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Spin-dependent two-electron emission from ferromagnetic Fe(001)
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We present a joint experimental and theoretical study of correlated electron pair emission from a ferromagnetic
Fe(001) surface induced by spin-polarized low-energy electrons. Spin-dependent angular and energy distributions
of the emitted pairs have been measured and calculated. They are analyzed with the aid of the spin-, momentum-,
symmetry-, and layer-resolved valence electron density of states, which we obtained by an ab initio density-
functional theory calculation. The observed spectra are found to arise almost completely from only three surface-
parallel atomic layers. Momentum distributions for parallel spins of the emitted electrons exhibit an exchange-
correlation hole, which is larger than the correlation hole in the antiparallel spin case. By comparing experimental
antiparallel-spin pair spectra with their theoretical counterparts we determine an effective screening strength of
the Coulomb interaction in the surface region.
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I. INTRODUCTION

Exchange and Coulomb correlation are of fundamental
importance in many-electron systems like atoms, molecules,
and solids. Experimentally, they are accessible by “correlation
spectroscopy” alias “two-electron emission spectroscopy”
techniques involving the momentum-resolved detection of
pairs of time-correlated electrons, which emerge from the
system following the collision of an incoming electron with a
bound electron or the absorption of a single photon. According
to whether the primary particle is an electron or a photon,
the technique is commonly referred to as (e,2e) or (γ,2e)
spectroscopy. Both techniques have a long history of intense
experimental and theoretical study in atomic physics (cf., e.g.,
Refs. 1–3 and ample references therein).

For solid surface systems, two-electron emission spec-
troscopy has, both experimentally and theoretically, matured
over the past decade. For (e,2e), cf. the review article,4 more
recent papers,5–11 and further references therein. For (γ,2e),
cf. the review article,12 recent papers,10,13,14 and references
therein.

As a consequence of exchange and correlation, the reaction
cross section has a minimum if the two electrons have
the same energy and are emitted in the same direction.
Around this minimum, the angular distribution exhibits a
region of reduced pair emission intensity. This depletion
zone constitutes an exchange-correlation hole in momentum
space, in correspondence to the exchange-correlation hole in
real space, which has been a central concept in the theory
of many-electron systems since the early days of quantum
mechanics15,16 up to the present, in particular in the context
of density-functional theory (cf., e.g., reviews17–19 and ample
references therein).

Such an exchange-correlation hole in momentum space has
been intensely studied in (γ,2e) for atoms (cf., e.g., Refs. 2 and
3, and references therein). For solid surfaces, it has first been
identified theoretically in (e,2e) calculations from W(001),20

and experimentally in (e,2e) from LiF.5,8 Likewise, it was
found and investigated in detail by (γ,2e) (cf. Refs. 13 and 14,
and references therein.

Both in (e,2e) and in (γ,2e) the observable exchange-
correlation hole owes its very existence to exchange and
Coulomb correlation in the two-electron final state. Its detailed
shape is determined by Coulomb matrix elements in the case
of (e,2e) and by electric dipole matrix elements in the case
of (γ,2e). The latter entail a dependence of the hole on the
polarization of the incident light, as was, e.g., found in a
(γ,2e) experiment for the Cu(111) surface.14 The initial state,
which enters in the matrix elements, is for (e,2e) simply
an antisymmetrized product of one-electron states, whereas
for (γ,2e) it is in general a Coulomb-correlated two-electron
state, which makes a quantitative theoretical treatment more
complicated.

If the spins of the two electrons are parallel, the hole in an
angular distribution of the two outgoing electrons is produced
by exchange (Pauli principle) and Coulomb interaction,
whereas in the antiparallel-spin case it is due to only the
Coulomb interaction. Controlling the relative spin orientation
of the two electrons is easy in theory. Experimentally, one
might, for both (e,2e) and (γ,2e), think of analyzing the spins
of the two outgoing electrons. This is, however, presently not
yet feasible. For (e,2e), a viable alternative consists in using
spin-polarized primary electrons and a ferromagnetic target.

Initial work on spin-dependent (e,2e) from a ferromagnetic
surface was carried out for fixed large emission angles.21,22

Pair emission angular distributions over a wide range of
emission angles were reported only very recently,11 providing
first experimental evidence for the spin dependence of the
above-mentioned exchange-correlation hole in momentum
space. In agreement with corresponding calculations, the
central depletion zone in angular distributions was found to
be more extended for parallel spins of the two electrons than
for antiparallel spins.

In this paper, we present an in-depth experimental and theo-
retical study of spin-dependent (e,2e) from the ferromagnetic
Fe(001) surface. The focus is first on angular distributions
(surface-parallel momentum distributions) for equal energies,
and second on energy distributions (sharing curves) for a wide
range of emission angles.
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The theoretical part of this work, consisting of an ab
initio ground-state calculation and realistic (e,2e) intensity
calculations, has four main aims. First, to explore how the
spin-, k||-, symmetry-, and layer-resolved valence electron den-
sity of states manifests itself in (e,2e) energy and momentum
distributions. Second, to identify valence electron energies and
parallel momenta, for which either majority or minority spin
strongly dominates, which provides an internal spin resolution
for (e,2e). Third, to reach a quantitative assessment of the
high surface sensitivity of (e,2e). Fourth, to determine, by
comparing experimental and theoretical (e,2e) spectra, an
effective range of the screened Coulomb interaction in the
surface region.

This paper is organized as follows. Section II is devoted
to experimental details. We describe the apparatus used and
the presentation of the measured (e,2e) data in the form
of spin-dependent energy and momentum distributions. In
Sec. III we first outline our theoretical formalism and second
present numerical results: fully resolved densities of states of
Fe(001) together with fully spin-resolved (e,2e) energy and
momentum distributions. In Sec. IV we compare experimental
and theoretical energy sharing curves and momentum distri-
butions.

II. EXPERIMENT

For the experimental study we built a time-of-flight
(TOF) coincidence apparatus, which we described in more
detail previously.8 We have upgraded this setup with the
implementation of a spin-polarized primary electron beam
in a similar fashion as reported earlier.21,22 The generation
of spin-polarized electron beams is an established technique
by now.23 The key idea is to excite a GaAs surface with
circular polarized light with a wavelength of about 800 nm.
The treatment of the surface with Cs and O2 lowers the
work function sufficiently such that photoemission is possible
with the low photon energy. The emitted electrons carry a
longitudinal spin polarization that can be reversed by changing
the helicity of the light. The longitudinal spin polarization
is changed to a transversal spin polarization by means of
an electrostatic 90◦ deflector.21–23 The spin polarization was
40%. This spin-polarized electron beam hits the sample; we
employed a geometry of normal incidence. The pulsing of
the primary beam is achieved by using a fast laser diode as
light source. The repetition rate was 2 MHz and the overall
time resolution of the experiment is 1 ns. This uncertainty
amounts to an energy resolution of 0.4 eV for 10-eV electrons.
The primary beam has an energy spread of 100 meV. The
emitted electrons are registered by two channel-plate detectors,
which we label “left” and “right,” respectively. These detectors
are equipped with delay line anodes, which allow us to
determine the impact position on the detector. With this
knowledge we can determine the actual flight path taken and
the emission angles with respect to the surface. The flight
time can then be converted in kinetic energy, which finally
allows us to compute the in-plane momentum. A coincidence
circuit ensures that only one electron pair per incident electron
pulse can be detected. In the following we will quote all
kinetic energies with respect to the vacuum level. We have
defined a coordinate system such that the x and y axis are in

FIG. 1. (Color) Schematic view of the experiment. A transversely
spin-polarized electron hits a ferromagnetic sample. The relative
orientation of the majority and polarization direction can be indepen-
dently reversed. Momentum distributions are obtained via position
sensitive detectors and time-of-flight analysis.

the surface plane; see Fig. 1. We have grown approximately
20-monolayer (ML)-thick Fe films on either a W(001) surface
or MgO/W(001) surface. In this thickness range structure
and electronic properties are bulklike except for the first few
layers. The samples are magnetized in plane with the easy
axis along the [010] direction, which is parallel to the y axis,
see Fig. 1. We can apply a pulsed magnetic field along the y

axis for reversing the magnetization. The spin polarization of
the incoming beam is also along the y axis. The primary spin
polarization and majority spin direction can be individually
controlled. Therefore the observed spectra can be grouped into
two subsets: (i) for subset I+ primary spin and majority spin
directions are parallel, (ii) events with antiparallel alignment
of primary electron and majority spin are contained in subset
I−. As it is customary in spin-polarized spectroscopy, the
change of the relative spin orientation occurs frequently (every
few minutes). This ensures that both spectra are obtained
under identical conditions. The data acquisition times for
both spin alignments are equal allowing direct comparison of
the intensity levels. Typical acquisition times for a particular
primary energy are a few weeks. The coincidence intensity was
about 20 counts per second due to the requirement to operate
at a low primary flux. The singles count rate was in the range
1000–2000 cps. Each coincident event is characterized by six
coordinates, which are the individual kinetic energies and the
two components of the in-plane momentum of each electron.

