneath each N,

map. Numbers i
the bottom.

interface state located at the BZ center and in a spin-down
bulk-band gap would result in both a high spin-integrated
(L)DOS and correlation coefficient. But both the spin-up
and the spin-down correlation coefficients would be small,
indicating that this state does not contribute to the conductance.
As a consequence, for our analyses (Secs. IV A and IV B),
we have correlated transmission maps with different PDOSs
(e.g., resolved with respect to spin, angular-momentum, and
group-theoretical representation). The resulting entire set of
correlations is then used to conclude on the relevant orbitals
that determine the transport properties. However, there is still
room for interpretation in our approach but considerably less
than in other approaches.

III. CONDUCTANCE CALCULATIONS

Because our theoretical approach to spin-dependent tunnel-
ing has been described in detail elsewhere!!"'*"!7 we restrict
ourselves to a brief survey here. The electronic structure of
a tunnel junction is computed within the local spin-density
approximation to density-functional theory, as is formulated
in multiple-scattering theory.'® Our spin-polarized relativistic
layer Korringa-Kohn-Rostoker (KKR) method!>? provides
on the one hand Green’s function of the entire system, from
which the spectral densities N, (V; E k) can be computed,
Eq. (1). On the other hand, Green’s function can be used
to calculate the transmission T'(V; E k), Eq. (2), within the
framework of the Landauer-Biittiker theory.?!?> We can also
follow the approach introduced by MacLaren and Butler?®
which the Bloch states in the electrodes and the scattering
matrix of the interface region are computed by means of layer-
KKR algorithms.?* Here, Green’s function is not computed
explicitly.

The T and N maps have been computed on identical k|
meshes in the entire 2BZ, with at least 40 000 points. In the
following applications we restrict ourselves to the case of zero
bias (V =0and puy = ug).

IV. APPLICATIONS
A. Fe(001)

The properties of the proposed correlation analysis are best
introduced by an admittedly trivial case: the spin-resolved
Sharvin conductance® of Fe(001). Because the three regions
of the junction—/L, Z, and R—are identical, the scattering
matrix in Eq. (2) is S, =8, and T(kj) is an integer.
Accordingly, the N map is a projection of the Fermi surface
onto the (001) plane. Without spin-orbit coupling, spin is
a good quantum number; hence, we treat the majority and
minority channels separately.

Figure 1 displays the normalized k -resolved transmittance
and spectral-density maps. According to Table I, the latter

TABLE I. Decomposition « of the spectral density with respect to
angular momentum (¢) and orbital () quantum numbers according
to Eq. (3). Incrementing ¢ provides a classification by means of s,
p, and d orbitals. An alternative decomposition can be obtained with
respect to the irreducible representations of the point group Cy, [ 26].
Because such a decomposition holds strictly speaking only for the
2BZ center (F, k, = 0), we refer to “A,-like” maps, etc.

o 2 m Orbitals
Aj-like 0,1,2 0 $, Py,
AS'Iike 1» 2 _1, 1 Px> Pys d3xz’ d3yz
A,-like 2 -2 do_y
Ay-like 2 2 dary
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are ordered based on their {s,p,d} or {A,As,Ar + Ay}-
like orbital contributions. The assignment of the angular-
momentum orbitals to the different subsets « is motivated
by the irreducible representations of the C4, symmetry group.
This decomposition is given in Table I. -

(i) The map of the local spectral density Ny~ agrees nicely
with the associated transmittance map in the majority channel
(top row). In particular, all features are present and the
correlation is consequently sizable (cy = 0.802).

(ii) Other maps which essentially capture all features within
the majority channel are the N; and N, _jixe maps. A visual
comparison of both with the transmittance could lead to
the conclusion that the former matches slightly better than
the latter. The correlation analysis, however, shows that this
may be a misinterpretation; both coefficients indicate sizable
correlations (c¢g = 0.798 and ca,_jike = 0.828) but that of the
As-like subset is slightly larger.

