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The universal functional of Hohenberg-Kohn is given as a coupling-constant integral over the density as

a functional of the potential. Conditions are derived under which potential-functional approximations are

variational. Construction via this method and imposition of these conditions are shown to greatly improve

the accuracy of the noninteracting kinetic energy needed for orbital-free Kohn-Sham calculations.
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In the original form of density-functional theory (DFT),
suggested by Thomas [1] and Fermi [2] (TF) and made
formally exact by Hohenberg and Kohn [3], the energy of a
many-body quantum system is minimized directly as a
functional of the density. Its modern incarnation uses the
Kohn-Sham (KS) scheme [4], which employs the orbitals of
a fictitious noninteracting system. This brilliant idea means
only a small fraction of the total energy need be approxi-
mated, and good approximations [5,6] have made DFT the
popular tool it is today. DFT [7] is now ubiquitous in many
scientific fields, including both materials and chemistry.

Interest is rapidly reviving in finding an orbital-free [8]
approach to DFT. The major bottleneck in modern calcu-
lations is the solution of the KS equations, which can be
avoided with a pure density functional for the kinetic
energy of noninteracting fermions, TS. The original TF
approximation is of exactly this type, but is far too inaccu-
rate for modern applications. Despite decades of effort
[9], no generally applicable approximation for TS has been
found, although material-dependent approximations [10]
have been suggested, or approximations designed only for
weakly interacting systems [11].

However, Englert and Schwinger [12] pointed out that
the potential is a more natural variable to use in deriving
approximations to quantum systems. In particular, semi-
classical approximations begin with the classical momen-
tum, a local functional of the potential. TF theory is often
derived first in terms of the potential, which is then elim-
inated in the final expressions, yielding an explicit density
functional. Exact potential functional theory (PFT) satis-
fies a variational principle with minimization over trial
potentials [13,14], yielding useful insight into the opti-
mized effective potential method [13].

In the present work we go beyond those results by
considering explicit potential functional approximations
to interacting and noninteracting systems of electrons;
such approximations are presently being developed via a
systematic asymptotic expansion in terms of the potential,
which has already been found in simple cases [15,16]. The
leading terms in a semiclassical expansion yield local

approximations to the energies, and the leading corrections
greatly improve over the accuracy of local approximations
in a systematic and understandable way. Corrections to TF
are relatively simple functionals of the potential, but far
more subtle as functionals of the density. Such expansions
are significantly more accurate and less problematic for the
density itself rather than for the kinetic energy density
because the latter requires two spatial derivatives [16].
By minimizing over N-particle wave functions � that

are antisymmetric, normalized, and have finite kinetic
energy, we obtain the ground-state (g.s.) energy

Ev ¼ min
�

ðh�jT̂ þ V̂ee þ V̂j�iÞ; (1)

as a functional of the potential, where T̂ is the kinetic energy

operator, V̂ee the electron-electron repulsion, and V̂ the one-
body potential. We define the potential functional [13]

F½v� ¼ h�vjT̂ þ V̂eej�vi; (2)

with �v denoting the g.s. wave function of potential vðrÞ.
With F½v�, the exact relation for the g.s. energy is

Ev ¼ F½v� þ
Z

d3rn½v�ðrÞvðrÞ; (3)

in practice, requiring approximations to both F½v� and
n½v�,

EA;dir
v ¼ FA½v� þ

Z
d3r nA½v�ðrÞvðrÞ; (4)

where A denotes an approximation as a functional of the
potential. We call this the direct approach.
We show that (i) the universal functional, F½v�, is

determined entirely from knowledge of the density as
a functional of the potential, such that only one approxi-
mation is required, namely nA½v�, (ii) the variational prin-
ciple imposes a condition relating energy and density
approximations, (iii) a simple condition guarantees satis-
faction of the variational principle, (iv) with an orbital-free
approximation to the noninteracting density as a functional
of the potential, the kinetic energy is automatically
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determined, i.e., there is no need for a separate approxi-
mation, and (v) satisfaction of the variational principle
improves accuracy of approximations.

