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Anisotropic exchange interaction between nonmagnetic europium cations in Eu2O3
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1Dipartimento di Fisica, Università degli Studi di Cagliari, and INSTM, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
2Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

3CNR-IOM SLACS, and Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato
(CA), Italy

(Received 9 March 2011; revised manuscript received 25 May 2011; published 28 July 2011; publisher error corrected 2 August 2011)

The electronic structure of the cubic and (high pressure) hexagonal phases of Eu2O3 have been investigated
by means of full potential linearized augmented plane wave calculations, within the LDA + U method. A
full structural relaxation was performed for both phases, and the transition pressure was determined. The band
structure shows the correct insulating character with gap values comparable to the experimental ones. The contact
charge density was also calculated for Eu2O3 (and other Eu compounds) and found to be in good agreement
with experimental values. For the cubic phase, the comparison between ferromagnetic and antiferromagnetic
calculations shows that the exchange interaction is very weak and is therefore expected to have a negligible effect
on the magnetic susceptibility. The calculations performed for the high pressure hexagonal phase, on the other
hand, show that there is an antiferromagnetic exchange interaction between nearest-neighbor Eu ions, which
should have a sizable effect on the susceptibility. Our results allow us to evaluate the existing theories.
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I. INTRODUCTION

Rare earth compounds present a large variety of interesting
magnetic behaviors, due to their partially filled f shells.
Trivalent europium compounds, in particular, offer a unique
chance of observing exchange coupling between “nonmag-
netic” ions. The ground state of Eu3+ (4f 6) ions is 7F0, with
a total angular moment J = 0 resulting from L = S = 3 (in
atomic units) although spin-dependent exchange effects are
present. Eu ions also show a substantial admixture of higher
energy J = 1 states, which contributes significantly to their
susceptibility (χ ).

Eu2O3 is the prototypical compound of this family, its
magnetic susceptibility has been the subject of detailed
experimental investigation.1–3 The first attempt to explain
its magnetic behavior was made by Huang and Van Vleck,4

who showed that the susceptibility of Eu2O3 is larger than
the corresponding susceptibility of the free Eu3+ ion, because
the energy levels of the excited 7F1 states are modified by the
crystal field, and pointed out the dominant contribution of the
Van Vleck component of the susceptibility, χV V . An explicit
calculation of the susceptibility from energy levels obtained
by optical spectroscopy measurements5,6 was performed in
this work. However, the resulting χ turned to be smaller than
the experimental value, and so the remainder was attributed
entirely to the exchange coupling among Eu3+ ions.4

This viewpoint has been challenged on the basis of mea-
surements of χ in solid solutions of Eu2O3 into A2O3 (A = Y,
Lu, Sc),2,3,7,8 where Eu atoms are diluted. As the number
of Eu nearest neighbors is reduced, the total interatomic
exchange interaction should decrease and become negligible at
small concentrations of Eu, and the total susceptibility should
decrease along with it. The experimental susceptibility (per
mole of Eu), however, does not decrease in the full range of
investigation [i.e., up to 10% of Eu2O3 into A2O3 (Refs. 2,
3, 7, and 8)], suggesting a negligible role of the exchange
interaction. This decrease of the exchange component on
dilution might be due to compensation caused by change in

the crystal field splitting of Eu sites in A2O3 in comparison
with Eu2O3; this explanation, however, is not supported by
optical measurements of the energy levels.6,9,10 Yet another
explanation has been proposed based on the distribution of Eu
atoms in the two available sites (symmetry S6 and C2) of the
cubic bixbyite structure of these oxides.11 The decrease of the
exchange component on dilution might be compensated by
a preferential occupation of the S6 site in the solid solution;
the Van Vleck susceptibility of this site is larger because the
7F1 levels are lower in energy in comparison with the C2site.
This preferential occupation, however, was not found in X-ray
diffraction2 or Mössbauer spectroscopic studies.3,12

A further criticism to the viewpoint that the exchange
coupling guides the physics of suceptibility also comes from
the calculations of the Van Vleck susceptibility performed by
Caro and Porcher.13 These authors determined the crystalline
field parameters starting from the experimental values of the
energies of the excited states, and the matrix elements of the
Van Vleck susceptibility were calculated using this potential
and the atomic functions. The susceptibility calculated ac-
cordingly agrees well with the experimental one,1 validating a
picture in which the exchange coupling should be negligible.
We should mention here, however, that the optical data used by
Caro and Porcher have been subsequently corrected by more
recent measurements.6