A. Momentum Presentations

We would like to move on and define some parameters
that we will use later. If a primary electron hits a surface
and a subsequent emission of an electron pair occurs energy
conservation has to hold. In this context it is useful to define
the sum energy of the pair Esum as Esum = El + Er (energy of
the left and right electron, respectively). If the valence electron
has a binding energy Eb we can write

Esum = El + Er = Ep − φ − Eb. (1)
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The sum energy of the pair is uniquely defined by the energy
of the primary beam Ep, the work function φ of the specimen
and the binding energy of the valence electron relative to EF .
Further we note that the maximum value Emax

sum the sum energy
can adopt is

Emax
sum = Ep − φ. (2)

This value is attained if the valence electron originates from
the Fermi level EF . We may rearrange Eq. (1) and find

Eb = Ep − φ − Esum. (3)

This rearrangement highlights the fact that in contrast to theory
we cannot select the valence state of the valence electron before
the scattering. However, the value of Esum clearly identifies Eb.

Our target is a single crystalline surface therefore the
in-plane component of the momentum must be conserved
(modulo a reciprocal surface lattice vector). This can be written
as

kv
‖ + kp

‖ = kl
‖ + kr

‖ = ksum
‖ . (4)

On the left side of the equation we have the contribution
of the valence electron kv

‖ and the primary electron kp

‖ , while
on the right side the contribution of the detected electrons kl

‖
(left) and kr

‖ (right) can be found. The sum of these two terms
is called sum momentum ksum

‖ . Since we operate with a normal
incidence primary beam we have kp

‖ = 0. In this case Eq. (4)
simplifies to

kv
‖ = ksum

‖ . (5)

We note that ksum
‖ determines the value of the valence

electron kv
‖. From Eqs. (3) and (5) and we learn that the

momentum and the kinetic energies of the pair determine the
momentum and binding energy of the valence electron. With an
appropriate choice one has the freedom to focus on scattering
events involving a particular valence state.

We would like to explain a bit more in detail how we
obtain from our six-dimensional data set two-dimensional
(2D)-momentum distributions. In a first step we determine
the energy level of the valence state via the energies of the
two outgoing electrons. For example, we studied the pair
emission from a sample excited with a primary beam of 19 eV.
The 2D-energy distribution from this experiment is plotted in
Fig. 2. For this we have spin-integrated the data and include
all emission directions captured by the detectors. From Eq. (2)
we know that the highest value for Esum is attained if the
valence electron originates from the Fermi level EF . The work
function for a Fe(001) surface is 4.7 eV, which together with
the primary energy of 19 eV results in Emax

sum = 14.3 eV. This
energy position has been marked by a dashed diagonal line in
Fig. 2. We can clearly observe that the onset of pair emission
occurs at this line, as expected. The small intensity above
this line cannot be due to the emission of an electron pair
following the impact of one primary electron; see Eq. (2). The
intensity above Emax

sum must be due to the impact of two primary
electrons. These events we may call “random” coincidences
in contrast to “true” coincidences, which are due to the impact
of one primary electron. “Random” coincidences can also
occur in the energy range where we expect true coincidences.
We can estimate the intensity level in this region from the
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FIG. 2. (Color) 2D energy distribution from an experiment
obtained with Ep = 19 eV. The dashed diagonal line marks the
maximum energy Emax

sum = 14.3 eV that the pair can have. The ellipse
marks the energy window selected for 2D-momentum presentations
shown in Fig. 3.

intensity above Emax
sum . From this we can conclude that random

coincidences do not play a major role. We also observe that a
high portion of the coincidences are confined to the low-energy
region of the spectrum. This is a general observation we made
for different metals and insulators.

From simple energy considerations it is clear that events
in this energy region must involve electrons that encountered
inelastic scattering. In order to simplify the picture we will
remove these events in further presentations. Out of the
complete data set we select those that fulfill a certain energy
constraint. For example, if the two emitted electrons have an
energy of 6.75 eV, we obtain a sum energy of 13.5 eV. In order
to have a sufficient statistics for a meaningful plot we allow
electrons within a narrow energy window. This window is
indicated by an ellipse in Fig. 2 and has a half axis of 2.25 and
0.3 eV, respectively. A sum energy of 13.5 eV leads via Eq. (3)
to a binding energy of 0.8 eV below EF for the valence state
involved in the scattering event. For this subset of the data we
can compute a 2D-momentum distribution; see Fig. 3(a). We
note that for each coincident event the in-plane components of
electron left and right are known. According to our coordinate
system kl

x is always negative while kr
x is positive. Therefore

a coincidence event has an entry on the left and right half of
the plot. In this plot we can immediately recognize the left
and right detector, respectively. The white areas are regions
in momentum space that are not covered by the detectors. We
have included in Fig. 3(a) a circle centered at the origin of the
coordinate system, which has a radius of 0.2 Å−1. In order to
select the momentum of the valence electron we have to put a
constraint on the sum momentum; see Eq. (5). If we were to set
ksum

‖ = 0 the valence electron would come from the � point.
In order to have sufficient statistics the experimental constraint
has to be lowered and we usually take |ksum

‖ | � 0.2 Å−1.
We emphasize that this is not due to an insufficient angular
resolution of the experiment. The momentum distribution that
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FIG. 3. (Color) Panels (a) and (b) display 2D-momentum presen-
tations. These are obtained with a primary energy of 19 eV while the
energies of the emitted electrons are El = Er = 6.75 eV. This energy
selection means that the valence electron comes from a state 0.8 eV
below EF . In (a) we display the spin-integrated intensity as a function
of the in-plane momentum of electron left and right. The momentum
distribution in (b) is obtained if the constraint |ksum

‖ | � 0.2 Å−1 is
imposed. This is fulfilled if ksum

‖ falls within the circle.

results from this momentum constraint is plotted in Fig. 3(b).
We see clearly that this momentum distribution is very different
compared the more or less uniform distribution shown in
Fig. 3(a). The selection of equal energies and ksum

‖ = 0 can
also be visualized in a simple geometric fashion as depicted
in panel (c). Coming back to panel (b) we see that starting
at |kl,r

x | = 0 the coincidence intensity is zero. This is purely
instrumental since there is a gap between the detectors. Outside
this “blind” region, starting at about |kl,r

x | = 0.2 Å−1, we
observe an increase of the coincidence intensity for increasing
k values. A maximum is reached at |kl,r

x | ≈ 0.5 Å−1. This
reduced intensity for small |kl,r

x | values is a manifestation of the
xc hole as shown previously in experiment and theory.5,7,24,25

We may call this region of reduced intensity depletion zone.
Upon further increase of |kl,r

x | the coincidence decreases again.
The drop to zero intensity on the very left and right of the
plot is due to the finite angular acceptance of the detectors.
At this point it is worth mentioning that in the previous
experimental presentations of the depletion zone the emission
direction of one electron was fixed while the emission direction
of the other electron was varied. The kinetic energies had

also definite values. In such a presentation valence states
with different momentum will be probed as can be readily
deduced from Eq. (4). In the following we will adopt the
procedure by which we obtain momentum distributions from
selected valence states. The imposed energy and momentum
constraints have a similar window as the above described
example. More precisely, we will focus on those valence
states that are at the � point. Spin-dependent distributions
can be computed if we take the subsets I+ and I− separately.
For a direct comparison of the momentum distributions from
electrons of different kinetic energy it is useful to plot the
data as a function of the normalized in-plane momentum.
The selection to focus on events for which ksum

‖ = 0 can
also be motivated in the following manner. For this we
replot the data presented in Fig. 3 in two ways. Rather than
using the individual momenta we compute for each event the
value of the sum momentum ksum

‖ . This leads to a 2D-ksum

distribution, displayed in Fig. 4(a). The data exhibit a broad
maximum centered at ksum

‖ = 0 and the circle added to panel
(a) is identical to the one seen in Fig. 3(a). The size of this
ring is solely determined by the need to include sufficient
events for statistics. Clearly the best choice for a given
ring diameter is to set ksum

‖ = 0. According to Eq. (5) the
2D-ksum distribution is directly related to the 2D-momentum
distribution of the valence states. Only if available valence
states with the correct momentum exist, in our example 0.8 eV
below EF , is a scattering event possible. For the two-particle
problem it is known that the motion can be decomposed
in a center-of-mass and relative motion. In the (in-plane)
momentum space the appropriate coordinates are the sum
momentum ksum

‖ and difference momentum kdiff
‖ = kr

‖ − kl
‖.

It is appealing to present the coincidence events in a 2D plot
where the x axis is the x component of kdiff

‖ and the y axis is
the x component of ksum

‖ . The result is depicted in Fig. 4(b).
At first sight it may come as a surprise that the x component of
kdiff

‖ is only positive, because electrons are not distinguishable.
Therefore we should expect also negative values. However,
our detection scheme is not symmetrical in the sense that
we call one electron right and the other left. We note that the
coincidence intensity in Fig. 4(b) is confined in a square region.
This is an immediate consequence of the kinematics and not an
instrumental artefact. For an instrument which covers the full
half space the square region would be larger, but still exists.
Within the square region we observe a vertical intensity band,
which is the counterpart of the almost circular intensity rim
seen in Fig. 3(b). A fixed angular correlation between emitted
electrons manifests itself in a fixed value of kdiff . From Fig. 4(b)
we learn that the choice of ksum

‖ does not single out particular
kdiff values. Due to the fact that the range of kdiff values is
larger if ksum

‖ = 0 is selected we will use this constraint in the
following.

