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Different dimensionality trends in the Landau damping of magnons in iron, cobalt, and nickel:
Time-dependent density functional study
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We study the Landau damping of ferromagnetic magnons in Fe, Co, and Ni as the dimensionality of the system
is reduced from three to two. We resort to the ab initio linear response time dependent density functional theory in
the adiabatic local spin density approximation. The numerical scheme is based on the Korringa-Kohn-Rostoker
Green’s function method. The key points of the theoretical approach and the implementation are discussed. We
investigate the transition metals in three different forms: bulk phases, freestanding thin films, and thin films
supported on a nonmagnetic substrate. We demonstrate that the dimensionality trends in Fe and Ni are opposite:
in Fe the transition from bulk bcc crystal to Fe/Cu(100) film reduces the damping whereas in Ni/Cu(100) film
the attenuation increases compared to bulk fcc Ni. In Co, the strength of the damping depends relatively weakly
on the sample dimensionality. We explain the difference in the trends on the basis of the underlying electronic
structure. The influence of the substrate on the spin-wave damping is analyzed by employing Landau maps
representing wave-vector-resolved spectral density of the Stoner excitations.
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I. INTRODUCTION

The properties of excited magnetic states are of great
importance in the fundamental and applied magnetism. Their
spectrum determines the thermodynamical properties of mag-
nets, including the Curie temperature.1–3 The excitations
contribute to the electronic specific heat4 and the electrical and
thermal conductivity, couple to charge degrees of freedom,5–12

limiting the lifetimes and the mean-free paths of excited
electrons,13–19 and can provide a coupling mechanism in
high-temperature superconductors alternative to phonons.20–23

The control of spin dynamics and its attenuation are the central
problems in the rapidly growing field of spintronics.24–28

Magnetically ordered materials feature a class of collective
spin-flip excitations called spin waves or magnons.29–32 We
focus on them in this paper. The spin waves are usually
pictured as a coherent precession of atomic moments around
the direction of ground-state magnetization.33 Every magnon
carries certain energy ω0 and crystal momentum q and
changes the magnetization of the system by 2μB. Metallic
magnets feature another type of spin-flip excitation termed
Stoner excitations. They are electron transitions between one-
electron states with opposite spin projections. The precessing
magnetization can flip spins of single electrons, creating
Stoner pairs, which leads to the damping of the moments’
precession. The attenuation of collective excitations due to the
interaction with single-particle continuum was first considered
by Landau34,35 and is commonly referred to as Landau
damping. This mechanism of attenuation is dominant in metals
that are of our primary interest here. Other decay processes,
which could be captured in a language of magnon-magnon,
magnon-phonon, or magnon-electron interaction, to mention
a few, are not considered in this paper.

The theoretical description of spin dynamics that accurately
treats both spin-wave and Stoner excitations has proven to
be a challenge. Among different formalisms, a particularly
transparent approach is offered by the linear response time de-
pendent density functional theory,36 relying on the evaluation
of wave-vector-dependent dynamic spin susceptibility. Such

calculations are, however, very demanding both from the point
of view of algorithmic complexity and computer resources and
for a long time they were restricted to simple bulk systems.37,38

Recently, we have developed an efficient numerical scheme
allowing us to evaluate the spin susceptibility of complex
magnets and applied it to study energies and lifetimes of
magnons in complex bulk phases39 and ultrathin films.40,41

In Sec. II A we give a brief historical overview of the
developments in this field and relate our calculational approach
to works of other authors.

The properties of three transition-metal ferromagnets Fe,
Co, and Ni have been for many years a subject of intensive
theoretical studies (see, e.g., Refs. 42,43). Much attention has
been also devoted to understanding spin waves in the ultrathin
films absorbed on metallic nonmagnetic substrates,32,44 as
such systems are of enormous practical importance. In the
pioneering theoretical works45–50 it was argued that the
Landau damping of magnons in the ultrathin films should
be generally more severe than in the corresponding bulk.44

The broken out-of-film-plane translational symmetry should
increase the cross section for scattering of magnons and Stoner
excitations. Additionally, the nonmagnetic substrates feature
infinite continuum of gapless Stoner excitations. Muniz et al.45

pointed to the Stoner transitions involving the electronic states
of the substrate as an important contribution to the Landau
damping. We have shown41 that such simple dimensionality
arguments are insufficient and the actual magnitude of Landau
damping is sensitive to the details of the hybridization between
the electron states of the film and the substrate.