We deduce an approximation to F from any nA½v�ðrÞ in
the following way. Introduce a coupling constant in the
one-body potential:

v�ðrÞ ¼ ð1� �Þv0ðrÞ þ �vðrÞ; (5)

where v0ðrÞ is some reference potential (possibly 0). In the
context of TF theory this coupling was used in Ref. [17].
Then, using the Hellmann-Feynman theorem,

Ev ¼ E0 þ
Z 1

0
d�

Z
d3r n½v��ðrÞ�vðrÞ; (6)

where �vðrÞ ¼ vðrÞ � v0ðrÞ. Defining �n½v�ðrÞ ¼R
1
0 d�n½v��ðrÞ and choosing v0ðrÞ ¼ 0, we obtain

F½v� ¼
Z

d3r f �n½v�ðrÞ � n½v�ðrÞgvðrÞ: (7)

This formula establishes that the universal functional is
determined solely by the knowledge of the density as
functional of the potential. Moreover, insertion of nAðrÞ
on the right defines an associated approximate Fcc½nA½v��,
where cc denotes coupling constant.

On the other hand, much of the accuracy of DFT calcu-
lations derives from the variational principle. In PFT, this
yields

EA;var
v ¼ min

~v
ðFA½~v� þ

Z
d3r nA½~v�ðrÞvðrÞÞ; (8)

with a possibly different value from Eq. (4) for a given pair
of approximations. Experience suggests use of the varia-
tional principle improves results. The Euler equation for
the minimum is

�FA½v�
�vðrÞ ¼ �

Z
d3r0vðr0Þ�A½v�ðr0; rÞ; (9)

where �A½v�ðr; r0Þ ¼ �nA½v�ðrÞ=�vðr0Þ denotes the
density-density response function. If a pair of approxima-
tions fFA; nAg satisfies Eq. (9) at vðrÞ, then Eqs. (4) and (8)
yield identical results, but this is not guaranteed a priori in
approximate PFT.

We next ask: Does a given Fcc½nA½v�� satisfy Eq. (9)?
Taking the functional derivative of Eq. (7) yields Eq. (9) if,
and only if,

nA½v�ðrÞ ¼
Z 1

0
d�

Z
d3r0

�
�nA½v�½v��ðr0Þ

�vðrÞ
dv�½v�ðr0Þ

d�

þ nA½v�½v��ðr0Þ d

d�

�v�½v�ðr0Þ
�vðrÞ

�
: (10)

This condition is true in turn, if and only if,

�A½v�ðr; r0Þ ¼ �A½v�ðr0; rÞ: (11)

The exact response function satisfies this relation, but an
approximate functional nAS ½v� might not. This condition

guarantees conservation of particle number under small

changes in the potential, an elementary version of a con-
serving approximation [18].
A simple example illustrating these results is TF theory,

considered as a potential functional. Then,

nTF½v�ðrÞ ¼ 1

3�2
f2½�� vSðrÞ�g3=2; (12)

where vSðrÞ ¼ vðrÞ þ vHðrÞ, and the latter is the Hartree
potential, determined self-consistently from

r2vHðrÞ ¼ �4�nTFðrÞ; (13)

while � is the chemical potential, determined by the
normalization requirement that

R
d3r nðrÞ ¼ N. Taking

functional derivatives with fixed N, the usual TF energy
expression [19]

FTF½v�¼TTF
S ½v�þ

Z
d3rnTF½v�ðrÞvðrÞþU½nTF½v�� (14)

satisfies the Euler condition when combined with
Eq. (12), and Fcc½nTF½v�� ¼ FTF½v�, where TTF

S ½v� ¼
�2

R
d3r nTF½v�ðrÞ3=6 denotes the TF kinetic energy and

U½nTF½v�� ¼ R
d3r nTF½v�ðrÞvH½nTF½v��ðrÞ=2 the Hartree

energy.
In practice, the usefulness of these results for interacting

electrons might be limited, as they require an approxima-
tion to the interacting density as a functional of the
one-body potential that is sufficiently accurate to be com-
petitive with standard KS DFT calculations, i.e., beyond
the accuracy of TF theory. Of much more practical use
is their application to the noninteracting electrons of the
KS scheme, which sit in the effective KS potential, which
includes both a Hartree and (some approximate) exchange-
correlation (XC) contribution:

vSðrÞ ¼ vðrÞ þ
Z

d3r0
nAS ½vS�ðr0Þ
jr� r0j þ vA

XC½nAS ½vS��ðrÞ: (15)