(iii)) As a result of the relatively small correlation coef-
ficients of s (¢g =0.365) and p (c, = 0.432) we identify
the d majority states as the dominating conducting channels.
Further, with the help of Table I and the ¢, of the A-like
maps, a hierarchy of conducting d states can be specified.
Since ca,—iike = 0.484 is quite small, the ds,2_,> states seem
to play no significant role. Due to the large ca,_iike the ds,;
and dj3, orbitals appear to form the leading transport channels,
followed by the d,>_,> and d,, states (C(ar+A,)—like = 0.656).

(iv) Similar observations can be made for the minority
channel (bottom row). Again, the d states represent the
main conducting channels. But in comparison to the majority
channel, the role of (dsy., d3y;) and (d,2 dsyy) orbitals is
interchanged.

This example shows that the correlation analysis provides
a powerful analysis tool which, on the one hand, fits nicely to
the visual interpretation of 7 and N maps. On the other hand,
it clearly reveals possible misinterpretations, as has become
evident in point (ii).

With 95% (majority) and 78% (minority) the d states
constitute by far the main contributions to the LDOS. In this
example the hierarchy of correlation coefficients often reflects
the hierarchy of partial contributions to the LDOS (see Fig. 1).
This ordering becomes incorrect, for instance, in the case of
As-like and (A, + Ay)-like states in the minority channel.
Here, the As-like states represent with 64% most of the LDOS,
but exhibit with a ca,_jike of 0.788 a smaller correlation than
the (Az + Ay)-like contributions (26%, ca,+a, = 0.847).

This last finding indicates already that a one-to-one map-
ping of PDOS hierarchies and correlation coefficients is not
viable. In general, transmittances depend not only on the
number of available states but rely also on other conditions like,
e.g., the wave function matching at interfaces. Hence, as a pro-
totype which exhibits more complicated correlations between
transport and electronic structures properties, Fe/MgO/Fe MTJ
will be discussed now.

—y2,

B. Fe(001)/MgO/Fe(001)

In the following an Fe(001)/MgO/Fe(001) MTJ comprising
six monolayers MgO is analyzed. The magnetic directions
within both Fe leads are collinearly aligned to each other and
considered for the case of a parallel magnetic configuration.
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Below we discuss the correlation analysis of the majority
channel in more detail, because the current is dominated by
the spin-up carriers.®

The corresponding transmittance map is displayed in Fig. 2.
As s typical for T'(k) in the majority channel [ 8], a Gaussian-
like, radially symmetric distribution is found around the 2BZ
center.

Let us suppose briefly that the Julliere® model is valid and
that the transport properties can be interpreted exclusively
based on the available PDOS,. Then the spin-polarized
conductances are estimated with the product of the densities
of states at the Fermi energy, strictly speaking with the
PDOS,, inside the left (£) and right (R) leads. In this
picture, the conducting channels would be, according to the
previous discussion of iron, mainly determined by d-like or
{As,A, + Ay }-like Bloch states of the Fe electrodes. But a
visual inspection and comparison with the majority maps in
Fig. 1 reveals at first glance no similarity in the structures with
either the 7' (k) or the Ny(k)) maps.

Consequently, one could ask which states are essential for
the transport processes if the predominant Fe bulk states do
not play a decisive role. A closer look at the Ny and N, iike
maps in Fig. 1 leads to the identification of centrosymmetric
blobs like that in Fig. 2. But the associated Bloch states exhibit
small ¢, and marginal contributions to the LDOS in Fe bulk.
Do these states play a decisive role for transport within the
MTIJ?

To answer this question we consider in a next step the layer-
wise contributions of the PDOS,, to the respective LDOS at the

Fermi energy (see Fig. 3). In particular, the % percentages

are shown for one half of the symmetric MTJ and are classified
again by means of {s,p,d} or {A,As,A; + Ay }-like orbital
decompositions.