In this paper, our goal is twofold. First, we provide a
thorough exposition of our theoretical approach and outline
key details of its numerical implementation. Second, we report
a detailed study of the influence of the dimensionality of the
system on the spin-wave damping in iron, cobalt, and nickel.
We show that the trend in the damping variation upon the
transition from bulk to film is opposite for Fe and Ni whereas
in Co the attenuation is practically unchanged. We provide an
explanation of these trends on the basis of the properties of the
electronic structure.
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The paper is organized as follows. In Sec. II we delineate
the formalism of the time-dependent density functional theory
for spin-flip excitations in the linear regime. Section III covers
the details of the computer implementation. The results of the
numerical studies are gathered and discussed in Sec. IV.

II. FORMALISM

A. Historical perspective

Until recently, the main body of the theoretical studies of
spin waves was based on the adiabatic treatment of magnetic
degrees of freedom,51,52 where one maps the spin system
onto an effective Heisenberg Hamiltonian of atomic moments
which is much easier to study. The approach has acquired
many different forms in the literature, namely the magnetic
force theorem (MFT),53 frozen magnon technique,51,54,55 and
static transverse susceptibility method (STSM).56 Bruno57

has shown that the MFT machinery in the form originally
suggested gives a systematic error in the estimated Heisenberg
exchange parameters. STSM based on a consistent account for
the external field is free from this error.

These adiabatic methods utilize density functional theory
and, therefore, do not involve adjustable parameters. They are
exact in ferromagnets in the limit of small magnon momenta;
i.e., they allow us to determine correctly the spin-wave stiffness
constant. In this approach, however, the presence of the Stoner
excitations is neglected and no prediction regarding magnon
lifetimes can be made. Furthermore, for higher energies one
expects that the coupling to the Stoner continuum, apart
from leading to the decay of spin waves, can also cause a
renormalization of the magnon energy.45 In the latter case the
adiabatic description must fail also in the prediction of the
dispersion.

As mentioned in the Introduction, the damping is captured
in the calculations of wave-vector and frequency-dependent
transverse magnetic susceptibility χ (q,ω) where spin waves
and Stoner excitations are treated on an equal footing. One
associates the spin-wave excitations with the poles of χ (q,ω)
in the complex energy plane. Roughly, the real part of the pole
position gives the energy of the spin wave and the imaginary
part can be identified with the inverse lifetime of the excitation.

Despite the commonly accepted importance of the dynamic
susceptibility approach, very few ab initio calculations along
this line exist due to the complexity of corresponding numeri-
cal algorithms and high numerical costs of such calculations.
The calculations performed so far deal mostly with elementary
bulk systems. In 1980 Cooke et al.31 computed the suscepti-
bility of Ni and Fe using the random-phase approximation to
the susceptibility starting from an idealized band structure.
The dynamic method became particularly powerful after the
parameter-free linear response time dependent density func-
tional theory (LRTDDFT) was developed in 1985 by Gross and
Kohn.36 (An earlier work of Callaway and Wang58 contains
already all key ingredients of the magnetic response in the
local density approximation.) From this time on, several works
addressing the paramagnetic susceptibility appeared38,59–62

taking advantage of the formalism. In 1998 Savrasov37

presented the first calculation of the susceptibility using linear
response density functional theory for magnetically ordered

systems. During the past few years we developed a novel
and efficient computer implementation based on the Korringa-
Kohn-Rostoker (KKR) Green’s function (GF) method39–41,63

to address the spin susceptibilities of complex bulk systems
and thin magnetic films.