Therefore, the question of whether the excess of susceptibil-
ity may be entirely attributed to the exchange coupling is still
open. The absence of long range magnetic order does not allow
direct evaluation of the exchange coupling constants starting
from experimental data and so a theoretical determination of
these parameters by means of ab initio calculations is highly
desirable for understanding the behavior of susceptibility in the
material. Remarkably, to the best of our knowledge, there is no
experimental evidence in the literature of exchange coupling
between J = 0 ions making the “excess” of susceptibility of
Eu2O3 a novel puzzle where ab initio calculations have the
potential of providing interesting evidence toward the solution
of this puzzle.
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From the theoretical point of view, rare earth compounds
represent a challenge for modern electronic structure cal-
culations. Their multiplet structure cannot be explained on
the basis of a single Slater determinant. The traditional
density functional theory (DFT) methods with local/semilocal
approximations to the exchange correlation functionals fail to
describe their correlated nature and result in a qualitatively
wrong picture with flat f bands accumulated around the
Fermi level (EF ). To overcome these problems the LDA + U

and the self-interaction corrected local density approximation
(SIC-LDA) methods have been widely used in the past.
Focusing entirely on Eu3+ compounds, LDA + U calculations
were performed by Johannes and Pickett14 on EuN and EuP
and by Deniszczyk et al.15 on EuF3 and EuCo2X2 (X = Si,
Ge). SIC-LDA calculations were performed on several rare
earth oxides by Petit et al.16,17 All these works show that
the correct physics in these materials can be treated within
the LDA + U (SIC-LDA) method. Hence in the present work
we compute the electronic and magnetic structure of Eu2O3

using the LDA + U approach. Eu being one of the heavy rare
earths, the use of an all-electron method is almost essential—in
the present work we employ the full-potential linearized
augmented plane wave (FLAPW) method18 implemented
within the ELK code.19 From the corresponding results we
obtain very small values for the exchange coupling constants
in cubic Eu2O3, which imply a negligible contribution of
exchange to the magnetic susceptibility.

II. COMPUTATIONAL DETAILS

The calculations were perfomed using the ELK code, unless
otherwise stated. For the cubic structure a k-point mesh of
2 × 2 × 2 is used for the Brillouin zone (BZ) integration; given
the large dimension of this system (40 atoms per unit cell)
and the insulating character of the compound, this choice is a
reasonable compromise between accuracy and computational
load. For the (smaller unit cell) hexagonal structure, a mesh of
4 × 4 × 4 is used. Spin-orbit coupling has been included in all
self-consistent calculations. We have used the fully localized
limit of the LDA + U method.20 The values of U for Eu f

states and of J are chosen to be 7 and 0.75 eV, respectively.21

The contact charge density of the 151Eu nucleus is calculated
by modeling the nucleus as a uniformly charged sphere, as
described in Ref. 22. A mesh of 259 points to nuclear radius
was used. The contact charge density is thus an average of the
electronic charge density over the nuclear volume.

The equilibrium structure and the transition pressure were
determined using the Vienna Ab-initio Simulation Package
(VASP) at absolute zero. The numerical package was applied
using the projector augmented-wave pseudopotential (PAW),
with a generalized gradient approximation (GGA). The nu-
merical integration of the Brillouin zone was performed using
a discrete 4 × 4 × 4 k-point sampling for the bixbyite structure
and a 10 × 10 × 8 k-point sampling for the hexagonal one. The
lattice constants and the internal coordinates of each atom were
relaxed simultaneously, using the conjugate gradient method.