For a given approximation to EXC, which determines vA
XC,

this equation can be easily solved by standard iteration
techniques, bypassing the need to solve the KS equations.
A given nAS ½vS� removes the need for solving any differen-

tial equation in each iteration.
However, once self-consistency is achieved, we need to

extract the total energy of the interacting electronic system,
for which we need the kinetic energy of the KS electrons.
All our derivations apply equally to the noninteracting
problem, so we deduce:

TS½v� ¼
Z

d3r f �nS½v�ðrÞ � nS½v�ðrÞgvðrÞ; (16)

which is the analog of Eq. (7) for a system of noninteract-
ing electrons in the external potential vðrÞ (which is called
vsðrÞ, when it is the KS potential of some interacting
system). This defines a kinetic energy approximation de-
termined solely by the density approximation:

Tcc
S ½nAS ½v�� ¼

Z
d3r f �nAS ½v�ðrÞ � nAS ½v�ðrÞgvðrÞ: (17)
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This is our main result for the noninteracting case. It
eliminates the need for constructing approximations to
the noninteracting kinetic energy TS.

To illustrate the power of these results, we consider a
simple example, a system of noninteracting, spinless
fermions in a one-dimensional box. We choose v0ðxÞ to
be 0 inside a box (0< x< L), and 1 outside. Then
�vðxÞ ¼ vðxÞ is some potential inside the box. For this
case Eq. (17) (with a nonzero v0) reduces to

Tcc
S ½nAS ½v�� ¼ E0ðNÞ þ

Z L

0
dx f �nAS ½v�ðxÞ � nAS ½v�ðxÞgvðxÞ;

(18)

where E0ðNÞ ¼ �2ðN3 þ 3N2=2þ N=2Þ=6 denotes the
total noninteracting energy of N spinless fermions in an
infinite square well.

In Fig. 1 we plot two distinct kinetic energy densities,
along with approximations to them, and the corresponding
errors, for vðxÞ ¼ �5sin2ð�xÞ in a box of unit length. The
blue curve is the exact kinetic energy density obtained
from a traditional definition,

tSðxÞ ¼ � 1

2

XN
j¼1

��
j ðxÞ

@2

@x2
�jðxÞ; (19)

while the green curve is the approximation derived at great
length in Ref. [16]. The small discontinuity at about
x ¼ 0:2 and 0.8 is where the approximation switches
from a form that is asymptotically correct in the interior
to one that is asymptotically correct near the walls. The
error is shown in the bottom panel. Note that the approxi-
mation for tSðxÞ of Ref. [16] is already a considerable
improvement over that used in Ref. [15]. The red and black
curves result from Eq. (18). The black is exact, while the
red uses the approximation for the density in Ref. [15].
Their difference is plotted in the bottom panel, and is both
locally and globally far smaller, and required no separate
approximation for the kinetic energy density.

The approximations of Refs. [15,16] were designed to be
asymptotically exact as N ! 1, both for the density and
the kinetic energy. In Table I we show errors compared to
the exact result of TA

S from TF theory, the WKB approxi-

mation, Ref. [15], its improvement in Ref. [16], and Tcc
S in

Eq. (18) with nAS ½v� of Ref. [15]. Even for N ¼ 1, Tcc
S is

about 2 orders of magnitude more accurate than WKB, and
significantly more accurate than the direct approximations
of Refs. [15,16]. As N ! 1, Tcc

S converges most rapidly.

