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a b s t r a c t

We propose a method to calculate the temperature dependence of Heisenberg exchange coupling

constants Jij. Within the formalism of disordered local moments (DLM), the magnetization and the Jij are

computed from first principles for any concentration c of the magnetic constituents. The exchange

coupling constants are then used in Monte Carlo (MC) simulations to compute the temperature

dependence of the magnetization for the given c. By comparing the magnetization from DLM

calculations and from MC simulations we obtain a mapping of temperature versus concentration and

eventually temperature-dependent Jij. The approach which is applied to bulk Fe and Co can for example

improve critical exponents.

& 2011 Elsevier B.V. All rights reserved.
1. Motivation

The classical Heisenberg model is widely used to describe
ground-state properties and phase transitions in magnetic sys-
tems. In particular critical temperatures Tc, critical exponents, and
magnetization curves /mSðTÞ can be calculated. It is also part of
atomistic magnetization dynamics simulations within the frame-
work of the Landau–Lifshitz–Gilbert equation (e.g. Refs. [1,2]).

An exchange coupling constant Jij in the classical Heisenberg
model, whose Hamiltonian reads

H¼�
X

ij

Jijm̂i � m̂j, ð1Þ

quantifies the energy change upon rotating the local magnetic
moments (unit vectors) m̂i at site i and m̂j at site j. The Jij are
taken either as adjustable parameters or are computed from first
principles.

First-principles electronic-structure calculations are usually per-
formed for zero temperature. The set fJijg of exchange coupling
constants is obtained from the energy change of tilting local
magnetic moments or from a Kubo-Greenwood-type expression
of Green functions [3]. From these Jij, critical temperatures can be
calculated within the mean-field approximation or the random-
phase approximation; or they are used in simulations, for example
in Monte Carlo simulations. In any case, the Jij are computed for
T ¼ 0 K but are taken to describe systems at finite temperatures.
ll rights reserved.
In contrast to the preceding, the disordered local moment
(DLM) picture [4–6] describes paramagnetic systems, that is at
temperatures TZTc. Within the DLM approach, nonzero local
magnetic moments are maintained but the directions of these
fluctuate so strongly that the average magnetization vanishes. In
their simplest form, the thermal fluctuations are modeled by a
substitutional Ising-type alloy whose constituents * and + are
oppositely magnetized atoms (local moment orientations m̂* ¼

�m̂+). At alloy concentration c* ¼ 1�c+ ¼ 0:5, that is at Tc, the two
local moments cancel although m* and m+ are nonzero; this in
contrast to the Stoner model in which the magnetization vanishes
everywhere in space at Tc (i.e. m* ¼m+ ¼ 0). In first-principles
calculations, the DLM approach can be treated within the coher-
ent potential approximation (CPA) [7] from which the set fJijg can
be computed as well.

With respect to the preceding, we are concerned with two
different sets of exchange constants: fJijð0Þg and fJijðTcÞg. This
suggests the problem whether one can obtain sets fJijðTÞg for
every temperature between 0 K and Tc. Since in the CPA modeling
of the DLM approach c* ¼ 1 would be equivalent to T ¼ 0 K
and c* ¼ 0:5 to T ¼ Tc, the task is to map the entire concentration
range [0.5, 1.0] onto the temperature range ½0 K,Tc�. However,
there is no direct relation c*2T within the DLM approach
itself; consequently the mapping Tðc*Þ requires an additional
ingredient which in this work is the classical Heisenberg model.

In this paper, we propose a simple way to obtain sets fJijðTÞg as
follows. The exchange parameters are computed from first prin-
ciples within the DLM approach at a concentration c*. This set
fJijðc*Þg is then used in Monte Carlo (MC) simulations of the
classical Heisenberg model at a temperature T. The requirement
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that the average magnetization /mSðc*Þ in the DLM calculations
and /mSðT; c*Þ in the MC simulations are equal yields the
mapping Tðc*Þ. We apply this approach to bulk Fe and Co.
Problems and improvements are discussed as well.