Recently, Lounis et al.64,65 reported on a considerable de-
velopment of the earlier used empirical tight-binding scheme
for the calculations of the transverse dynamic magnetic
susceptibility (see, e.g., Ref. 45) that takes advantage of KKR
Green’s functions. Several simplifications were introduced
with respect to the standard KKR method such as the neglect
of the energy dependence of the electronic wave functions as
well as the restriction to the d-electron states only.

In our studies we rely on the treatment of the Kohn-Sham
Hamiltonian of the DFT theory without simplifications beyond
those used in the standard DFT calculations. In order to
represent the response functions we use the complete and
numerically efficient Y-Ch basis63 consisting of the products
of the spherical harmonics and Chebyshev polynomials. In
particular, we do not need to assume the rigid rotation of atomic
magnetic moments66 in the description of the spin response.
Our experience shows that the properties of the spin-wave
damping considered here depend sensitively on the structure
of the Stoner continuum and therefore on the detailed form of
the wave functions.

It is important to mention a number of works on the
calculation of the dynamic magnetic susceptibility performed
within the framework of the many-body perturbation theory
(MBPT).67,68 This approach has a strong potential for the
study of spin-wave excitations, especially in the systems
with strong electron correlations where the MBPT approach
can be advantageous with respect to the DFT theory in the
local density framework. However, up to now, the MBPT
was applied only to elemental bulk ferromagnets69,70 and
time will show whether the computational complexity of the
scheme will allow the efficient study of nanoscopic systems. It
should be also noted that the practical implementations of the
method necessarily simplify original Hedin’s equations, e.g.,
by retaining only the ladder diagrams in the T matrix17–19,70

used to construct the spin-spin correlation function. The
energy dependence and nonlocality of the screened Coulomb
interaction are often neglected as well. At this level of
approximations the MBPT yields essentially the same physical
picture of magnons and their damping as the adiabatic local
spin density approximation (ALSDA) commonly used in
time-dependent density functional theory (TDDFT).

Concerning earlier theoretical studies of the spin-wave
damping in the two-dimensional magnetic systems, to our
knowledge, there is only one series of investigations based on
an empirical tight-binding scheme and random-phase approx-
imation to the dynamic susceptibility.44–49,71 These pioneering
works yielded rich qualitative information on the spin-flip
dynamics as well as on the relation between the parameters
of the model and physical observables. Unfortunately, the
strong sensitivity of the results to the parametrization of the
underlying electronic stricture limits the usefulness of this
approach.

In the context of comparing different calculational tech-
niques it is important to address the question of preserving
the spin rotational invariance. In the absence of magnetic
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anisotropy the rigid rotation of spin system costs no energy. In
magnetically ordered materials this implies that the spin-wave
spectrum becomes gapless and in the limit of the vanishing
momentum the magnon energy should tend to zero, featuring
a Goldstone mode.72,73 Formally, both LRTDDFT and MBPT
approaches satisfy the conditions of the Goldstone theorem,
albeit the concrete numerical realizations lead to deviations of
the magnon energy from zero in the limit of q = 0. A method to
compensate for numerical errors and to recover the Goldstone
mode was recently discussed in Refs. 64 and 65. Taking into
account the importance of the issue and the absence of full
agreement with the conclusions Lounis et al. arrived at, we
address the problem in some detail in Sec. II D.