III. CRYSTAL AND MAGNETIC STRUCTURE

Eu2O3 crystallizes in the cubic bixbyite structure (shown
in Fig. 1) with space group T 7

h (Ia3̄); it corresponds to a bcc

FIG. 1. (Color online) (a) Spin structure of the Er2O3 determined
using the neutron diffraction24 method. (b) Full structure of cubic
Eu2O3. (c) O coordination around Eu S6 sites. (d) O coordination
around Eu C2 sites.

lattice with a primitive cell of 40 atoms.23 Eu atoms occupy the
two inequivalent Wyckoff sites 8a (site symmetry S6) and 24d

(site symmetry C2), with a distorted octahedral coordination
of O atoms (in the 48e sites). The experimental lattice constant
for Eu2O3 is a = 10.859 Å.11 The bixbyite structure is derived
from a defective cubic fluorite structure, which corresponds to
a simple cubic lattice with 10 atoms and half value of the lattice
constant. Eu atoms occupy the positions of an f cc lattice; the
defective structure is obtained by removing two O atoms at
1/4 and 3/4 of the body diagonal. Due to the large number of
atoms in the unit cell in the bixbyite structure, Ref. 16 used
this smaller, defective fluorite unit cell. In order to compare
our results with this work, we have also performed calculations
within the defective fluorite unit cell.

In order to evaluate the magnetic exchange coupling con-
stant, the band calculations need to be performed with different
configurations of the Eu spins. Experimentally, Eu2O3 does
not have a long range magnetic order; thus as a starting point
we have used the spin configuration of an isostructural Er2O3

compound24 (see Fig. 1). This spin configuration also turns
out to be stable for Eu2O3 in our calculations. However, in
this Er2O3-like configuration the sum of the scalar products
of the spin of one ion with its nearest-neighbor (NN) spins
is always zero, which does not allow for a determination
of the NN coupling within a Heisenberg model. In order to
obtain a positive sum of scalar products one half of the spins
of the C2 sites have been reversed relative to the Er2O3-like
configuration such that all the spins point along the positive
direction of the Cartesian x, y, or z axes. In order to compute
the exchange couplings we have also studied other ordered
phases—to obtain a ferromagnetic (FM)-like state where the
direction of the S6 sites is chosen to maximize the number
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FIG. 2. (Color online) Left panel: High pressure hexagonal structure of Eu2O3. Right panel: Antiferromagnetic configuration of the
hexagonal phase.

of positive components, which may be written as (1,1,1),
(1,1,−1), (−1,1,1), and (1,−1,1) in the appropriate units; we
obtain in this way a positive sum of scalar products for an
S6 or C2europium with its twelve NN. In order to obtain an
antiferromagnetic (AFM)-like state, the S6 spin direction is
reversed; the sum of products is then negative.

Eu2O3 undergoes a structural transition under pressure
from the cubic to the hexagonal phase (space group P 3̄m1)25

(see Fig. 2), which has five atoms per primitive cell (Eu
atoms on the Wyckoff positions 2d and O atoms on the
2d and 1a positions).23 The transition begins at 5 GPa and
completes at 13 GPa. At this pressure, the lattice parameters
are a = 3.738 Å and c = 5.632 Å.25 For this structure, the
band calculations are performed with FM as well as AFM spin
configuration; in the AFM configuration (shown in Fig. 2),
the two cations of the primitive cell have an antiparallel spin
orientation.

IV. RESULTS AND DISCUSSION

Before calculating the electronic structure a full structural
relaxation is performed using the pseudopotential method
and the results are compared with the available experimental
data. The atomic positions of the bixbyite structure are
described by the u parameter for europium and by the x,
y, and z parameters for oxygen;23 the calculated values
are u = −0.0328, x = 0.3877, y = 0.1508, and z = 0.3813,
which are in good agreement with the experimental ones u =
−0.0313, x = 0.3851, y = 0.1483, and z = 0.3809.11 The
volume dependence of the energy was fitted to the third-order
Birch-Murnaghan equation of state;26 the equilibrium lattice
constant is a0 = 11.02 Å, which slightly overestimates the
experimental value, 10.859 Å.

The calculated values for the hexagonal structure are
u = 0.2429 for the Eu parameter and u = 0.6505 for the O
parameter; no experimental data are available for hexagonal
Eu2O3 for a comparison. The calculated volume at 13 GPa
is V = 68.13 Å3, which agrees well with the experimental
one Vexp = 68.15 Å3. The estimated pressure of the cubic-
hexagonal transition, evaluated by the intersection of the

enthalpy vs pressure curves in the two structures shown in
Fig. 3, is P = 5 GPa. This value is quite consistent with
experiments reporting the formation of the hexagonal phase
at 5 GPa and a coexistence region of the two phases up to
13 GPa, at room temperature.