B. Spin-dependent momentum presentations

As a first example of spin-dependent momentum distribu-
tions we select data obtained with Ep = 25 eV. Furthermore,
we choose the valence electron to come from a state 0.8 eV
below the EF . This particular choice will be explained in
more depth later. Consequently we plot in Fig. 5(a) the
2D-momentum distribution for parallel alignment of primary
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FIG. 4. (Color) 2D-momentum presentations obtained with a
primary energy of 19 eV and energies of the emitted electrons
El = Er = 6.75 eV. This energy selection means that the valence
electron comes from a state 0.8 eV below EF . (a) Sum momentum
ksum

‖ ; (b) difference momentum kdiff
‖ = kr

‖ − kl
‖.

spin and majority spin (data set I+). Panel (b) shows the
equivalent distribution for antiparallel alignment of primary
spin and majority spin (data set I−). The color coding for
panels (a) and (b) are identical therefore it is possible to
directly compare the intensity levels. In order to highlight
the differences between these two distributions we computed
the difference spectrum I+-I− in Fig. 5(c). As for the
spin-integrated example presented in Fig. 3 we note that the
intensity distributions display a region of reduced intensity
if |kl,r

x /k| < 0.2. After reaching the maximum intensity at
|kl,r

x /k| ≈ 0.5 the intensity falls off for larger |kl,r
x /k| values.

However, we note that the intensity for I+ falls off less strongly
compared to the I− case. The different intensity levels for I+
and I− translate into a distribution of predominantly positive

FIG. 5. (Color) Coincidence intensity versus normalized in-plane
momentum. These are obtained with a primary energy of 25 eV
while the energies of the emitted electrons are El = Er = 9.75 eV.
This energy selection means that the valence electron comes from a
state 0.8 eV below EF . In all panels we display the intensity as a
function of the normalized in-plane momentum of electron left and
right. In (a) we plot the intensity for subset I+ (primary/majority spin
parallel) while (b) shows the result for subset I− (primary/majority
spin antiparallel). In (c) we display the difference spectrum I+-I−.

values indicated by larger areas of the color red. This intensity
difference is strongest for |kl,r

x | values of about 0.8 Å−1.

C. Energy distributions

Another important aspect of the pair emission is the
question of how the available energy between the two emitted
electrons is shared. Having shown that the emission of pairs
does show a momentum dependence or angular dependence
for a given energy one may ask the inverse question. More
precisely, what does the energy distribution look like if the
emission angles are constrained? The presentation of the data
in this way requires the execution of several steps. First we
plot all coincidence events together and obtain what we call a
hit pattern; see Fig. 6. This is essentially a sum of momentum
distributions shown in Fig. 3(a). The main difference is that
all energy combinations are allowed. Due to the fact that
the momentum scales with the energy it is more appropriate
to display the hit pattern as a function of the normalized
components of the in-plane momentum. We note that the
pattern is essentially uniform similar to the distribution plotted
in Fig. 3(a). In a second step we select now those events that
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FIG. 6. The hit pattern of electron pairs is displayed. As axes we
use the components of the normalized in-plane momentum of the
individual electrons. The excitation was via a primary electron beam
with 19 eV, which hit the sample along the surface normal. The pair
of arcs on the left and right detectors define narrow regions that have
a radius defined by �. We will select only those events where the left
and right electrons come from those regions. The gray scale on the
right displays the intensity in counts.

fulfill the following critereon. The electron that is registered
on the left detector has to be within the region defined by
the two arcs on the left. The counterpart of this electron has
to be detected within the narrow region on the right detector.
The mean radius of the pair of arcs has a value given by �

when measured from the origin of the coordinate system. The
separation of the arcs within one side is set to 0.10. This value is
dictated by the statistics. A fixed value of � fixes the emission
angle with respect to the surface normal regardless of the
kinetic energy of the electrons. It is useful to point out that these
constraints have a simple geometric meaning; see Fig. 3(c). We
study those events for which the angle � with respect to the
normal is fixed while the azimuthal angle φ for both electrons
is a free parameter as long as the two electrons forming a
pair leave the sample in opposite directions. We may proceed
and display the spin-integrated 2D-energy distributions under
such a geometrical constraint. In Fig. 7 we plot the energy
distribution for three selected values of �. As stated above
we have removed the low-energy portion because we want
to focus on events that do not encounter inelastic scattering.
In panel (a) we present the result for � = 0.2. According to
Fig. 3(c) this amounts to an emission angle � ≈ 12◦. We note
that the pair emission has an onset at Emax

sum where it becomes
energetically possible for two electrons to leave the sample.
The energetic position is marked by the solid diagonal line.
However, we notice that this is only the case if the electron
energies are rather unequal. As a matter of fact for all sum
energies of the pair there is a preference for an electron to be
“fast” while the other is “slow.” This situation changes once
we change to � = 0.5 or � = 30◦. Again we see the onset
of pair emission where it is energetically possible to emit an
electron pair. Further this is not confined to those events where
the electrons have very unequal energies but is possible for
all energy combinations. In all panels we have added another
diagonal line, which is energetically 0.8 eV below Emax

sum . We
observe an enhanced intensity for this value of Esum if the
two electrons have equal energies. As a third example we
set � = 0.7 equivalent to � ≈ 44◦. Again we can see that
the onset of the pair emission occurs at Emax

sum . Further, for a

FIG. 7. (Color) Spin-integrated 2D-energy distributions for dif-
ferent values of � are shown. These were obtained with Ep = 25 eV.
The solid diagonal line indicates the energetic position of the onset
of pair emission. The dashed diagonal marks the Esum value if the
valence electron stems from a level 0.8 eV below EF .

given value of Esum the coincidence intensity is essentially
constant. These 2D-energy distributions demonstrate that the
geometrical constraint imposed has a strong impact. It is
appropriate to have a closer look on these energy distributions.
For this we compute so-called sharing curves. For this it
is required to chose a value for Esum. Coincidence events
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FIG. 8. (Color) From the 2D-energy distribution shown in Fig. 7
spin-resolved sharing curves are computed. The primary energy
was set to Ep = 25 eV. The red (blue) symbols refer to parallel
(antiparallel) alignment of the primary spin and majority.

for which Esum = const are diagonal lines in the 2D-energy
distributions; see Fig. 7. The intensity along such a line is
plotted against the energy difference Er − El . In the following
we want to focus on those events where Esum = Emax

sum − 0.8 eV.
In order to get spin-resolved sharing curves we consider the
subsets I+ and I− separately. Before we discuss this we would
like to point out the following. Although a spectrum is defined
from −Esum to Esum our instrument has a low kinetic-energy
cutoff therefore we cannot measure the full sharing curve.
In Fig. 8(a) we display the sharing curve for � = 0.2. The
spin contrast is essentially zero for the whole spectrum. It is
apparent that the probability for both electrons to have the same
energy is strongly reduced compared to unequal energies. If
� = 0.5 is selected the situation has changed significantly.
First we see a clear preference for equal energies. Second,
for equal energies there is a higher intensity for I+ than for
I−. Increasing � to 0.7 we obtain strongly spin-dependent but

relatively flat sharing functions with maxima at the outermost
values of Er − El .

III. THEORY

While our experimental (e,2e) spectra—for a given primary
spin orientation—in general are a sum over contributions
involving both spin-up and spin-down valence electrons
(with energy and surface-parallel momentum determined by
the respective conservation law), theory can obtain these
contributions separately. This allows more detailed insight
into exchange and Coulomb correlation effects. Calculating
in addition the valence electronic structure, we can elucidate
the relationship between spin-dependent (e,2e) spectra and the
spin-, momentum-, and symmetry-resolved valence electron
density of states. The latter is furthermore useful for identifying
energy and parallel-momentum conditions, for which valence
electrons of one spin type and two spatial symmetry types
predominate. As will be explained below, this makes it possible
to separate exchange and Coulomb correlation effects directly
in the experimental spectra.

In this section, we first outline the theoretical methods
used for calculating the valence electron structure and (e,2e)
spectra, and then present and discuss prototype numerical
results for ferromagnetic Fe(001).

A. Theoretical formalism and model specifications

For the calculation of the electronic structure of the ground
state we employed an ab initio full-potential linear augmented-
plane-wave (FLAPW) method.26 Using a local-density ap-
proximation for the exchange-correlation energy,27 we applied
this method to a ferromagnetic Fe(001) film consisting of 21
monoatomic layers, with the first interlayer spacing reduced
by 5% relative to the bulk Fe interlayer spacing and the second
interlayer spacing expanded by 5%, as had been determined
by a low-energy electron diffraction (LEED) analysis.28 We
thereby obtained the spin-, layer-, and symmetry-resolved
density of states (referred to in the following as LDOS), which
is the key quantity for interpreting (e,2e) spectra. Further, we
calculated the spin-resolved charge density, which is needed
for the construction of the quasiparticle potential input for our
(e,2e) calculations.