We finally test the symmetry condition of Eq. (11). To
do this, we perform a variational PFT calculation, imple-
menting Eq. (18). We take a given external potential
[� 5 sin2ð�xÞ], calculate exact g.s. wave functions with
different potentials, and find their energy. Figure 2 shows
the results when the well depthD is varied. The exact result
is a black curve, whose minimum occurs at D ¼ 5. The
blue curve is the result of TF theory, which satisfies the
condition, but is not very accurate. The green curve is
the approximation of Ref. [16], which, while more accu-
rate, does not minimize at the true potential. This demon-
strates that the pair of approximations TA

S ½v� and nAS ½v�
given there do not yield the same answer variationally and
directly. Note also that the direct evaluation (green curve at
D ¼ 5) is more accurate, when compared to the exact
result (black curve at D ¼ 5) than application of the varia-
tional principle (green curve at its minimum D � 6:5).
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FIG. 1 (color online). Exact (ex) and approximate (app) kinetic
energy densities (above) of Eq. (18) (black, red) and of Eq. (19)
(blue, green) with the approximation in Ref. [16], and their
absolute errors (below) for one particle in vðxÞ ¼ �5 sin2ð�xÞ,
0< x< 1.

TABLE I. Total noninteracting kinetic energy of N particles
and its absolute error in TF, WKB, TA

S of Refs. [15,16], and Tcc
S

of Eq. (18) for the potential of Fig. 1.

N TS jTS � TA
S j

TF WKB Ref. [15] Ref. [16] Tcc
S

1 4.97 3.16 1.42 0.47 0.12 1:2� 10�2

2 24.73 11.50 1.47 0.43 0.08 2:0� 10�3

4 148.08 42.76 1.48 0.50 0.04 4:0� 10�4
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FIG. 2 (color online). Exact (ex) total energy (black) compared
to the direct approximation of Ref. [16] (green) and Tcc

S of

Eq. (18) (red) for N ¼ 2 and trial potentials ~vðxÞ ¼
�5 sin2ð�xÞ ��D sin2ð2�xÞ with the external potential at
�D ¼ 0.
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This is because these approximations were derived semi-
classically, and have uncontrolled errors. On the other
hand, our coupling-constant approximation of Eq. (18)
(red curve) is both far more accurate and minimizes at
the true potential.

However, we further tested the coupling-constant ap-
proximation by adding the perturbation ��D sin2ð2�xÞ
with varying depth �D to the given external potential
[� 5 sin2ð�xÞ]. For N ¼ 2, as shown in Fig. 3, the
minimum is no longer at �D ¼ 0, despite the high accu-
racy. This demonstrates that Eq. (11) is not satisfied for all
possible variations of the potential around the true one.
However, the breakdown appears small and does not much
diminish accuracy. This breakdown is due to the small
normalization error in the semiclassical density [16]. If
the error changes with the potential, the corresponding
�A cannot be symmetric. We have also calculated the
response function for that approximation and found non-
symmetrical terms [19]. This shows the utility of our
analysis: Accuracy is likely to be further improved if the
result can be easily modified to enforce Eq. (11).

An alternative to the coupling-constant method used
here is the virial theorem, which yields the kinetic energy
from the potential and density alone [20]. We recommend
that version which has an origin-independent kinetic en-
ergy density given in Ref. [21], satisfying

r2tSðrÞ ¼ �d

2
rfnðrÞrvSðrÞg; (20)

where d denotes the dimension of space. While either the
virial or the coupling-constant formulation can be applied
to realistic systems, we use the coupling constant here
because our illustrations involve box-boundary conditions,
which create complications for the virial theorem [22].

The coupling-constant formulation can be applied to
realistic systems with potentials that vanish at large dis-
tances, using v0 ¼ 0 for a reference. Then, to keep the
particle number fixed, employ the device of putting the
system in a large box whose size is taken to1 at the end of

the calculation. Either expression has a great advantage
over traditional density-functional approximations, such as
generalized gradient approximations. For such approxima-
tions, there is always an ambiguity in the energy densities;
a term that integrates to zero over the entire space can
always be added [23]. However, our energies use an ap-
proximation to the density, which is uniquely determined
for all r, and so can be used to identify the relative con-
tribution to the energy from different regions [19].
Which variation (coupling constant or virial) is most

useful in practice awaits general-purpose approximations
for the density as a functional of the potential for an
arbitrary three-dimensional case. But at least it no longer
awaits the corresponding kinetic energy approximations.
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