Before introducing the approach a few notes on other first-
principles approaches to the temperature dependence of magnetism
are in order. Pindor et al. [7] used the DLM formalism as well but the
temperature dependence was restricted to the self-consistent elec-
tronic-structure calculation, in the spirit of the finite-temperature
version of spin-density functional theory. The magnetic fluctuations
were modeled by a paramagnetic Ising-type alloy (with concentration
50%, treated within the CPA). A two-step approach to the temperature
dependence was introduced by Ruban et al. [8]. There, the exchange
interaction constants were determined from constrained local spin-
density approximation calculations and subsequently used in a model
Hamiltonian to investigate finite-temperature magnetic properties.
Drchal et al. investigated the joint effect of temperature and disorder
on the interlayer exchange coupling [9]. There, the temperature
entered the exchange coupling energy via the Fermi–Dirac distribu-
tion; magnetic fluctuations were not considered.

Using a relativistic DLM approach, Buruzs [10] studied tem-
perature-dependent properties of thin films. This approach is
computationally demanding because it involves both rotational
averaging over the magnetic-moment directions and the compu-
tation of Weiss fields. Since each local Weiss field is aligned along
the average magnetization, the magnetization curve is given by a
Langevin function. Although not done in Ref. [10], this formalism
allows to calculate the temperature dependencies of both Heisen-
berg exchange-coupling constants and Dzyaloshinskii–Moriya
vectors. In the present approach which uses the computationally
less demanding Ising-type averaging, the temperature-concentra-
tion mapping is lost but is reintroduced by comparison with
Heisenberg Monte Carlo simulations. In the latter, the local Weiss
fields are determined by the local magnetic moments within the
finite range of exchange interactions. As a consequence, the
magnetization curve is no longer a Langevin function and critical
exponents can be improved.

The paper is organized as follows. Computational aspects of
the proposed approach are given in Section 2. Its applications to
Fe (3.1) and Co (3.2) are presented and discussed in Section 3.
Conclusions and a brief outlook are given in Section 4.
2. Computational aspects

The Heisenberg exchange coupling constants Jij of bulk bcc Fe
and hcp Co are calculated from first principles using a scalar-
relativistic multiple-scattering approach (KKR, Korringa–Kohn–
Rostoker method [11]), with the exchange-correlation functional
taken from Ref. [12].

For sites ia j, the exchange coupling constants are given by [3]

Jij ¼
1

4p tr

Z EF

DtitmijDtjt
k
ji dE, ð2Þ

with Dti � t
m
i �t

k
i . tsi and tsij are the spin-resolved KKR single-site

scattering matrices and the scattering-path matrices in spin-
angular-momentum representation (s¼m,k) [11]. tij describes
the propagation of an electron from site j to site i. The energy
integral runs up to the Fermi energy EF.

The ferromagnet at temperature T is described as a substitu-
tional binary alloy within the coherent potential approximation
(CPA) [13–16]. Each site is occupied by an atom magnetized along
the z direction (*) with concentration c* and an atom magnetized
along the �z direction (+) with concentration c+ ¼ 1�c*; local
moment orientations are denoted by * and + while spin orienta-
tions are denoted by m and k. At c* ¼ 1 the sample is perfectly
magnetically ordered, which corresponds to T ¼ 0 K. At c* ¼ 0:5 it
is paramagnetic, which corresponds to T ¼ Tc. Within the KKR-
CPA approach used in this paper, short-range order is neglected.

The * and + atoms are created at site i in the effective CPA
medium by defect matrices Dim (m¼*, +) [11]. The effective CPA
medium is described by scattering-path matrices tcpa

ij . More
precisely, a defect of type m at site i and a defect of type n at
site j are introduced by replacing tij by ~tim,jn �Dimtcpa

ij Djn. Without
vertex corrections, that is by approximating the configurational
average of the product of scattering-path matrices in Eq. (2) by a
product of the individual configurational averages, we have

Jim,jn ¼
cmcn
4p tr

Z EF

Dtim ~tmim,jnDtjn ~t
k
jn,im dE, m,n¼*, + : ð3Þ

Since the CPA equations are solved self-consistently at each
energy E, this approach is beyond a rigid-band model.

We define effective exchange coupling constants

Jeff
ij � Ji*,j*�Ji*,j+�Ji+,j*þ Ji+,j+: ð4Þ

A positive (negative) Jim,jn favors parallel (antiparallel) alignment
of the local moments (Ji*,j+ ¼ Ji+,j*). As a result, Ji*,j+ and Ji+,j*

appear with a minus sign in Eq. (4). The set of fJeff
ij g enters the

classical Heisenberg model, Eq. (1), which is solved by Monte
Carlo simulations [17,18].