The values for the outermost Fe layers in Figs. 3(a) and 3(b)
are identical to those for the pure Fe lead in Fig. 1, indicating
the bulk-like character of those layers far from the interfaces.
The corresponding d states represent with 80%—95% the most
numerous parts of the LDOS up to the second Fe layers
adjacent to the MgO interfaces. At these interfaces the number
of d states is drastically reduced. Within the MgO film the

FIG. 2. (Color) Normalized majority transmittange map T(kH) of
an Fe(001)/6MgO/Fe(001) MTJ. The color scale for T is logarithmic.
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FIG. 3. (Color online) Layer- and orbital-resolved contributions
of the local partial density of states Ag, to the local density of states
A, within the majority channel of an Fe(001)/6MgO/Fe(001) MT]J.
The fractions are shown for (a) s, p,d, and (b) {A{,As,Ar + Ay }-like
orbital decompositions.

decrease is continued down to about 10% inside the middle
region of the tunnel barrier.

On the other hand, the s and p contributions, which are
apparently vanishingly small within the Fe electrodes, obtain
substantial weight inside the MgO spacer. In particular, the p
states exhibit a maximal percentage of 60% within the 1. MgO
monolayer. Deeper inside the MgO, this fraction reduces to
about 40%. In contrast, the s fractions reach a level of 20% at
the Fe/MgO interfaces and increase monotonously to roughly
about 40%. Thus, in the middle of the MgO the number of p
and s states are comparably large, with a slight advantage of
the former.

Further, a decomposition in {A,As,A; + Ay }-like con-
tributions reveals completely different characteristics in
Fig. 3(b). Here, the A;-like contributions, which are of minor
importance within the Fe leads, experience a massive increase
at the Fe/MgO interfaces and reach levels of about 80% within
the tunnel barrier. The remaining 20% are predominantly
occupied with As-like and a few (A, 4+ Ay )-like states. This
hierarchical order of PDOS, within the MgO reflects the
well-known fact of symmetry-selective decay lengths of the
evanescent Bloch states within the tunnel barrier.®’

Due to their sizable presence within the bottle neck of the
junction, i.e., the MgO barrier, s and A;-like states might in-
deed characterize the transport. But whether this predominance
also results in a dominance of the conducting channels can
only be answered by an analysis of the transmittance map in
Fig. 2 with the respective N, maps. In order to specify exactly
which layer-resolved spectral densities fit best the structures of
the transmittance map, the N, maps of the whole Fe/MgO/Fe
tunnel junction have to be inspected. These maps are shown in
Fig. 4(a).

One can see immediately that N);, Ns, N »» and N A, —like
within the MgO layers exhibit a great similarity with the
structure of T(k”) in Fig. 2. On the other hand, the similarities
of Nd, N As—like and N( As+Ay)—like Within the same layers appear
rather small. Due to the great dissimilarities of the spectral-
density maps within the Fe layers it is reasonable to expect
low correlations there. But, based on visual comparisons,
it is hard to make definitive statements about similarities
of the structures and hence which states provide the largest
contributions to the electronic transport of the whole MTJ.
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At this point, the correlation analysis tool provides the
potential to gain clearer statements. The computed correlation
coefficients which represent a measure of the similarity of two
maps are summarized in Figs. 4(b) and 4(c).

(i) Considering Figure 4(b), it turns out that s states exhibit
the most prominent correlations in all layers. For each Fe
layer, the ¢, can be quantified with about 0.1-0.2 as nearly
double as large as those of p and d states. Together with the
significantly high correlations of 0.7 (1. MgO layer) up to
0.95 (3. MgO layer) inside the tunnel barrier, the previously
assumed dominantrole of the s states can be regarded as proven
for the entire MTJ.

(i) However, inside the MgO layers the p and d states
exhibit sizable increases of their correlation coefficients, too.
In particular, the ¢, are with 0.2 (1. MgO layer), 0.4 (2. MgO
layer) and 0.7 (3. MgO layer) approximately twice as high as
the cg4. In the discussion of the ca,_je coefficients below, it
will become evident that the increasing c,, and ¢, are mainly
related to states exhibiting p, and ds,2_,2 orbital character.