Due to the large size of the bixbyte unit cell, the calculations
with the FLAPW method of the energy vs volume have
been performed using the defective fluorite cell with a FM
configuration. The volume dependence of the energy was
fitted to the third-order Birch-Murnaghan equation of state.26

We obtain an equilibrium lattice constant a0 = 10.622 Å,
2% smaller than the experimental value (consistent with the
typical error in LDA or LDA + U calculations). The calculated
bulk modulus B0 = 140 GPa is also in good agreement with
the experimental value of B0,exp = 145 ± 2 GPa (Ref. 25)
(measured in the bixbyte phase).

As mentioned earlier, the first problem in the study of this
system is the choice of spin configuration, since experiments
do not report any magnetic order in this J = 0 system. We
therefore assume as a starting (reference) configuration the
experimental magnetic structure of isostructural Er2O3. In this
configuration, spin moments are not collinear, and the two
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FIG. 3. (Color online) Enthalpy vs pressure for the cubic structure
(black) and the hexagonal one (red/gray). The squares point out the
calculated values; the line is a guide for the eye.
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FIG. 4. (Color online) Band structures of cubic Eu2O3 along the
symmetry directions of the Brillouin zone. Eu 4f character is denoted
by red squares and blue circles for the S6 and C2 sites, respectively.

crystallographic sites have totally different directions:24 while
the S6 moments are directed along the diagonal axes, C2 sites
direct their spin along the Cartesian axes (see Fig. 1).

The band structure of cubic Eu2O3 with the Er2O3-like spin
configuration is shown in Fig. 4. The red squares and blue
circles in Fig. 4 represent the importance of the contribution
from Eu 4f states, for sites S6 and C2, respectively. The
general features of Eu2O3 bands can be readily explained as
follows: the O p states are responsible for the bands located
in the energy region between ≈−3 eV and the Fermi level
(which is the zero of energy in all our plots). The Eu3+
ions are in a 4f 6 configuration, which leaves an empty 4f

orbital per atom in the majority spin channel. Minority 4f

states, on the other hand, are completely empty and form
the group of bands from +4 to +8 eV. Occupied majority
spin 4f states form the group of 24 bands sitting from −5.5
to −3 eV and their splitting into four separated groups is
similar to the situation in Eu pnictides.14 This splitting in
the case of Eu pnictides was interpreted as an effect of the
intra-atomic anisotropic exchange—a test calculation based
on LDA resulted in a single narrow f manifold indicating that
splitting cannot originate from crystal field effects, making the
complex exchange effect in this open shell system the most
likely explanation. The large distance between (equal spin)
filled and empty counterparts derives from the large U value
for localized 4f states. The empty majority spin states lie
around 2.3 eV above EF . This electronic structure therefore
reflects the electronic configuration of the Eu3+ ions. All the
4f bands have a negligible dispersion (≈0.2 eV), consistent
with the localized nature of these orbitals.

For better understanding of the electronic states presented
in Fig. 5 are the densities of states (DOS) of cubic Eu2O3

in the Er2O3-like spin configuration. Figure 5 confirms the
picture given above. In particular, the states from −3 eV to
EF derive from O states and hybridize only weakly with Eu
states. Besides 4f states, Eu’s most prominent contribution
to the electronic structure is the 5d states, mostly located in
the conduction band region above 4 eV. The narrow peaks
from −5.5 to −3 eV and the structures above 4 eV are
derived from filled majority and empty minority Eu 4f states,
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FIG. 5. (Color online) Orbital projected DOS of cubic Eu2O3 per
primitive cell in the Er2O3-like configuration. The Eu1 and Eu2 labels
indicate the S6 and C2 sites, respectively.

respectively. The peaks in the region ≈2–2.5 eV above EF are
predominantly Eu states (in particular, empty majority spin 4f

states), with a very small contribution from oxygen orbitals.
The marginal Eu 4f –O 2p hybridization indicates a small
value of the NN exchange coupling.