The mapping Tðc*Þ of the concentration c* on the temperature T

is obtained via the average magnetization /mS which can be
computed from the Heisenberg MC simulations and the first-
principles DLM calculations. First, we choose a concentration
c* ¼ 1�c+ and compute within the DLM picture /mSðc*Þ and the
set fJijðc*Þg. This set is then used in the Heisenberg MC simulations
in which the temperature T is scanned, yielding the magnetization
curve /mSðT; c*Þ. The requirement /mSðT; c*Þ ¼/mSðc*Þ fixes T

for the chosen c*, which yields eventually the mapping Tðc*Þ.
3. Results and discussion

3.1. Fe

3.1.1. Electronic structure and magnetization

The concentration dependence of the exchange coupling con-
stants is completely determined by those of the scattering-path
matrices ~tsjn,im and of the single-site scattering matrices Dtim in
Eq. (3). Hence, we first address the electronic structure by means
of the density of states (DOS; Fig. 1).

The d-majority states for ferromagnetic Fe are almost com-
pletely occupied [cf. the shoulder at EF for c* ¼ 1 in Fig. 1(a)].
These states become depopulated with decreasing c* so that at
c* ¼ 0:5 the sample is nonmagnetic. For c* ¼ 1 the DOS is strongly
textured, which indicates an ordered configuration; for smaller
concentrations, the DOS is smeared out, as is typical for a
disordered configuration. Similar densities of states were found
by averaging over random local-moment configurations with
mean-field distribution [19].

The trends in the total DOS show also up in the impurity DOS
[Fig. 1(b) and (c)]. Note that for c* ¼ 1 the *-DOS is identical to
the total DOS in (a). Further for c* ¼ 0:5 the host is nonmagnetic
and consequently the spin-m DOS of an * impurity is the same as
spin-k DOS of a + impurity. An analogous relation holds for the
opposite spin projection.

In the Stoner picture, the magnetization vanishes for a para-
magnetic sample everywhere in space. In the DLM picture,
however, the host magnetization /mS¼ c*m*þc+m+ vanishes
but the impurity magnetizations m* and m+ themselves remain
finite [Fig. 2(a)]. More precisely, m* ¼�m+ for c* ¼ 0:5; they are,
in absolute value, as large as the magnetization of ferromagnetic
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bcc-Fe (2:26 mB at T ¼ 0 K) so that the concentration-weighted
moments c*m* and c+m+ depend almost linearly on their con-
centration. Consequently, /mS depends to a very good approx-
imation linearly on c* as well.
3.1.2. Heisenberg exchange coupling constants

As an example, we address the concentration dependence of
the nearest-neighbor exchange coupling constants [Fig. 2(b)]. For
c* ¼ 0:5 the host is nonmagnetic, that is ðtcpa

ij Þ
m
¼ ðtcpa

ij Þ
k in Eq. (3);

therefore J** ¼ J++ ¼�J*+ ¼�J+*. As a consequence of the
decreasing (in absolute value) J++, J*+, and J+* with c*, the
effective exchange coupling constant Jeff decreases monotonously,
which implies a smaller critical temperature Tc for c* ¼ 1 than
for 0.5.

Jeff shows a rapid drop close to c* ¼ 1 which is due to the
contribution of J**. This decay may be related to the spin-resolved
DOS of an * impurity in the energy range close to EF [Fig. 1(b)].
The energies around EF are important because the electronic
structure at these energies determine essentially the electron
propagation. The densities of states of both spin projections are
almost constant for small c*. But both show ‘jumps’ from c* ¼ 0:9
to 1.0. These ‘jumps’ may be the reason for the fast decrease of J**
in that concentration range. Please be aware that this argument is
by no means strict but handwaving.

The nearest-neighbor exchange constant for c* ¼ 1 compares
well with data from the literature; cf. for example Refs. [20–22].
While the Ji*,j* oscillate with distance dij � 9~r i�~r j9 [Fig. 3(a)], in
particular for c* ¼ 1 (asterisks), the exchange constants Ji*,j+

(b) and Ji+,j+ (c) are sizable only for nearest neighbors
(dij ¼ 4:69 Bohr). This implies that at small c*, or close to Tc, the
local Weiss fields in the Heisenberg model are given mainly by
the average magnetization of the nearest-neighbor shells. At c*
close to 1, or at low temperatures, the Weiss fields are determined
in a larger interaction range. As a consequence, the magnetization
curves /mSðT; c*Þ show different critical exponents, as we will
discuss in Section 3.1.3.
3.1.3. Critical temperature and temperature-concentration mapping

As motivated in the preceding subsection, the critical tem-
perature Tc decreases with concentration, as is fully confirmed by
the Monte Carlo simulations (Fig. 4). The nonzero magnetizations
/mSðT; c*Þ for T4Tc that are typical for finite systems do not
allow a precise determination of Tc. Hence, the Tc’s were obtained
from MC simulations with various system sizes using Binder’s
fourth cummulant U4 (Refs. [18,23]; 3180 sites were used for
Fig. 4).