B. Linear response time dependent density functional theory

The theoretical description of the time evolution of mag-
netization poses a complex problem in solid-state physics.
Time-dependent density functional theory74 offers a tool for
a parameter-free description of time-evolving systems, also
under the influence of dynamic external fields. The method is
capable of describing arbitrarily large excitations, including
nonlinear effects such as higher harmonic generation, but
at present it is computationally too expensive to be effi-
ciently applied to solids. In 1985 Gross and Kohn laid the
foundations of the linear response time dependent density
functional theory framework,36 which is applicable when the
time-dependent perturbation is small. The latter formalism
allows one to determine directly the density-density response
function starting from the knowledge of the Kohn-Sham (KS)
ground-state eigensystem. The knowledge of the response
function is sufficient to characterize the excited states of the
spin system. It is very well suited for the ab initio description
of magnetic excitations in periodic solids. Our efforts in this
field concentrated on the development of an accurate and
effective calculational scheme applicable to complex magnets
with many inequivalent atoms. In this and the next sections
we expose the formalism and our numerical approach in
some detail emphasizing the aspects we consider important for
accuracy and efficiency. We resort to the adiabatic local spin
density approximation (ALSDA).36,58,75–77 Unless specified
otherwise Rydberg atomic units are used throughout.

We make use of the field operators35

ψ̂(xα) =
∑

j

φj (xα)cj , ψ̂†(xα) =
∑

j

φj (xα)∗c†j , (1)

where xα denote spatial and spin degrees of freedom, φj stands
for a complete orthonormal set of single-particle orbitals, and
fermionic operators cj and c

†
j , respectively, destroy and create a

particle in the orbital j . The particle and magnetization density
operators read

σ̂ i(x) ≡ σ i
αβψ̂†(xα)ψ̂(xβ), (2)

where σ 0
αβ ≡ δαβ corresponds to the density operator and

σ 1,2,3 ≡ σx,y,z are standard Pauli matrices. Einstein summa-
tion convention is used for α,β, . . . indices.

We consider a time-dependent perturbation Hamiltonian
including oscillating electric potential and magnetic field

coupled exclusively to the spin degree of freedom

Ĥ ex(t) =
3∑

i=0

∫
dxσ̂ i(xt)
i(xt). (3)

Relativistic effects and diamagnetic response are neglected.
All many-body operators in this work which contain time
variables are assumed to be in the Heisenberg picture. The
driving potential is defined as a four-vector


(xt) =
(

− |e|V(xt), − gμB

2
B(xt)

)
, (4)

where V stands for the external electric potential, e is the
charge of an electron, B is the external magnetic field, μB

denotes the Bohr magneton and g is the electron g factor.
The approximation g = 2 is used in this work. We define
the charge and magnetization density induced by the external
time-dependent potential as

δni(xt) ≡ 〈σ̂ i(x)〉ex(t) − ni(x), (5)

where ni(x) ≡ 〈σ̂ i(x)〉 is the unperturbed ground-state charge
and magnetization density and 〈ô〉ex(t) stands for the expecta-
tion value of operator ô at time t when the perturbation is active.
δni is related to 
j (xt) through the retarded density-density
response function

χij (x,x′,t − t ′) = −iθ (t − t ′)〈[σ̂ i(xt),σ̂ j (x′t ′)]〉, (6)

where [A,B] ≡ AB − BA. In the frequency domain one
obtains

δni(x,ω) ≡
∫

dteiωt δni(x,t)

=
3∑

j=0

∫
dx′χij (x,x′,ω)
j (x′,ω). (7)

LRTDDFT allows one to compute the generalized suscep-
tibility in the following two-step procedure.36,78 First, one
considers the Kohn-Sham susceptibility

χ
ij

KS(x,x′,ω) =
∑
km

σ i
αβσ

j

γ δ(fk − fm)

× φk(xα)∗φm(xβ)φm(x′γ )∗φk(x′δ)

ω + (εk − εm) + i0+ , (8)

giving the retarded response of the formally noninteracting
Kohn-Sham system. The 0+ notation is introduced to stress
that we deal with retarded quantities. In the above equation
φj (xα)’s and εj ’s denote respectively KS eigenfunctions and
corresponding eigenenergies. fj ≡ fT (εj ), where fT (ε) is the
Fermi-Dirac distribution function. The induced charge and
magnetization densities described by the Kohn-Sham suscep-
tibility modify the Hartree and exchange-correlation potential,
giving rise to a self-consistent problem: The induced densities
contribute to the effective fields and are, simultaneously,
induced by it. The self-consistency is reflected in the second
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step of the formalism

χij (x,x′,ω) = χ
ij

KS(x,x′,ω) +
3∑

k,l=0

∫ ∫
dx1dx2χ

ik
KS(x,x1,ω)

×
(

Kkl
xc(x1,x2,ω) + 2δk0δl0

|x1 − x2|
)

χlj (x2,x′,ω).