For the calculation of (e,2e) reaction cross sections we
used a formalism that has previously been presented in
detail.7 We therefore recall here only the key concepts
and the most essential expressions. The central ingredients
are transition-matrix elements between a two-quasiparticle
initial state, which is an antisymmetrized product of the
one-particle states describing primary and valence electron,
and a two-quasiparticle final state, which involves the two
outgoing electron states correlated by the screened Coulomb
interaction. Due to the antisymmetrization there are two types
of matrix elements: direct and exchange ones. In the absence of
spin-orbit coupling, which is small for Fe and can be neglected
in the present applications, the direct matrix elements reduce
to the form

f στ = 〈lσ rτ |U |pσ 〉|vτ 〉, (6)
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where |pσ 〉 and |vτ 〉 are the (spin-dependent) spatial parts
of the primary and the valence electron states with spin
orientations σ = ± and τ = ± relative to the majority spin
axis of the target. U denotes the screened Coulomb interaction.
The two detected electrons are described by an antisymmetric
two-electron state, the direct spatial part of which is

|lσ rτ 〉 = |lσ 〉|rτ 〉Fcorr(k,r), (7)

where |lσ 〉 and |rτ 〉 are the spatial parts of time-reversed LEED
states. These are coupled by the Coulomb correlation factor
Fcorr(k,r), which is a function of the relative momentum k and
the relative coordinate r obtained as the numerical solution of
a relative-particle Schrödinger equation involving U .7

Because of the antisymmetry of the two-electron states we
have, in addition to the direct matrix elements f στ [cf. Eq. (6)],
exchange matrix elements gστ , which are analogous to f στ ,
with lσ and rτ interchanged.

For the cases of spin σ of the primary electron parallel and
antiparallel to the spin τ of the valence electron, i.e., τ = σ

and τ = −σ = σ̄ , we then have the fully spin-resolved (e,2e)
reaction cross sections,

I σσ ∝ |f σσ − gσσ |2δ and I σ σ̄ ∝ (|f σσ̄ |2 + |gσσ̄ |2)δ, (8)

where δ symbolizes the conservation of energy and surface-
parallel momentum. Summation over the valence electron
spins yields the experimentally observable intensities

I+ = I++ + I+− for primary electron spin up, (9a)

I− = I−+ + I−− for primary electron spin down. (9b)

For the application of the above (e,2e) formalism to Fe(001)
we constructed from our ground-state spin densities spin-
dependent effective quasiparticle potentials. These contain
in particular spin-dependent imaginary self-energy parts V σ

im,
with σ = + for spin-up and σ = − for spin-down electrons.
For the valence electrons, we took

V σ
im(E) = aσ |E − EF |

|E − EF | + 10.0
− 0.025(eV), (10)

where E is the electron energy in eV and the constant
coefficient aσ is a+ = −4.05 for spin up and a− = −1.35
for spin down. In the energy range between the Fermi energy
and about 4 eV below, which is relevant in our (e,2e) context,
this simple form approximates reasonably well the numerical
results obtained by a many-body (local-density approximation
(LDA)–dynamical mean-field theory (DMFT)] calculation.29

As an important feature, we note that the lifetime of majority
spin holes is much shorter than that of minority spin holes.

For the primary electron and the two detected electrons,
which are represented by LEED states, we assumed the
imaginary self-energy part

V σ
im(E) = aσ (E + bσ )c

σ

, (11)

where E is the kinetic energy in eV, V σ
im is in eV, and the

constant coefficients are a+ = −0.22, b+ = 2.67, c+ = 0.69,
a− = −0.33, b− = 4.67, c− = 0.62. By virtue of the relation

λσ =
√

2(Ẽ + Ṽr )/
(
2Ṽ σ

im

)
, (12)

where Ṽr is the real part of the inner potential in Hartree atomic
units and Ẽ and Ṽ σ

im are the respective quantities in Hartree.
This choice is in quantitative accordance with experimental
data for the spin-dependent mean-free path λσ , which shows
that spin-down electrons are more strongly damped than
spin-up electrons.30–32 In terms of the bulk interlayer spacing
of Fe(001) (2.71 bohr), some typical values of λσ are the
following. For primary electrons with kinetic energy 25 eV,
λ+ and λ− are 3.88 and 3.12, respectively. For the outgoing
electron energy 10 eV, we have 5.18 and 3.77.

Using the above V σ
im [Eq. (11)] in a spin-dependent LEED

calculation from Fe(001), we obtained the best agreement with
experimental data.33 In our present (e,2e) calculations, this V σ

im
yields significantly better agreement with our experimental
data than a spin-independent Vim.

The electron-electron interaction U in Eq. (6) should strictly
speaking be a Coulomb potential, which is screened in terms
of a dielectric function ε(r,r′), which continuously decreases
from the bulk screening deep inside the solid to the surface
dielectric response and eventually to no screening in the
vacuum region. In the absence of a first-principles knowledge
of such a dielectric function and in view of tractability within
our layer–Korringa-Kohn-Rostoker (KKR)-type formalism,
we took the electron-electron interaction inside the solid in
the Thomas-Fermi approximation U ∝ exp(−qT F r)/r . The
Thomas-Fermi wave number qT F was treated as a param-
eter, which we determined by comparing calculated (e,2e)
energy and momentum distributions with their experimental
counterparts (see Sec. IV below). The Coulomb repulsion in
the vacuum region is not included explicitly, but mimicked
by a weakening of the effective screening in the topmost
atomic layers. Since the emission of low-energy electron
pairs originates mainly from the first two layers, as will
be demonstrated below, the thus obtained effective Thomas-
Fermi wave number qT F = 0.1 bohr−1 (see Sec. IV below)
accounts for the Coulomb interaction in the topmost layers and
in the near-surface vacuum. Consequently it is much smaller
than the bulk value qT F = 0.9 bohr−1.

The correlation hole in our (e,2e) momentum distributions
is due to the Coulomb interaction after the collision. Its
spatial origin is the following. In reality, it is made in a few
near-surface atomic layers of the solid and in the near-surface
vacuum region. In our formalism, with the above-discussed
Thomas-Fermi screening, it originates in a few near-surface
atomic layers, in which we adopt a weakening of the screening
of the Coulomb interaction in order to mimic the repulsion in
the near-surface vacuum region.

B. Valence electron densities of states and (e,2e) spectra
for Fe(001)

As the most pertinent result of our ab initio FLAPW
calculation of the electronic structure of Fe(001) we show
in Fig. 9 the spin-, 	k‖-, and layer-resolved valence electron
density of states (LDOS) Nτ

m(E,kx) [with kx along the �(�)H
direction in the surface Brillouin zone], with τ = ± indicating
majority/minority spin and m = 1,2, bulk referring to the
topmost, second, and bulk layers parallel to the surface. Since
the contour plots are rather self-explanatory, it may suffice
to point out a few salient features. Just around the Fermi
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FIG. 9. (Color) k‖- and layer-resolved valence electron density
of states (LDOS) Nτ

m(E,kx) [with kx along the �(�)H direction in
the surface brillouin zone]. To reveal more details, the imaginary
potential part has been chosen as a very small constant (−0.05 eV).
(a),(b) Bulk layer majority and minority spin LDOS, respectively;
(c),(d) second layer majority and minority spin LDOS, respectively;
(e),(f) first layer majority and minority spin LDOS, respectively.

energy, there is a clear dominance of minority spin over
majority spin, in accordance with earlier ab initio calculation
results. In particular, there are two strong minority surface-
state/resonance bands, as can be seen in panel (f) in comparison

with panel (b). These results are in accordance with earlier ab
initio calculations.34,35

Digressing briefly to the k||-integrated LDOS Nτ
m, we note

that at EF minority spin exceeds majority spin in the surface
layer (ratio N1

− : N1
+ = 9.40), whereas in the bulk it is

the other way around (N1
− : N1

+ = 0.24). This agrees well
with the results of earlier calculations.34 Also in line with
earlier work34,36 is an enhancement of the magnetic moment
at the surface by 30% with respect to the bulk magnetic
moment.

Further below EF , Fig. 9 reveals that there is mainly major-
ity spin with pronounced second-layer and bulk LDOS features
for small kx between about −0.5 and −1.0 eV. As is seen in
panel (e), in comparison to panel (a), there is a small majority-
spin surface resonance band at E = −1.8 eV for small kx

and a very strong majority surface resonance band dispersing
downward from E = −2.2 eV over the entire surface Brillouin
zone.