The importance of the crystal field (CF) effects in this
compound has been a subject of discussion in the past.4,6

Optical measurements have been interpreted assuming that
the S6 and C2 sites have a very different CF splitting. Our
results support this interpretation (see Fig. 5) and show that
the f states behave differently for the two sites—the lower
symmetry of the C2 site results in a larger subdivision of the
4f peaks with occupied f states shifted 0.5 eV lower in energy
compared to the occupied f states with S6 site symmetry. The
unoccupied f states show a similar behavior with C2 site
symmetry states moved higher in energy with respect to S6

site projected f states. This leads to the C2 site having a much
larger energy gap between occupied and empty majority spin
states as compared to the S6 site, which in turn implies different
density matrices for the two sites. This difference can be related
to the different expectation values of orbital momentum (to be
discussed later).

In order to understand the exchange interaction in Eu2O3 we
studied two further spin arrangements, referred to as FM and
AFM configurations (we refer to Sec. III for their description).
In Fig. 6 we compare the DOS for Eu2O3 in the FM and AFM
configurations. It is clear that spin ordering affects the Eu states
marginally and the corresponding DOS are almost identical.
These results have consequences on the exchange parameters
as the total energy difference between these two configurations
is very small.

As stated above, band structure methods have strong limi-
tations in calculations of rare earth compounds, in particular in
dealing with the spin and orbital angular momenta. Following
the usual procedure described in Ref. 14 for the case of the
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FIG. 6. (Color online) Total DOS of cubic Eu2O3 in the Er2O3-
like configuration and in the two (FM and AFM) configurations
described in the text.

trivalent Eu ion, we assign a direction (local α axis) to S
and L and deal with the projections Sα and Lα on this axis.
While this representation does not reproduce the experimental
situation (where the projections of S and L vanish on any
given direction), it is the closest approximation we can have
of the physical reality within our scheme. The local axes are
different for the two sites: in the case of C2 it points along the
Cartesian axes, and in the S6 site it points along the main cube
diagonal. In units of h̄ we obtain for the S6 site Sα = 2.77,
Lα = −1.56, and Jα = 1.21. Our value of Sα differs from
the expected value Sα = 3 for the free ion probably because
of the use of muffin-tin sphere for computing integrals and
also because of an incomplete spin polarization. In the case of
the C2 site, on the other hand, we get very different results:
the components along the corresponding local axes α′ are
Sα′ = 2.41, Lα′ = −2.34, and Jα′ = 0.07. In other words, the
J = 0 ground state of Eu seems to be reproduced to a much
larger extent. Again (consistent with experiments) we find very
different behaviors for the two sites. We should mention that
our small value of Lα for the S6 site is similar to the value
Lα = −1.5 obtained in EuN by Johannes and Pickett,14 who
ascribed this result to an overquenching of angular momentum
caused by an overestimated crystal field effect within DFT.

At this point it is interesting to compare the electronic struc-
tures of Eu2O3 and EuN (Ref. 14) (which crystallizes in the
rock salt structure and corresponds to an Eu3+ configuration).
The general features of the band structures are quite similar,
apart from obvious differences associated with the different
ligand (the center of gravity of O 2p states lies slightly deeper
in energy). A qualitative difference exists in the properties of
Eu2O3 and EuN: EuN is metallic in nature and this metallic
character arises from partially occupied dispersed Eu 5d bands,
crossing the empty majority 4f bands. On the other hand in the
case of Eu2O3 similar dispersed bands with Eu 5d contribution
exist but they also have a relevant interstitial character and lie
above the empty majority 4f bands; as a consequence, Eu2O3

turns out to be an insulator. It is interesting to notice that both
in our calculations for the simplified structure suggested by
Petit et al.16 and in their SIC calculations these bands cross
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FIG. 7. (Color online) Bands of Eu2O3 in the simplified structure
(defective cubic fluorite cell) in the FM configuration. The 4f

character is denoted by red circles.

EF and in contrast with experiments give a spurious metallic
character to Eu2O3, as shown in Fig. 7. The origin of the
difference in character between the bixbyte and the simplified
structure partially lies in the relaxation around the vacancies,
which is not allowed by symmetry in the latter. In fact, an
inspection of the charge corresponding to these dispersed
bands in the simplified structure shows that these bands derive
from quantum states localized in the O vacancy sites. However,
test calculations have shown differences among the bands of
the two compounds which are not accounted for by simple
local atomic relaxation. As a matter of fact, we notice that the
simplified structure is not entirely equivalent to the structure
of the bixbyte (for instance, only one of the two inequivalent
Eu sites is found in the simplified structure) and that the full
structure has to be used to properly describe this system.