(9)

The last equation is referred to as the “susceptibility Dyson
equation” because of its characteristic form. χ is the density-
density response function of the system and describes charge
neutral excitations. It is often termed enhanced susceptibility.
The exchange-correlation kernel Kxc is defined as a functional
derivative of exchange-correlation potential with respect to the
density

Kij
xc[〈σ̂ (x)〉](x,x′,t − t ′) = δvi

xc(x,t)

δnj (x′t ′)
(10)

evaluated at the ground-state values of electronic and magnetic
densities.

The structure of Eq. (9) resembles the expression for the
susceptibility obtained within the random-phase approxima-
tion (RPA) to the many-electron Hamiltonian.31,35 However,
it is important to note that Eq. (9) is exact, providing the
exact Kxc is known, whereas RPA corresponds to a specific
approximation of the proper polarization function.

The problem of constructing the exact exchange-correlation
kernel is equivalent to the exact solution of the many-body
problem and one faces the necessity of approximating it.
The most common choice, adopted also in this paper, is the
ALSDA, in which Kxc is approximated by the frequency-
independent functional derivative of the LSDA exchange-
correlation potential:

Kij
xc[〈σ̂ (x)〉](x,x′,t − t ′)

= δvi
LSDA[〈σ̂ (x)〉,x]

δnj (x)
δ(x − x′)δ(t − t ′). (11)

The adiabaticity in this context pertains to the response
of the electron gas, which is assumed to be given by the
instantaneous values of the densities. Furthermore, adopting
LSDA implies that the kernel is determined by the local value
of densities. Recently, there has been progress in constructing
nonlocal magnetic exchange-correlation functionals,79,80 but
their implementation in practical band structure calculations
has not been achieved yet.

From the computational point of view, the main challenge
is the evaluation of the unenhanced susceptibility. The direct
use of the Lehmann representation given by Eq. (8) requires
the summation over high-energy unoccupied states and it is
practically never used in concrete implementations,37 espe-
cially for metals. The use of KKR Green’s functions in the
construction of KS susceptibilities avoids this problem. There
are several further advantages: It is not necessary to consider
finite basis corrections and the description of systems without
full three-dimensional discrete translational symmetry can be
rather easily achieved. These issues are discussed deeper in
Sec. III.

Not only the calculation but also the analysis of the
dynamic susceptibility of a complex system might become

cumbersome. Because of the large number of degrees of
freedom the response is governed by a complex overlap of
various excitation modes.40 In order to distinguish them, it
is convenient to consider the loss matrix, defined as the
anti-Hermitian part of the susceptibility

L[χij (x,x′,ω + i0+)]

≡ 1

2i
(χij (x,x′,ω + i0+) − χji(x′,x,ω + i0+)∗). (12)

Lχ has a clear physical interpretation, as the power absorbed
from the harmonic driving potential81


i(xt) = 
i(x) cos ωt (13)

reads

P = −ω
∑
ij

∫ ∫
dxdx′
i(x)L[χij (x,x′,ω)]
j (x′). (14)

Linear response theory and the fluctuation-dissipation
theorem82,83 tell us that the energy absorption signifies the
presence of excited states of the unperturbed system with the
energy ω. Lχ is a Hermitian matrix and features real eigen-
values and a set of orthogonal eigenvectors. The eigenvectors
ξλ(x) of L[χij (x,x′,ω)] represent the shapes of natural modes
of the system. The associated eigenvalues, L[χij (x,x′,ω)]λ,
give the rate of energy absorption from the external field with
the shape ξλ(x) oscillating with frequency ω. Formally, the
number of eigenvalues is infinite, but in reality only a limited
number of them are large, corresponding to physically relevant
excitations. The analysis of Lχ allows their unambiguous
identification. The contact with experiment is usually made
by evaluating the Fourier transformation of the susceptibility
as the Imχ

ij

KK(q,ω) is probed in the scattering experiments;32,84

see Appendix A.