In view of analyzing (e,2e) spectra with the aid of selection
rules (cf. Refs. 6 and 37) we show in Figs. 10 and 11 the
LDOS of Fe(001) at the � point (kx = 0) resolved not only
with respect to spin and layers, but also with respect to the
spatial symmetry types �1,�2′ ,�2,�5. In order to display
individual LDOS features and their relation to the bulk band
structure more clearly, we show in Fig. 10 results that have been
computed with a very small constant imaginary potential part
(Vim = 0.05 eV) instead of the much larger energy-dependent
V σ

im [cf. Eq. (10)]. For both majority and minority spin, the
bulk layer LDOS curves are seen to correspond in the usual
way to the respective bulk band structure along �(�)H . A
prominent highly localized minority spin surface state of �1

symmetry is seen at 0.234 eV above EF , in line with the results
of earlier calculations and of scanning tunneling experiments
(cf. Refs. 35 and 38, and references therein). Turning to the
states below EF , which are relevant for (e,2e), we would
like to emphasize the following. In a very close vicinity of
EF , minority spin states of �5 symmetry strongly dominate.
At energies below about −0.4 eV majority spin states of all
symmetry types have sizable weight, whereas minority spin
states appear only for �2 with small weight over a wider range
and for �1 as a narrow peak around −2.8 eV. As can be seen
in Fig. 11, these characteristics persist in the quasiparticle
LDOS calculated with the realistic larger V σ

im according to
Eq. (10).

We now address the relationship between quasiparti-
cle LDOS and observable (e,2e) spectra. First, we would
like to explore how the LDOS Nτ

m(E,kx) manifests itself
in (e,2e) energy distributions I (Er,E�), where Er and
E� are the energies of the two outgoing electrons. To
this end, it is convenient to plot the LDOS as a func-
tion of Er and E�. This is possible, since—by virtue
of energy and parallel momentum conservation (cf. above
Sec. II)—fixed energies and surface-parallel momenta of
the primary and the outgoing electrons are uniquely re-
lated to energy and parallel momentum of the valence
electron.

Since the LDOS near the surface differs from layer to
layer, an adequate quantity for comparing with (e,2e) energy
distributions I στ is a weighted sum Nστ over the near-
surface layer densities of states Nτ

m, with weight factors wστ
m

165421-9



F. GIEBELS et al. PHYSICAL REVIEW B 84, 165421 (2011)

valence electrons

L
D

O
S

(a
rb

.u
ni

ts
)

0

50

100

150
Majority spin

1. layer
2. layer
3. layer
bulk layer

1

0

50

100

150
Minority spin

1. layer
2. layer
3. layer
bulk layer

1

0

50

100

1. layer
2. layer
3. layer
bulk

2´

0

50

100

1. layer
2. layer
3. layer
bulk

2´

0

50

100

1. layer
2. layer
3. layer
bulk layer

2

0

50

100

1. layer
2. layer
3. layer
bulk

2

0

50

100

-6 -5 -4 -3 -2 -1 0 1 2 3

1. layer
2. layer
3. layer
bulk layer

5

0

50

100

-6 -5 -4 -3 -2 -1 0 1 2 3

1. layer
2. layer
3. layer
bulk

5

-6 -5 -4 -3 -2 -1 0 1 2 3

E-EF (eV)

1 2

5

2´ 1

H

-6 -5 -4 -3 -2 -1 0 1 2 3

E-EF (eV)

1 2

5

2´ 1

H

FIG. 10. (Color) Valence electron states of Fe(001) for k|| = 0. Bottom panels: majority and minority spin bulk band structure along
�(�)H with the symbols 1, 2, 2′, and 5 indicating the spatial symmetry types �1,�2′ ,�2,�5 of the individual bands. Upper panels: spin- and
layer-resolved densities of states (LDOS) of first (red lines), second (yellow lines), third (blue lines), and bulk (black lines) Fe layers for the
individual � symmetry types as indicated in the panels. For clearer graphical presentation, a small constant imaginary part (Vim = −0.05 eV)
has been added to the (real) ground-state potential in the LDOS calculation.

determined by the spin-dependent mean free path λ± [cf.
Eq.(12)] of the primary and the outgoing electrons:

Nστ =
∑
m

wστ
m Nτ

m (13)

with wστ
m : = exp

[
−dm

(
1

λσ
1

+ 1

λσ
2

+ 1

λτ
2

)]
;

σ indicates the spin of the primary electron and of one of
the outgoing ones, τ is the spin of the other outgoing electron;
m counts the layers parallel to the surface, dm is the distance
between the nominal surface plane and the internuclear plane
of the mth layer; λσ

1 is the mean free path of the primary
electron, and λσ

2 and λτ
2 are the mean free paths of the two

outgoing electrons.
In Fig. 12 we demonstrate the relation between the LDOS

sum Nστ [cf. Eq. (13)] and (e,2e) energy distributions
I στ (Er,E�) for the case of a normally incident primary electron
with energy 25 eV and coplanar emission of the two electrons
at equal polar angles 30◦. The reaction plane is chosen as the
(x,z) plane, which is a mirror plane of the semi-infinite crystal.

Consequently, only valence electron states of even symmetry
with respect to this plane are allowed to contribute to the (e,2e)
intensity, as has been derived in previous work.37 We therefore
have to restrict the LDOS sum Nστ to even states.

With the primary energy fixed (25 eV), the spin-dependent
layer weight coefficients wστ

m in Eq. (13) still depend on the
energies of the emitted electrons. This dependence turned out,
however, to be rather weak for the emitted electron energies
under consideration. It therefore suffices to discuss the weight
coefficients obtained for the case that both energies are equal
to 10 eV. For both primary and valence electron spin up,
we have w++

1 = 0.74, w++
2 = 0.40, and w++

3 = 0.20 for the
first, second, and third layer, respectively. For both spins
down, the corresponding values are w−−

1 = 0.67, w−−
2 = 0.30,

and w−−
3 = 0.12. In the two opposite-spin cases we have

w+−
m > w−+

m with values in between those of w++
m and w−−

m .
Comparing the coefficients with each other we first note a
pronounced spin dependence, which increases from the first
to the third layer. Second, the coefficients for a given spin
configuration decrease rapidly from layer to layer, implying
that (e,2e) is strongly surface sensitive.
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FIG. 11. (Color) Valence quasi-electrons of Fe(001) for k|| = 0, which are excited in the (e,2e) process. The individual panels are analogous
to those in Fig. 10, but both bulk bands and LDOS have been calculated using the spin- and energy-dependent imaginary part V σ

im(E) of Eq. (10).

Turning now to the relation between LDOS sums and
(e,2e) energy distributions, we first address the case of
valence electron spin up. Comparing, for primary spin up,
the LDOS sum N++ in Fig. 12(a) with the parallel-spin
intensity I++ in Fig. 12(c), one first notices that for nearly
equal energies of the two emitted electrons, corresponding to
valence electron momentum k|| between −0.1 and 0.1, and
valence energy between about 0.5 and 2 eV below EF , N++
is sizable and I++ is very strong. For very different energies
of the emitted electrons, corresponding to |k||| > 0.2, N++
is of similar magnitude as in the central region, but I++ is
much weaker. Valence electron LDOS is thus seen to be a
prerequisite for (e,2e), but the actual size of the intensity
depends on the four electron states entering in the (e,2e)
matrix elements [cf. Eq. (6)]. While the primary electron
state is constant, the valence electron state and the outgoing
electron states vary from point to point in the (e,2e) energy
distribution. For primary spin down, comparison of Figs. 12(b)
and 12(d) shows that the antiparallel-spin intensity I−+ is
weak for |k||| > 0.2. In the central region (|k||| < 0.1), I−+ is
appreciable, but significantly smaller than the parallel-spin
intensity I++. For valence electron spin down, analogous
results are shown in Figs. 12(e)–12(h). In particular, we note

that for |k||| < 0.1 the antiparallel-spin intensity I+− rather
closely reflects the LDOS, whereas I−− is extremely small
below Evalence = −2 eV despite a large LDOS in this region.

These features are, for |k||| = 0, seen more quantitatively
in Figs. 13(a)–13(d) in line scans across the diagonals of the
individual panels of Fig. 12. Panels (a) and (c), which relate
to majority-spin valence electrons, show that—despite very
similar underlying weighted LDOS—I++ has a single large
peak centered around −1.2 eV, whereas I−+ exhibits two
maxima, which are much smaller. As a sufficient reason for
a substantial difference between the two curves we point out
that, by virtue of (e,2e) selection rules for 4-mm symmetry
surfaces and the present reaction plane (cf. upper half of Table
I in Ref. 6), I++ involves exclusively majority-spin valence
electrons of spatial symmetry �5, whereas I−+ can contain
contributions from �1, �2, and �5 majority-spin valence
electrons. The majority-spin LDOS curves (shown in Fig. 11)
are in fact sizable for �1 and �5, and still appreciable for �2.