Under pressure Eu2O3 undergoes a structural phase transi-
tion to a hexagonal phase (see Fig. 2). Due to the very large
computational load involved, the calculation of the transition
pressure is out of the scope of the present investigation. How-
ever, we minimized the total energy of Eu2O3 in the hexagonal
phase. The fitted energy minimum is at V0 = 67.62 Å3, and
B0 = 180 GPa. The calculated bulk modulus compares well
with the experimental value B0,exp = 151 ± 6 GPa,25 As for
the equilibrium volume, the experimental hexagonal volume
is Vexp = 68.15 Å3 when the transition is completed (at
13.1 GPa),25 Using the theoretical bulk modulus, we arrive
at an equilibrium volume at 13.1 GPa equal to 62.7 Å3, which
underestimates the experimental lattice constant by about 2.8%
(which is typical of LDA-based functionals).

In order to understand how pressure modifies the electronic
structure of this compound, we have studied its properties in
the hexagonal phase, at the lattice parameters corresponding
to P = 13.1 GPa. The band structure of the hexagonal Eu2O3

is shown in Fig. 8 for both FM and AFM configurations.
The general features of the bands are similar to the cubic
phase; hexagonal Eu2O3 is a semiconductor, with a gap of
2.3 eV between the valence and the unoccupied 4f band,
and a gap of 4.1 eV between the valence and the conduction
band. This semiconducting behavior is in agreement with
the experimental optical and transport properties of Eu2O3.
In contrast to the cubic phase, in the hexagonal phase the
dispersed band with the minimum around 3.5 eV at the �
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FIG. 8. (Color online) Band structures of hexagonal Eu2O3 in the primitive cell. Left panel: FM state. Right panel: AFM state. Eu 4f

character is denoted by red circles.

point is not present. This difference may be related to the fact
that the hexagonal structure has no vacancies in the atomic
O positions, ruling out the possibility of having bands with a
large interstitial character.

The total DOS of cubic and hexagonal Eu2O3 are presented
in Fig. 9. While the structure of Eu2O3 levels is similar,
the O 2p states have a larger bandwidth and overlap with
the occupied Eu 4f manifold. This increase of the O 2p

bandwidth is clearly a consequence of the compression O
atoms experience under pressure. Also, the exchange-related
splitting of the 4f levels is different in the cubic and hexagonal
phases.

Some results of our calculations on cubic Eu2O3 may be
compared with experimental values. The gap between the va-
lence and the conduction band (�Ev→c) has been obtained by
optical measurements; the calculated value �Ev→c = 3.50 eV
is close to the experimental one27 �Eopt = 4.3 ± 0.3 eV. The
gap between the valence and the empty majority spin Eu
f band has been determined by the experimental curve of
conductivity vs temperature; the calculated value �Ev→f =
2.18 eV is in reasonable agreement with the experimental
value28 of �Econd = 1.84 eV.

Our calculations allow us to calculate the electron density
on the nucleus or contact charge density, which is relevant
in the context of the Mössbauer spectroscopy of 151Eu in
cubic Eu2O3. The electron density on the nucleus ρ(0) may be
evaluated in terms of the difference �ρ(0) = ρ(0) − ρEuF3 (0)
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FIG. 9. (Color online) Total DOS of cubic and hexagonal Eu2O3

in the FM state.

relative to tetragonal EuF3, which is the reference compound.
Using the experimental isomer shift12 δ = 1.03 ± 0.01 mm/s
and the differential nuclear radius of Ref. 29, we find an ex-
perimental density difference to be �ρ(0) = 3.18 ± 0.03 a−3

0 ;
the calculated value for the dominating C2 site is �ρ(0) =
3.17 a−3

0 which is in very good agreement with the experimen-
tal value.

In order to verify our general capability of computing
contact charge densities in different environments, we per-
formed calculations in other related systems: EuF3, the most
ionic compound with trivalent europium, EuF2, the most ionic
divalent compound (cubic fluorite structure), and divalent
oxide EuO (rocksalt structure). The calculated charge density
difference is �ρ(0) = −34.93 a−3

0 for EuO, to be compared
with the experimental value29 �ρ(0) = −37.91 ± 0.04 a−3

0 ;
for EuF2 the calculated value is �ρ(0) = −40.70 a−3

0 , in good
agreement with the experimental one29 �ρ(0) = −41.93 ±
0.04 a−3

0 .