For concentrations c* up to 0.7, Tc is almost constant and then
decays smoothly [filled circles in Fig. 5(a)]. This finding is in line
with the concentration dependence of the nearest-neighbor
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exchange coupling constants [Fig. 2(b)]. For c* ¼ 1, the Tc of 844 K
is smaller than the experimental value (1045 K) while for c* ¼ 0:5
it is larger (1255 K; a similar mismatch was found by Buruzs
[10]). The same holds for Tc from the mean-field approximation
(1002 K and 1731 K, respectively) but the covered temperature
range is much larger than that in the MC calculations.
The mismatch of the Tc obtained from the MC simulations and
the experimental values may be explained as follows. While the
DLM calculation for c* ¼ 0:5 mimics a random configuration and
the calculation for c* ¼ 1 mimics the perfectly ordered configura-
tion, it is conceivable that the best description is obtained by a
disordered configuration with short-range order [24,25]. Short-
range order can be accounted for within the non-local CPA, the
embedded-cluster CPA [26] or the locally self-consistent Green
function method [27]. Other reasons might be that the present
DLM calculations use an Ising-type alloy [5,7] instead of a
rotationally averaged alloy. In the latter case, the configuration
average has to be performed over all directions of the local
magnetic moments rather than by averaging over the two

orientations * and +.
Eventually, we obtain the mapping Tðc*Þ by equating /mSðc*Þ

from the DLM calculations [Fig. 2(a)] and /mSðT; c*Þ from the MC
simulations (Fig. 4), which is shown as filled triangles in Fig. 5 and
also displayed as top axis in Fig. 2. The mapping is monotonous
but nonlinear.

As an application we show the /mSðTÞ curve for the ‘optimal’
(temperature-dependent) set of fJijðTÞg in Fig. 4 (‘opt’, large filled
circles). It interpolates smoothly between the curve for c* ¼ 1:0 at
low temperatures and the curve for c* ¼ 0:5 close to Tc. As a
consequence, the critical exponent b is about 10% larger than that
for c* ¼ 0:5. The ‘optimal’ MC value of 0.349 is closer to the
literature value of 0.365 [28] than those for c* ¼ 0:5 (0.314) and
c* ¼ 1:0 (0.315). b was obtained by approximating /mSðTÞ by
ðTc�TÞb (dotted lines in Fig. 4), in which Tc has been fixed by the
U4 analysis [18,23].

3.2. Co

While the DLM approach works well for Fe, it fails for Ni. For
example, the local magnetic moments vanish for paramagnetic Ni.
Co has with one d electron more than Fe and one d electron less
than Ni. Hence, it falls in-between Fe and Ni, which shows up as
significantly reduced local moment for paramagnetic Co (about
0:80 mB) as compared to that of ferromagnetic Co (1:60 mB). These
findings call for an improved DLM approach that, for example,
takes into account short-range order.

Regardless of these shortcomings we present in Fig. 6 the
major outcomes of our computations for hcp Co. In contrast to Fe
(Fig. 5), Tc increases with c* [filled circles in Fig. 6(b)] which is in
line with the reduced local magnetic moments and the slightly
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D. Böttcher et al. / Journal of Magnetism and Magnetic Materials 324 (2012) 610–615614
increasing effective exchange coupling constant [Fig. 6(a)]. Con-
sequently, Tc is closest to the experimental value of 1388 K for
c* ¼ 1 (1255 K).