C. Transverse magnetic susceptibility

Within the nonrelativistic LSDA, the Kohn-Sham states
of the collinear magnets and paramagnetic systems can be
characterized by a certain value of the spin projection. We
adopt the convention that the ground-state magnetization m(x)
points everywhere along the z direction that is selected as the
axis of spin quantization.

In this case the susceptibility χ
ij

KS has only four independent
elements and the following structure:

χKS =

⎛⎜⎜⎜⎝
χxx

KS χ
xy

KS 0 0

−χ
xy

KS χxx
KS 0 0

0 0 χ00
KS χ0z

KS

0 0 χ0z
KS χ00

KS

⎞⎟⎟⎟⎠. (15)

The response to the transverse (i.e., with the direction lying in
the xy plane) magnetic field is transverse and does not involve
charge density response as opposed to longitudinal magnetic
field (along the z direction).

In ALSDA, the exchange-correlation kernel is given by
the functional derivative of the LSDA exchange-correlation
magnetic field

Bxc(m) = Bxc(m)
m
m

(16)
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with respect to magnetization78,85

δBi
xc

δmj

= Bxc
∂

∂mj

mi

m
+ δBxc

δmj

mi

m

= Bxc

m

(
δij − mimj

m2

)
+ δBxc

δm

mimj

m2
. (17)

The first term gives the response in the direction perpendicular
to m̂ ≡ ẑ (the transverse response), while the second along
the direction of ground-state magnetization. We see that the
induced transverse magnetization gives rise to an additional
effective exchange-correlation magnetic field which is also
transverse. Thus, in collinear magnets ALSDA decouples
magnons and non-spin-flip excitations.

This is a useful property since it allows us to separate the
Dyson equation for the transverse magnetic susceptibility from
the one for the longitudinal and the charge response. In order to
study spin-flip excitations in collinear systems it is sufficient to
consider transverse components (xx and xy) of the magnetic
susceptibility. It is convenient to introduce circular coordinates
for magnetization response, magnetic field, and the transverse
susceptibility:

m± = mx ± imy, B± = Bx ± iBy, χ± = χxx ∓ iχxy.

(18)

They are connected through the following relation:

m±(x,ω) =
∫

dx′χ±(x,x′,ω)B±(x′,ω). (19)

The explicit form of the KS χ± susceptibility in the collinear
system reads

χ±
KS(x,x′,ω)

= 2
∑
km

(f ↑↓
k − f ↓↑

m )
φ

↑↓
k (x)∗φ↓↑

m (x)φ↓↑
m (x′)∗φ↑↓

k (x′)

ω + ε
↑↓
k − ε

↓↑
m + i0+ .

(20)

Left arrows corresponds to χ+
KS while the right arrows to χ−

KS.
The Dyson equation for enhanced susceptibility takes the

form

χ±(x,x′,ω) = χ±
KS(x,x′,ω)

+
∫

dx1χ
±
KS(x,x1,ω)Kxc(x1)χ±(x1,x′,ω).

(21)

The use of circular coordinates allows us to work with a
complex scalar equation instead of a matrix equation in
Cartesian spin projections. The real exchange-correlation
kernel amounts to

Kxc(x) = −μB
Bxc(x)

m(x)
, (22)

where Bxc(x) and m(x) are local values of the exchange-
correlation magnetic fields and magnetization density, respec-
tively. They can easily be found once a LSDA calculation of
the ground state is performed.