V. EXCHANGE INTERACTIONS

The exchange interaction in ions with L �= 0 is character-
ized by the dependence of the exchange integral on orbital
orientation. According to Van Vleck and Huang30 this effect
gives rise to an “anisotropic exchange,” resulting from the
dependence of orbital charge density on the direction. The
coupling between the ions i and j may still be described by
the exchange potential Vex,ij , as demonstrated in Ref. 30: the
exchange coupling for Eu3+ ions in their ground state and in
cubic compounds may be written in the standard form

Vex,ij = −2a
(ij )
eff Si · Sj (1)

where Si is the spin of the ion i and a
(ij )
eff are the effective ex-

change constants. In other words, we can use the standard form
of the isotropic coupling to deal with an anisotropic exchange.
Therefore, it is possible to determine the a

(ij )
eff constants by

calculating the energies of different spin configurations. These
constants allow us to determine the effect of the exchange
coupling on the magnetic susceptibility.

Our results show that there is no significant total energy
difference between the FM-like and the AFM-like phases (for
their definition see Sec. III), with an energy convergence
parameter ε ∼ 3 × 10−4 eV and a total energy Et ∼ 5 ×
106 eV. The maximum possible strength of the exchange
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coupling consistent with these results corresponds to an energy
difference per primitive cell �Et ∼ 2ε, which leads to a
difference per Eu atom of �E ∼ 0.04 meV. In this work we
consider only the exchange coupling of the Eu3+ ion with its
12 NN, since it is expected to be the largest. In fact, in the
bixbyite structure, NN exchange is mediated by the oxygen
atom, which is not the case for next NN Eu atoms. With
this assumption, the effective exchange constants refer only
to the coupling of NN Eu ions. We also assume that all the
NN pairs have the same a

(ij )
eff = aeff . Starting from the energy

difference �E ∼ 0.04 meV and the spin values given by our
calculations, we obtain that the upper bound of the effective
exchange constant is aeff ∼ 0.002 meV.

Due to a lack of long range magnetic order,31 the value of
aeff cannot be verified by direct comparison with experimental
magnetic data. However, this interaction may give a contribu-
tion to the magnetic susceptibility. According to Ref. 4, the
magnetic susceptibility χ may be written as

χ = χdia + χp = χdia + χV V + χex, (2)

where the paramagnetic susceptibility χp, obtained by subtrac-
tion of the diamagnetic core component χdia , is the sum of the
Van Vleck contribution χV V and of the exchange contribution
χex ,4 At T = 0 K,

χV V = 8Nμ2
B

3KB

3∑

k=1

1

E1k

, (3)

χex = 128Nμ2
BAeff

E1(E1 − 16Aeff )
, (4)

where N is the number of atoms, μB is the Bohr’s magneton,
KB is the Boltzmann’s constant, E1k are the energies of the
triplet state 7F1 centered around the energy E1, and

Aeff =
12∑

j=1

a
(ij )
eff = 12aeff . (5)

However, the contribution of the S6 and C2 sites must be
evaluated separately, because the energies of the 7F1 state
are different. Since the multiplet energies are not acces-
sible from our one-particle calculations, we calculate the
Van Vleck contribution by using the experimental optical
energies for the two sites given by Ref. 6; we get χ

(exp)
V V =

7.72 × 10−3 cm3/mol of Eu (in CGS units). If we subtract this
contribution from the experimental value of the paramagnetic
susceptibility χ

(exp)
p = 9.1 × 10−3 cm3/mol of Eu (in CGS

units) of Ref. 3, we obtain the value of the excess susceptibility
�χ = χp − χV V = 1.38 × 10−3 cm3/mol of Eu.