Comparing the intensity curves in panel (c), which were
calculated for polar emission angles ϑr = ϑ� = 30◦, with their
analogs for 45◦ [panel (e)] we note substantial differences in
size and shape. Since the underlying valence electron states
are the same in the two cases, these differences must be due

165421-11



F. GIEBELS et al. PHYSICAL REVIEW B 84, 165421 (2011)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
l (

eV
)

-0
.4

=
-0

.3

0.
4

 =
 0

.3
=

0.
2

 =
 0

.1

 =
 -0

.1
 =

 -0
.2

 =
 0

E 2-
 E F

(e
V)

21

N
--

(e)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
r
 (eV)

E
l (

eV
)

-0
.4

=
-0

.3

0.
4

 =
 0

.3
=

0.
2

 =
 0

.1

 =
 -0

.1
 =

 -0
.2

 =
 0

E 2
- E F

(e
V)

21

N
+-

(f )

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
-0

.4

k
||

2 
= -0

.3

0.
4

k 2 
=

0.
3k

||
2
=

0.
2

k
||

2 
= 0

.1

k
||

2
=

-0
.1

k
||

2
=

-0
.2

k
||

2
=

0

E 2-
 E F

 (e
V)

21

I
- -

(g)

Minority valence electron spin

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
r
 (eV)

-0
.4

k
||

2 
= -0

.3

0.
4

0.
3

0.
2

 =
 0

.1

=
-0

.1

-0
.2

 0

E 2
- E

F
 (e

V)

21

I
+-

(h)

0 20 40 60 80 0 0.5 1.0 1.5 2.0

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
l (

eV
)

-0
.4

=
-0

.3

0.
4

 =
 0

.3
=

0.
2

 =
 0

.1

 =
 -0

.1
 =

 -0
.2

k
||

2 
= 

0

E 2
- E F

(e
V)

21

N
++

(a)

Majority  valence electron spin

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
l (

eV
)

E
r
 (eV)

-0
.4

=
-0

.3

0.
4

k
||

2 
= 0

.3
=

0.
2

 =
 0

.1

 =
 -0

.1
 =

 -0
.2

k
||

2 
= 

0

E 2
- E F

(e
V)

21

N
-+

(b )

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20
-0

.4

 =
 -0

.3

0.
4

 =
0.

3
=

0.
2

 =
 0

.1

=
-0

.1
=

-0
.2

=
0

E 2
- E F

 (e
V)

21

I
++

(c)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

E
r
 (eV)

-0
.4

 =
 -0

.3

0.
4

 =
0.

3
=

0.
2

 =
 0

.1

=
-0

.1
=

-0
.2

 0

E 2
- E F

 (e
V)

21

I
-+

(d )

0 0.5 1.0 1.5 2.00 20 40 60 80

||

k
||

2
=

k
||

2

k
||

2
=

k
||

2
=

k
||

2
=

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2
=

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2

k
||

2 k
||

2

k
||

2

k
||

2

k
||

2

FIG. 12. (Color) Valence electron density of states and (e,2e)
energy distributions from Fe(001) for normally incident primary
electron with energy 25 eV and outgoing electrons in the (x,z)
plane with equal polar angles ϑr = ϑ� = 30◦ and azimuthal angles
ϕr = 0 and ϕ� = 180◦. Upper half [(a)–(d)], for spin-up (majority)
valence electrons: (a) Weighted sum N++ [cf. Eq. (13)] of the
spin-up densities of even states N+

m (E,kx) of the topmost three
monoatomic layers parallel to the surface, which were calculated with
the spin- and energy-dependent quasiparticle imaginary self-energy
part V σ

im(E) as in Eq. (10). In each panel, the diagonal axis represents
the valence electron energy E with respect to the Fermi energy.
The axis normal to it is associated with the parallel momentum
kx =: k

‖
2 of the valence electron as indicated by the iso-k‖

2 lines

to the different outgoing electron states in the (e,2e) matrix
elements. For minority valence electron spin, our findings are
analogous and consistent with the symmetry-resolved minority
LDOS curves (shown in Fig. 11), as can be seen in Figs. 13(b),
13(d), and 13(e).

From Fig. 13 it is obvious that the experimentally ob-
servable intensities I+ and I− [i.e., I±τ summed over the
valence spin τ , cf. Eq. (9)] both arise almost exclusively
from collisions with majority-spin valence electrons, except
at energies very close to the Fermi energy and, for ϑ = 30◦,
around −2.8 eV. This is in contrast to (e,2e) results from
Fe(110),22,37 which show that—for equal energies of the two
emitted electrons—I+ (I−) is for most energies associated
with minority (majority) valence electrons, i.e., there is
mostly singlet scattering between the primary and the valence
electron. The reason for this difference between Fe(001) and
Fe(110) is that valence states, which are odd with respect to
reflection at a plane perpendicular to the scattering plane and
thence lead to triplet scattering, occur for Fe(110) only in a
very small energy range well below EF , whereas for Fe(001)
they are present over a wide energy range (cf. the �5 majority
spin LDOS curves in Fig. 11).

Energy distributions—like the ones shown in Fig. 12—
necessarily involve valence electron states with a range
of energies and of parallel momenta. In contrast, parallel-
momentum distributions (cf. Sec. II) for opposite momenta
of the two outgoing electrons (kr = −k�) are associated with
valence electrons of parallel momentum zero and fixed energy.
Choosing—by virtue of energy conservation in (e,2e)—this
energy such that valence electrons of one spin orientation
strongly dominate in the LDOS and that this domination
persists in the (e,2e) spectra, one practically has an internal
resolution of the valence electron spin over the entire parallel-
momentum distribution.

We first select primary electron energy and outgoing
electron energies such that the valence electron energy is EF ,
where minority spin dominates (cf. Fig. 11). In Fig. 14 we show
fully spin-resolved (e,2e) momentum distributions I στ (kx,ky)
[cf. Eq. (8)] from Fe(001) in the surface-parallel momentum
plane (kx,ky)/k. As an obvious consequence of the dominance
of minority valence electron spin, we note that I++ and I−+,
which involve majority valence spin, are overall much weaker
than I−− and I+−, which involve minority valence spin.

The most important conclusion is reached by comparing,
for given valence electron spin, the momentum distributions

.
(in bohr−1). (b) Weighted sum N−+ [cf. Eq. (13)]. (c) Fully
spin-resolved (e,2e) energy distribution I++(Er,E�) [cf. Eq. (8)] for
primary electron spin up. (d) I−+(Er,E�) for primary electron spin
down. In the (e,2e) calculations we employed the Thomas-Fermi
wave number qT F = 0.1 bohr−1 in the screened Coulomb interaction,
which we determined by comparisons with our experimental data
(see Figs. 17 and 18, and associated text), and the spin-dependent
imaginary self-energy parts given by Eqs. (10) and (11), with the latter
corresponding to a spin-dependent mean free path for the primary and
the outgoing electrons. Lower half [(e)–(h)], for spin-down (minority)
valence electrons: (e),(f) Weighted LDOS sums N−− and N+−. (g),(h)
(e,2e) energy distributions I−−(Er,E�) and I+−(Er,E�) for primary
electron spin down and up, respectively.
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FIG. 13. (Color) For the same (e,2e) setup as in Fig. 12 we show
the weighted valence electron LDOS and (e,2e) spectra for equal
energies Er = E�, which are line scans along the diagonals of the
panels of Fig. 12. The parallel momentum of the valence electron is
thus always zero. Its energy relative to the Fermi energy is E − EF =
25 − 2Er − � (eV), and the (e,2e) spectra I στ can therefore also be
plotted as functions of E − EF . (a) Weighted sums N++ (red line) and
N−+ (blue line) [cf. Eq. (13)] for majority-spin valence electrons. (b)
Weighted sums N+− (blue line) and N−− (red line) for minority-spin
valence electrons. (c) (e,2e) intensities I++ (red line) and I−+ (blue
line) for polar angle ϑ = 30◦, associated with majority-spin valence
electrons, i.e., line scans through Figs. 12(c) and 12(d). (d) (e,2e)
intensities I+− (red line) and I−− (blue line) for polar angle ϑ =
30◦, associated with minority-spin valence electrons, i.e., line scans
through Figs. 12(g) and 12(h). (e),(f) As (c) and (d), respectively, but
for polar angle ϑ = 45◦ instead of 30◦. The labels 1σ , 2σ , and 5σ next
to the intensity curves indicate the symmetry types �1, �2, and �5 and
the spin (σ = ±) of the valence electrons, from which contributions to
the respective intensity are allowed by (e,2e) selection rules (cf. upper
half of Table I in Ref. 6). �2′ valence electrons cannot contribute at
all, since their wave functions are antisymmetric with respect to the
present (e,2e) reaction plane.

for parallel spins with those for antiparallel spins. Going
outward from the center to about |k|||/k = 0.5, all distributions
exhibit a region of small intensity. This depletion zone is
seen to be much more pronounced for parallel spins than
for antiparallel ones. Since outgoing electrons with parallel
spins are subject to exchange and Coulomb interaction,
whereas those with antiparallel spins are correlated only by the
Coulomb interaction, the central depletion zones in I+− and
I−+ can be viewed as a Coulomb correlation hole and those in
I++ and I−− as an exchange plus Coulomb correlation hole.
Our momentum distributions thus imply that the latter hole is
larger than the former.