(ii1) Since the LDOS maps comprise structures of s states
closely correlated to the transmission map and less correlated
p and d states, the correlation values of ¢y are always lower
than those for the s states.

(iv) Along the atomic layers of the MTJ, the characteristics
of the ca,_iike coefficients in Fig. 4(c) show a qualitatively
similar dominance as was found for the ¢, coefficients in
Fig. 4(b). Within the Fe electrodes the correlations of the
Aj-like states are just slightly but noticeably larger than those
of the s states in these layers, indicating an additional relevance
of p. and dj_,> orbitals in the electronic transport. This
finding is substantiated by relatively small correlations of both
other A-like representations inside the tunnel barrier. Since the
latter exhibit only { py, py, 3z, d3y. } and {d,>_y2, dy, } orbital
character (see Table I), it is reasonable to assume that the rising
importance of p and d states inside the MgO is identical to an
increasing significance of p, and d;,2_,2 orbitals.

The comparison of the results of the correlation analysis
with the discussion of available PDOS, in Fig. 3 shows
common features but reveals also significant differences.
A common outcome of both approaches is the principal
importance of the tunnel barrier for the electronic transport
of the MTJ. In particular, both discussions end up with
a conclusion that A;-like states— i.e., s, p;, and ds2_,2
orbitals which are preferentially aligned along the transport
direction—tunnel most effectively and consequently carry the
dominant part of the tunnel current.

The fact that A;-like states, especially those with s orbital
character, show their decisive role also within the Fe leads
represents a qualitatively different outcome of the correlation
analysis. In contrast, these states exhibit the lowest PDOS,
contributions within the Fe layers in Fig. 3.

In principle, the symmetry-selective filtering of the MgO
tunnel barrier shows up by means of the hierarchical order
of the {A;,As5,A; + Ay }-like PDOS, fractions in Fig. 3.
But deeper within the MgO these percentages stay rather
constant. The layer-wise increase of the effective tunneling
processes of Aj-like states inside the MgO can only be seen
by the increasing characteristics of the ca,_jike coefficients in
Fig. 4(c).
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FIG. 4. (Color) Correlation analysis for the majority channel of an Fe(001)/6MgO/Fe(001) MTJ in parallel magnetic configuration. (a)
Layer- and orbital-wise ordered spectral-density maps ﬁ,, (left — right) are shown for the entire 2BZ with decompositions ¢« according to
Table I (top — bottom). Correlation coefficients c, for contributions (a) with @ = s, p, d and (b) @ = A,-like, As-like, (A, + Ay)-like. Color
scales for N, are logarithmic.

V. CONCLUSIONS AND REMARKS an analysis tool which helps to avoid laborious inspections
and potential misinterpretations by providing exact measures.
Applying the proposed correlation analysis the contributions
of atoms or orbitals can be quantified unambiguously. The
dominance of the s states in the tunnel current of Fe/MgO/Fe
MTIs could be proven even for the states in the Fe leads,

The analysis of transport properties within contacts that
exhibit planar geometries is often accompanied with a visual
comparison of large ensembles of k-resolved local spectral-
density and transmission maps. In this article we presented
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where the contribution of states to the LDOS is only
marginal. Further, the method extends the popular discussion
of transport properties at the I" point in Fe/MgO/Fe MTIJs to
a more comprehensive analysis which comprises the entire
2BZ.

In principle, the proposed analysis technique is not re-
stricted to planar junctions. For atomic-sized contacts, like
point contacts or nanowires, there are of course no transmit-
tance and spectral-density maps in reciprocal space, due to the
lack of two-dimensional translational invariance. However, it is

PHYSICAL REVIEW B 83, 174451 (2011)

conceivable to relate local current-density maps perpendicular
to the current flow with charge-density maps on the same
planes in real space. Such a procedure could complete the
physical insights as one would obtain from an analysis of the
conduction eigenchannels.?8-30
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