In accordance with Van Vleck and Huang.4,30 if we assume
that this excess susceptibility is due to the exchange contri-
bution only (�χ = χex) and that Aeff is equal for both sites,
we can estimate the experimental value of Aeff = 0.41 meV.
By using the maximum value of aeff obtained by our band
calculations, we obtain a theoretical upper bound for the
constant to be Aeff ∼ 0.02 meV. Our results, therefore, lead to
the conclusion that in cubic Eu2O3 the difference between the
experimental paramagnetic susceptibility and the Van Vleck
contribution cannot be due to the contribution of the exchange

interaction, in contrast with the conclusions of Van Vleck and
Huang.4,30 It is consistent, on the other hand, with the fact
that the experimental susceptibility (per mole of Eu) does not
decrease in the solid solutions of Eu2O3 into A2O3. The point
of view of Van Vleck and Huang has also been criticized before
by Caro and Porcher,13 who performed a calculation of the
Van Vleck contribution χV V including the matrix elements
among atomic wave functions of the Eu 4f states. They
obtained a resulting χp in good agreement with experimental
values, without invoking any contribution from the exchange
interaction. Our calculations are also consistent with these
results.

The investigation of the exchange interaction has also been
performed for the hexagonal phase of Eu2O3 under pressure.
In this case, Eq. (1) is not applicable, because the structure
of the compound is not cubic; therefore, it is not possible to
determine the exchange constants by total energy differences.
In contrast to the cubic phase in the case of the hexagonal
structure the application of a weak magnetic field along the c

axis gives collinear spins. In the AFM configuration (described
in Sec. III) the cation spins have parallel orientation in planes
perpendicular to the magnetic field direction (z axis), with
antiparallel orientation between planes. The Eu atom has three
neighbors at 3.50 Å in the lower plane, three at 3.59 Å in
the upper plane, and four neighbors at a distance of 3.74 Å
in the same plane.23,25 The energy difference per Eu atom
is EAFM − EFM = −3.63 meV. Therefore in the hexagonal
structure we obtain a nonnegligible AFM exchange interaction
between the Eu ion and its six NN. Interestingly the energy
difference is of the same order of magnitude as that found by
Johannes and Pickett for EuN and EuP.14

The exchange interaction is about 100 times stronger in the
hexagonal phase than in the cubic one. As a first guess, one
might attribute this difference to the shorter Eu-Eu distance in
the hexagonal phase (dEu-Eu is 3.50–3.74 Å in the hexagonal
phase and 3.84 Å in the cubic one). To verify this possibility,
we performed test calculations in the hexagonal structure,
changing the lattice constant so as to match the interatomic Eu-
Eu distance of the cubic phase. The corresponding exchange
coupling did not decrease sufficiently to support this view.
The rational for the different couplings may probably be
found in the different local O coordination around Eu ions,
as the oxygen orbitals mediate the Eu-Eu interaction: in the
hexagonal structure there are two O atoms binding two NN Eu
ions, while there is only one intermediate O atom in the cubic
one. An analysis of the partial densities of states in the two
structures supports this view, with a quite large hybridization
of Eu 4f and O orbitals in the hexagonal phase. Interestingly,
we also observe that the phase with stronger exchange coupling
has a collinear spin structure, while the structure with weaker
interaction is characterized by noncollinear spins.

VI. CONCLUSION

In conclusion, we have studied the electronic structure of
cubic bixbyite Eu2O3 and its high pressure hexagonal phase by
means of FLAPW calculations within the LDA + U method.
In both phases the filled O 2p and empty majority spin Eu
4f states are separated by an ≈2.1-eV gap, while minority
Eu 4f states start around 4 eV above EF , in agreement with
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the optical and transport measurements.27,28 The calculated
contact charge density agrees with the experiment.

A full structural relaxation, performed with the pseu-
dopotential method, is in agreement with the experiment,
in particular, the pressure of the cubic-hexagonal transition
and the presence of a coexistence region where correctly
evaluated.

From the comparison of FM and AFM calculations we
infer that the interatomic exchange interaction is negligible
in cubic Eu2O3 and so is its effect on the susceptibility.
This is consistent with the experimental observation of a
constant susceptibility (per mole of Eu) of solid solutions of
Eu2O3 into A2O3 (A = Y, Lu, Sc). Our calculations are in
contrast with the point of view of Van Vleck and Huang,4,30

according to which exchange is needed to explain the behavior

of the magnetic susceptibility. Our results are consistent with
later calculations,13 which could explain the experimental
susceptibility by including the matrix element in the Van Vleck
contribution. In the hexagonal phase we observe the presence
of a small but significant AFM exchange interaction between
the Eu ion and its six NN. Therefore, in this phase we could
have a non-negligible contribution of exchange to the magnetic
susceptibility, but for now no experimental measurements are
available for comparison.
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