If one casts the spatial dependence of χ±, χ±
KS, and Kxc in

an orthonormal basis, the Dyson equation takes a matrix form
with the formal solution

χ±(ω) = (I − χ±
KS(ω)Kxc(ω))−1

χ±
KS(ω). (23)

According to this equation the singularities of the enhanced
(physical) susceptibility stem from two sources. The first
are the singularities of χ±

KS(ω) corresponding to electronic
transitions between occupied and empty KS states with
opposite spin projections, so-called Stoner transitions; they
form the Stoner continuum. The second correspond to zeros
of the I − χ±

KSKxc. The step from unenhanced susceptibility
to the enhanced susceptibility results in a remarkable property
that the energy absorption can now take place for frequencies
outside the Stoner continuum. This signifies the new type of
the excitations different from the Stoner transitions described
by the unenhanced susceptibility. These are the spin waves.
Their formation in complex solids and interactions with Stoner
excitations are the subject of the next section.

D. Collective modes

For the sake of subsequent analysis it is convenient to
rewrite Eq. (23) as

χ−1(ω) = χ−1
KS (ω) − Kxc(ω). (24)

We assume that the inverses of KS and enhanced susceptibility
matrices exist for the frequencies of interest. The following
analysis does not require Kxc to be adiabatic or local. If the
Hamiltonian under consideration admits certain symmetries,
the Hilbert space in which we represent the susceptibility can
be decomposed into subspaces where the analysis can be per-
formed independently of each other. For example, for periodic
solids the quasimomentum q ∈ �BZ, where �BZ stands for
the first Brillouin zone, is a good quantum number and the
susceptibility becomes block diagonal when represented in the
Bloch basis. To simplify notation, q is omitted in this section.

1. Frequency ω0 outside the Stoner continuum

Away from the Stoner continuum and the singularities of the
kernel the matrix χ−1(ω0), ω0 ∈ R, is Hermitian. Let {νλ,|mλ〉}
be an eigensystem of χ−1(ω0). λ labels eigenvalues. If all
νλ �= 0, the inverse χ (ω0) is a nonsingular Hermitian matrix
and there are no magnetically excited states at ω0. However,
if there can form a resonance between an external magnetic
field |Bλ〉 and the induced effective exchange-correlation field,
such that the conditions

|Bλ〉 = χ−1
KS (ω0)|mλ〉, (25a)

|Bλ〉 = Kxc(ω0)|mλ〉 (25b)

are fulfilled, the eigenvalue νλ vanishes. The enhanced sus-
ceptibility becomes singular which signifies the formation of a
collective magnetic excited state (spin wave) with energy ω0.
It is an exact eigenstate of the many-body Hamiltonian and its
lifetime is infinite.

Let us construct the loss matrix associated with χ (ω + i0+)
close to ω0 in this case. It will allow us to find spatial shape
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of the resonant field and the fluctuating magnetization density
associated with the magnon. We expand χ−1(z) around ω0:

χ−1(z) = χ−1(ω0) + (z − ω0)δχ−1(ω0) + O((z − ω0)2).

(26)

We assume that ω0 is an isolated singular point; i.e., close to
ω0 the matrix χ−1(z) is invertible, providing z �= ω0. Let N
be the set of indices λ corresponding to νλ = 0. If there exists
more than one vanishing eigenvalue (the case of degenerated
magnon states), we shall work with linear combinations of
corresponding eigenvectors fulfilling the condition

〈mλ|δχ−1(ω0)|mλ′ 〉 = sλδλλ′, λ,λ′ ∈ N . (27)

If sλ �= 0 we can construct the −1st term of the Laurent series
of χ (z) around ω0:

χ (z) =
∑
λ∈N

1

sλ

|mλ〉〈mλ|
z − ω0

+ O(1), (28)

which is sufficient to determine the associated loss matrix

Lχ (ω) = −πδ(ω − ω0)
∑
λ∈N

1

sλ

|mλ〉〈mλ|. (29)

The singularity of χ (ω0) of the form discussed above signifies
that there exists a spin wave of energy ω0 which is an
exact excited eigenstate of the system. Because of the linear
character of the response an external field |B〉 oscillating with
the frequency ω0 will excite the spin wave and result in a
strong energy absorption providing that the spatial form of the
field and the spatial form of the loss-matrix eigenstate are not
orthogonal:

〈B|mλ〉 �= 0, λ ∈ N . (30)

The magnetization response to such a field is infinite in
the linear response approximation. Physically, condition (30)
determine the fields able to excite mode λ.