Summation over the valence electron spin yields the
experimentally accessible intensities I+ for primary spin up
[Fig. 14(e)] and I− for primary spin down [Fig. 14(f)]. Due
to the dominance of spin-down valence electrons at EF , I+
pertains essentially to antiparallel spins and I− to parallel
spins.
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FIG. 14. (Color) Fully spin-resolved (e,2e) momentum distribu-
tions I στ (kx,ky) [cf. Eq. (8)] from Fe(001) in the surface-parallel
momentum plane (kx,ky)/k, with σ = ± and τ = ± labeling the
spin of the primary and of the valence electron, respectively. In an
equal energy sharing coplanar symmetric setup, primary electrons
with energy 25 eV are normally incident. The two electrons are
emitted at polar angle ϑ and azimuthal angles ϕ and ϕ + π . They have
equal energy E = 10.165 eV and surface-parallel momenta (kx,ky) =√

2E sin ϑ(cos ϕ, sin ϕ) and (−kx, − ky). Taking into account the
work function value 4.67 eV, the relevant valence electron thus
has parallel momentum 0, energy 0 relative to the Fermi energy,
and majority/minority spin τ = ±. In the calculations we employed
the Thomas-Fermi wave number qT F = 0.1 bohr−1 in the screened
Coulomb interaction, which we determined by comparisons with our
experimental data (see Figs. 17 and 18, and associated text), and the
spin-dependent imaginary self-energy parts given by Eqs. (10) and
(11). In (a) and (b) the spins are parallel, i.e., the two electrons
are correlated by exchange and by Coulomb interaction. In the
antiparallel spin case in (c) and (d), there is only Coulomb correlation
between the two electrons. Panel (e) shows, for a spin-up primary
electron, the sum over the contributions from spin-up and spin-down
valence electrons, i.e., the sum over (a) and (c). Panel (f) is the analog
for primary spin down.

In Fig. 15 we present fully spin-resolved (e,2e) momentum
distributions I στ (kx,ky) [cf. Eq. (8)] with primary and outgoing
electron energies such that the valence electron energy is
0.8 eV below EF , where majority spin strongly dominates.
These results are in essence analogous to those in Fig. 14, with
“spin up” and “spin down” interchanged. In particular, we find
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FIG. 15. (Color) As in Fig. 14 except that the energy of each
of the two emitted electrons has been chosen as 9.765 eV, which
implies that the energy of the relevant valence electron is −0.8 eV
with respect to the Fermi level, where there is a strong dominance of
majority spin.

that the exchange plus Coulomb correlation hole exhibited by
I++ [panel (a)] and in good approximation by I+ [panel (e)]
is larger than the Coulomb correlation hole in I−+ [panel (d)]
and I− [panel (f)].

A more quantitative view of the fully spin-resolved
momentum distributions associated with dominant majority
spin valence electrons at −0.8 eV is provided in the bot-
tom panels of Fig. 16 by line scans I στ (kx,ky = 0) along
the kx axis through the corresponding angular distributions
I στ (kx,ky) shown in Fig. 15. The line scans in the bottom
panels result from calculations for the complete Fe(001) half
space, i.e., comprising all monoatomic layers parallel to the
surface.

The very high surface sensitivity of (e,2e) from Fe(001),
which follows from the mean-free-path-derived weight coeffi-
cients wστ

m [cf. Eq. (13) and subsequent text], is demonstrated
in a more quantitative and detailed way by the upper panels
of Fig. 16. In these we show (e,2e) intensities, which arise
from only the first N surface-parallel monoatomic layers of
the semi-infinite crystal, with N = 1,2,3 in the first, second,
and third row of panels, respectively.

For primary spin up (left-hand column of panels of Fig. 16)
we first note that the dominant I++ peak from two layers
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FIG. 16. (Color) Fully spin-resolved (e,2e) intensities
I στ (kx,ky = 0) [cf. Eq. (8)] from Fe(001) for valence electron
energy −0.8 eV. The bottom panels are line scans along the kx

axis through the corresponding angular distributions I στ (kx,ky)
shown in Fig. 15. While they were obtained in calculations for the
complete Fe(001) half space, i.e., for all monoatomic layers parallel
to the surface, corresponding intensities, which arise from the first
N = 1,2,3 layers, are shown in the upper panels (with N indicated
in the respective panels).

is more than twice the size of its counterpart from just the
first layer. This appears plausible from the (e,2e) selection
rules (cf. Table I in Ref. 6), according to which parallel-spin
intensities arise only from valence electron states of �5

spatial symmetry, and from the observation (in Fig. 11) that
at valence energy −0.8 eV the �5 LDOS in the second
layer is about twice as high as in the first layer. One may
therefore wonder why the second maximum of the first layer
I++, which is associated with the very same valence electron
state, gets reduced when two layers contribute. The puzzle
of the different behavior of the two maxima is resolved by
recognizing that the intensity from two layers is not a sum
of the intensities from the individual layers but rather the
absolute square of the sum of the amplitudes (matrix elements),
which allows both constructive and destructive interference.
Since the two-electron final state is quite different for the two
maxima, so are the matrix elements. A high LDOS in a given
layer is thus a necessary but by no means sufficient condi-
tion for a substantial intensity increase upon including this
layer.

For primary spin down, the two maxima in the first layer
I−+ are seen to change similarly when going to two layers.
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FIG. 17. (Color) (e,2e) energy sharing curves I±(Er − E�) from Fe(001) for primary electrons with energy 25 eV and spin σ = ± and for
constant sum energy Er + E� = 19.53 eV of the two outgoing electrons. By virtue of energy conservation, the valence electron energy thence
is fixed as EF − 0.8 eV. In all panels, the red (blue) curves represent I+ (I−) obtained for primary electron spin up (down). Left-hand column
of panels: Experimental sharing curves, which were obtained from the experimental raw data as described in Sec. II C in the context of Fig. 6.
Events with polar emission angles ϑr and ϑ� are included subject to the restriction that the normalized parallel momenta (with absolute values
sinϑr and sinϑ�) are between the two circles with mean radius � (cf. Fig. 6). Central column of panels: Theoretical sharing curves for Coulomb
screening parameter qT F = 0.1 bohr−1. All curves are for constant polar emission angles ϑr = ϑ� =: ϑ , with the value of sinϑ indicated in
the individual panels. For equal energy sharing, i.e., Er = E�, the valence electron has parallel momentum 0. For unequal energies Er �= E�,
selected values of Er − E� are marked by fat green dots on the energy axis and the associated parallel momentum of the valence electron
is indicated (in bohr−1 units) by the green numbers next to each dot. The arbitrary intensity units are the same for all panels. Note that for
Er = E� the intensity values are the same as those at the respective kx/k = sinϑ in the momentum distribution line scans (when summed over
the valence electron spins), which are shown in the bottom panel of Fig. 16. Right-hand column of panels: Theoretical sharing curves as in
central column, but for screening parameter qT F = 0.2 bohr−1.

According to (e,2e) selection rules, (majority) valence electron
states of spatial symmetry �1, �2, and �5 are allowed to
contribute. The LDOS in Fig. 11 shows that the former two
types are, like the latter one, stronger in the second layer
than in the first one. Therefore the behavior of the two

I−+ maxima can be interpreted in the same way as above
for I++.

As can be seen in Fig. 16, the spectra from two layers are
already very close to the complete ones, and those from three
layers are practically the same.
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IV. COMPARISON OF EXPERIMENT AND THEORY

In this section we present and discuss experimental (e,2e)
energy sharing and momentum distributions from Fe(001)
together with their theoretical counterparts. Energy distribu-
tions like the experimental spin-integrated one I (Er,E�) in
Fig. 7 and the theoretical spin-resolved ones I±(Er,E�) in
Fig. 12 cover, for fixed emission angles, the whole range of
the sum energy Esum = Er + E� and thereby of the valence
electron energy, which is allowed by energy conservation.
As was shown in Sec. II (see Fig. 8 and associated text),
more details are, however, revealed by so-called energy
sharing curves, which are, for fixed Esum and thence fixed
Evalence, diagonal line scans across the corresponding energy
distributions.

In Fig. 17 we show spin-dependent energy sharing curves
I±(Er − E�) from Fe(001) for a wide range of constant
polar emission angles ϑr = ϑ� =: ϑ . The primary electron
being 25 eV, we chose Esum = 19.53 eV. By virtue of energy
conservation, the valence electron energy is then EF − 0.8 eV,
where there is a strong dominance of majority spin for small
values of the surface-parallel momentum.

Experimental energy sharing curves are shown in the
left-hand column of Fig. 17. For sin ϑ = 0.2, the spin contrast
is essentially zero over the whole spectrum, and the probability
for both electrons to have the same energy is reduced
compared to unequal energies. Going to sin ϑ = 0.5, we
observe significant changes. First, there is a clear preference
for equal energies. Second, the I+ peak is higher than the I−
peak. Proceeding to larger values of sin ϑ , the sharing curves
become very small and almost constant except for a rise close
to the maximum energy difference, which we can detect.

In the central and in the right-hand column of Fig. 17
we show corresponding theoretical energy sharing curves
I±(Er − E�). In the calculations we included the Coulomb
correlation between the two outgoing electrons—via the
correlation factor Fcorr(k,r) [cf. Eq. (7)]—and used the spin-
dependent imaginary self-energy parts [see Eqs. (10) and (11)].
As for the screened Coulomb interaction in the Thomas-Fermi
approximation, we regard the Thomas-Fermi wave number
qT F , which characterizes the screening strength, as a parameter
to be determined by comparison with our experimental spectra.
It suffices to show energy sharing curves for the values
qT F = 0.1 bohr−1 and 0.2 bohr−1, since significantly smaller
and larger values can be excluded on the grounds of momentum
distributions (see below Fig. 18 and its context).