The general shape of the temperature-concentration mapping
for Co [filled triangles in Fig. 6(b)] agrees with that for Fe (Fig. 5).
But while the curve for Fe is almost linear for c*40:7, the Co
mapping is bent downward. We attribute this observation to the
almost constant Jeff of Co [filled circles in Fig. 6(a)] in contrast to
the decreasing ones of Fe [filled circles in Fig. 2(b)].
4. Concluding remarks

In this paper, we propose a procedure to improve on the first-
principles basis of Heisenberg exchange coupling constants. Since
(i) the computation of Heisenberg exchange coupling constants
within the DLM formalism is straightforward in any electronic-
structure computer code that is based on Green functions and (ii)
Monte Carlo simulations of the classical Heisenberg model can be
regarded as standard as well, we see many applications for
refined Jij, in particular in magnetization dynamics calculations
based on the Landau–Lifshitz–Gilbert equation. There, the Gilbert
damping constant depends on temperature [29]; further, thermal
fluctuations are modeled as random magnetic fields [1,2]. Hence,
it is obvious to use temperature-dependent exchange coupling
constants in the spin Hamiltonian as well. To complement the
Heisenberg model, one could also include the temperature
dependence of the magnetocrystalline anisotropy [30].

The purpose of the present study is to introduce the basic idea
of the approach and to present a few applications. It also suggests
paths for improvement: we expect that taking into account short-
range order in the DLM calculations could result in better critical
temperatures, which would also amend the temperature-concen-
tration mapping. Rotational averaging rather than Ising-type
averaging could improve the results as well; note that rotational
averaging is a necessary ingredient if spin–orbit coupling should
be accounted for, e.g. the Dzyaloshinskii–Moriya interaction
[10,31–33].

The Dzyaloshinskii–Moriya interaction can lead to noncol-
linear magnetism in non-centrosymmetric systems, for example
in ultrathin films on a substrate (e.g. Fe/Ir(111) [34]). The noncol-
linear magnetic structure gives rise to a ‘magnetic lattice’ con-
stant which is determined by the ratios of Heisenberg exchange,
magnetocrystalline anisotropy, and strength of the Dzyaloshins-
kii–Moriya interaction. Both may differ in their distance depen-
dence and in their temperature dependence. Thus, one might
speculate that a noncollinear structure, and hence its magnetic
lattice constant, can vary significantly with temperature.
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[22] I. Turek, J. Kudrnovský, V. Drchal, P. Bruno, Exchange interactions, spin
waves, and transition temperatures in itinerant magnets, Philosophical
Magazine 86 (2006) 1713.

[23] K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An
Introduction, third ed, Springer, Berlin, 1997.

[24] K.S. Chana, J.H. Samson, M.U. Luchini, V. Heine, Magnetic short-range order in
iron above Tc? Statistical mechanics with many-atom interactions, Journal of
Physics: Condensed Matter 3 (1991) 6455.

[25] D. Reiser, J. Henk, H. Gollisch, R. Feder, Theory of temperature-dependent
electronic structure and photoemission of ultrathin ferromagnetic films,
Solid State Communications 93 (1995) 231.

[26] P. Weinberger, R. Dirl, A.M. Boring, A. Gonis, A.J. Freeman, Fully relativistic
Korringa-Kohn-Rostoker coherent-potential-approximation embedded-
cluster-method evaluation of short-range-order effects in substitutional
alloys containing heavy elements, Physical Review B 37 (1988) 1383.

[27] I.A. Abrikosov, A.M.N. Niklasson, S.I. Simak, B. Johansson, A.V. Ruban,

H.L. Skriver, Order-N Green’s function technique for local environment
effects in alloys, Physical Review Letters 76 (1996) 4203.

[28] M. Getzlaff, Fundamentals of Magnetism, Springer, Berlin, 2008.
[29] H. Ebert, S. Mankovsky, D. Ködderitzsch, P.J. Kelly, Ab-initio calculation of the

Gilbert damping parameter via linear response formalism, arxiv:1102.
4551v1 [cond-mat.mtrl-sci] (2011).

[30] A. Buruzs, P. Weinberger, L. Szunyogh, L. Udvardi, P.I. Chleboun, A.M. Fischer,
J.B. Staunton, Ab initio theory of temperature dependence of magnetic
anisotropy in layered systems: applications to thin Co films on Cu(100),

Physical Review B 76 (6) (2007) 064417.
[31] I. Dzyaloshinsky, A thermodynamic theory of ‘‘weak’’ ferromagnetism of

antiferromagnetics, Journal of Physics and Chemistry of Solids 4 (4) (1958)
241. doi:10.1016/0022-3697(58)90076-3.

[32] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism,
Physical Review 120 (1960) 1.

[33] L. Udvardi, L. Szunyogh, K. Palotás, P. Weinberger, First-principles relativistic
study of spin waves in thin magnetic films, Physical Review B 68 (2003)
104436.

[34] K. von Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel,
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