In both theoretical sets we notice mostly the same features
as above in the experimental set. For sin ϑ = 0.5, there is
a pronounced spin-dependent maximum at equal energies,
which turns into a minimum for larger angles. Going to
smaller angles, I+ has again a minimum, whereas for I−
there is some discrepancy between experiment and theory:
the calculated I− has a maximum at equal energies, which
is, however, much smaller for qT F = 0.1 bohr−1 than for
qT F = 0.2 bohr−1. Since I− pertains to antiparallel spins of
the outgoing electrons, the size of this maximum is inversely
related to the size of the correlation hole. Comparison of the
two theoretical sets with experiment favors qT F = 0.1 bohr−1.
For qT F > 0.2 bohr−1 (stronger screening), the I− peak at
equal energies for sin ϑ = 0.2 increases further. Significantly
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FIG. 18. (Color) Spin-dependent momentum distribution line
scans I σ (kx,ky = 0) for ϕ = 0 for primary electron energy 25 eV,
valence electron with energy EF − 0.8 eV, and surface-parallel mo-
mentum 0. (a) Experiment; (b)–(e) theory [cf. Eq. (9)], with Coulomb
correlation between the two outgoing electrons [via numerically
calculated Fcorr(k,r) in Eq. (7)] for a range of Thomas-Fermi
screening parameter qT F values (in bohr−1) as indicated in the
panels; (f) without Coulomb correlation [by setting Fcorr(k,r) ≡ 1]
for screening parameter qT F = 0.1 bohr−1.

smaller qT F values can be ruled out by comparing calculated
momentum distributions with their experimental counterparts,
as will be demonstrated later on.
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But first we would like to draw attention to two further
features of the theoretical sharing curves at larger angles.
All curves in the sin ϑ = 0.6 panels exhibit a fine structure
around |Er − E�| = 6 eV, which increases and moves toward
larger |Er − E�| with increasing sin ϑ . This feature originates
from a surface resonance in the lower-energy outgoing LEED
state, which is associated with an emergence threshold of
nonspecular beams.

The big peaks at large energy differences, which dominate
the theoretical spectra for sin ϑ � 0.6, are seen (from the green
kx values in the plots) to involve valence electrons with kx >

0.3. As is evident from the LDOS plots Nτ
m in Fig. 9, at the

chosen energy −0.8 eV minority spin has similar weight as
majority spin for these larger kx . Consequently, I+ (I−) is no
longer approximately equal to I++ (I−+), as is the case for
small kx , but contains a sizable contribution I+− (I−−).

In Fig. 18 we show spin-dependent momentum distribution
line scans I±(kx,ky = 0) for ϕ = 0, i.e., emission in the
(x,z) plane. We recall from above that the associated valence
electron parallel momentum is zero. By virtue of energy
conservation, the valence electron energy was chosen as
−0.8 eV (±0.2 eV experimentally), where majority spin
strongly dominates over minority spin. As one would therefore
expect and as has been explicitly shown in Fig. 16, I+ (I−)
consists mainly of I++ (I−+), i.e., is associated with parallel
(antiparallel) spins of the two detected electrons.

The experimental spectra [in Fig. 18(a)] exhibit the fol-
lowing main features. There is a central depletion zone, i.e.,
reduced intensity for small momenta, which is due to exchange
and Coulomb correlation. Going toward larger momentum
values (corresponding to larger polar emission angles) all
curves reach maxima, with the I+ peaks being further out
and exceeding the I− peaks.

In Figs. 18(b)–18(e) we show corresponding theoretical
momentum distributions. In all these calculations we included
the Coulomb correlation between the two outgoing electrons
via the correlation factor Fcorr(k,r) [cf. Eq. (7)]. The sensitivity
of the calculated momentum distributions to the assumed
value of the Thomas-Fermi parameter qT F is demonstrated
by comparing with each other Figs. 18(b)–18(e), which
were obtained for qT F as indicated in the panels. The most
striking effect is seen to occur in I−, which pertains to
antiparallel spins of the two outgoing electrons, at very
small momentum values. For qT F = 0.01 bohr−1 [Fig. 18(e)],
there is a very extended depletion zone (correlation hole),
which decreases with increasing qT F (stronger screening). For
qT F = 0.5 bohr−1 [Fig. 18(b)] it is already almost absent.
For larger qT F , the central intensity gets even larger and
one has a central accumulation zone (correlation hill) instead
of a correlation hole. This correlation trend also affects
I+ (parallel spins), where it is, however, overshadowed by
exchange, which causes a central depletion zone also for
larger qT F .

Comparing with our experimental momentum distributions
in Fig. 18(a), we note the following. For the large qT F

values (strong screening), the correlation hole in I−, which
appears in the experimental spectra, is absent. For very small
qT F [like 0.01 bohr−1 in panel (d)], the correlation hole
in I− as well as the exchange-correlation hole in I+ are
too extended. For qT F = 0.1 bohr−1 and qT F = 0.2 bohr−1,

FIG. 19. (Color) Spin-dependent momentum distributions
I+(kx,ky) and I−(kx,ky) for primary electron energy 25 eV and
valence electron with energy EF − 0.8 eV and surface-parallel
momentum 0. (a),(b) Experiment; (c),(d): theory [cf. Eq. (9)], with
screening parameter qT F = 0.1 bohr−1 and Coulomb correlation [via
Fcorr(k,r) in Eq. (7)].

the overall agreement with experiment is of equally good
quality. Since the energy sharing curves in Fig. 17 have been
found to discriminate between these two values in favor of
qT F = 0.1 bohr−1, we consider the latter as the optimal one.

If the Coulomb correlation between the two detected
electrons is neglected—by taking the Coulomb correlation
factor Fcorr ≡ 1 instead of the function Fcorr(k,r) [cf. Eq. (7)]—
the I− curve, which pertains to antiparallel spins of the two
outgoing electrons, is affected most strikingly [see Fig. 18(f)].
Instead of the correlation hole in the curve in Fig. 18(d), there is
a very pronounced maximum, which is in strong contradiction
to our experimental data. From analogous calculations for
different values of the screening parameter qT F we find that
this maximum even increases for larger qT F and does not
disappear for smaller ones.

To highlight the most important result of the present work,
we complement the line scans shown in Fig. 18 by juxtaposing
in Fig. 19 experimental spin-dependent momentum distribu-
tions I σ (kx,ky) and their theoretical counterparts (replotted
from the bottom panels of Fig. 15 within the k|| window,
which is accessible experimentally). Exchange and Coulomb
correlation produce a central depletion zone in the parallel-spin
distribution I+, which is more extended than its counterpart in
the antiparallel-spin distribution I−, which is due to Coulomb
correlation only.

V. CONCLUDING REMARKS

The screening of the Coulomb interaction in the surface
and near-surface region is strictly speaking represented by a
very complicated dielectric function. In the absence of a first-
principles knowledge for the Fe(001) surface and in order to be
able to handle it within our layer-KKR-based (e,2e) formalism,
we have approximated it by a simple Thomas-Fermi form
with an effective screening strength qT F , which we regarded
as a parameter to be determined by comparing experimental
(e,2e) spectra for antiparallel spins and small emission angles
with their calculated counterparts. We thus found the value
qT F = 0.1 bohr−1.
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From a spin-dependent mean free path model for the
primary and the outgoing electrons, which is based on
earlier experimental data, we found that only the first three
monoatomic layers should contribute significantly to the
observable (e,2e) spectra. This high surface sensitivity was
quantitatively corroborated by comparing momentum distri-
butions, which were calculated for one, two, and three layers,
with the distributions obtained for the semi-infinite crystal.

Comparison of valence electron layer densities of states
(LDOS), which we obtained by an ab initio FLAPW calcu-
lation, with (e,2e) energy distributions demonstrates that a
sizable underlying LDOS of the appropriate spatial symmetry
type is a necessary but by no means sufficient condition for
sizeable (e,2e) features to occur. Matrix element effects, in
particular interference of amplitudes arising from different
layers, may in fact lead to a very small (e,2e) intensity
associated with regions of high LDOS.

From our spin-, k||-, symmetry-, and layer-resolved LDOS
we identified valence electron energy and parallel-momentum
conditions, for which first one spin orientation dominates and
second valence states exist of even and of odd symmetry with
respect to a mirror plane perpendicular to the reaction plane.
These two symmetries ensure, for equal energy sharing and
emission in a mirror plane, that pair emission can occur for
both primary spin orientations. For primary electrons with
spin parallel to this dominant spin orientation of the valence
electrons, (e,2e) spectra are subject to exchange and Coulomb
correlation, whereas for primary electrons with opposite spin,
i.e., antiparallel spins of the two electrons, there is only
Coulomb correlation. In both cases, momentum distributions
were found to exhibit a central depletion zone (“hole”), which
is, however, significantly larger for parallel than for antiparallel
spins. The exchange-correlation hole in momentum space is
thus larger than the correlation hole.
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