A similar argument can be used to prove that the LRDFT
features the Goldstone mode, i.e., an excitation of vanishing
energy,72,73 corresponding to a singularity of static enhanced
susceptibility. We want to prove that there exists a small
static transverse magnetic field B0(x), pointing everywhere
in the same direction, say along the x axis, for which the
magnetization response is infinite. This corresponds to a
divergence of susceptibility and the presence of the Goldstone
mode. It is easy to prove that63

|Bxc〉 = χ−1
KS (0)|mGS〉, (31a)

|Bxc〉 = Kxc(0)|mGS〉, (31b)

where the |Bxc〉 is a field of the shape of the ground-state
exchange correlation field, but pointing in the transverse
direction and, correspondingly, |mGS〉 has the shape of ground-
state value of the magnetization. All the response functions
above are static and the expression is valid for the general
exchange-correlation kernel; it is also fulfilled in ALSDA.
This in turn means that the response to the transverse static
field of the shape of the ground-state exchange-correlation
field is infinite. This proves that LRTDDFT formalism features
the Goldstone mode. When dealing with periodic (uniform)

systems, the Goldstone mode is necessarily associated with
q = 0, because Bxc(x) is a periodic (constant) function of x.

2. Frequency ω0 inside the Stoner continuum

Now we turn to the case that there are Stoner excitations
with energy ω0. In this case, the resonance condition (25)
cannot be fulfilled exactly anymore, as χKS(ω0) ceases to
be Hermitian and a nonzero phase is introduced between the
driving field and the Kohn-Sham response. Some eigenvalues
of I − χ±

KS(ω)Kxc(ω) can nevertheless become small and
strongly enhance certain eigenvalues of Lχ (ω). The latter
might feature a clear peak with maximum at ω0. If the density
of Stoner excitations around ω0 is small and weakly depends
on ω, the peak will take the form of Lorentzian-like resonance.
Its nonzero width signifies that the corresponding spin wave is
not an exact eigenstate and features a finite lifetime. Physically,
the attenuation is interpreted as a consequence of hybridization
of the spin-waves with Stoner excitations. It is called Landau
damping. In the region of dense Stoner continuum, i.e., where
the Hermitian part of χKS(ω) becomes comparable with its
anti-Hermitian part, no well-defined spin waves form, leading
to the phenomenon of spin-wave disappearance. We will
visualize these different regimes on concrete examples in
Sec. IV.

It is important to note that for a particular frequency ω

both the real part, which determines the magnon energy in
the first line, and the imaginary part of the KS susceptibility
(responsible for damping) are determined by the Stoner
transitions in the system. The imaginary part is given by “actual
transtions” in the sense that only Stoner pairs with energy
differences equal to ω contribute to it. On the other hand the
real part is determined by both the “actual transitions” and
“virtual transitions,” as it involves an energy integral over all
Stoner excitations.

We remark that the Landau mechanism is the only one
leading to the finite lifetime of collective excitations when
adiabatic approximation of the exchange-correlation kernel is
invoked.76 The neglected complex singularities of the Kxc(ω)
matrix could lead to the broadening of the spin-wave peaks also
outside the Stoner continuum and account for effects such as
magnon-magnon or magnon-electron scattering.

E. Sum rules

The following sum rule86 provides further insight in the
relation between the Stoner continuum and formation of spin
waves. One shows that the integration of the loss matrix
associated with transverse Kohn-Sham susceptibility over all
frequencies is related to the ground-state magnetization

∫
dx′L

[ ∫ ∞

−∞
dωχ+

KS(x,x′,ω + i0+)

]
= −2πmGS(x). (32)

The sum rule for χ− differs only by sign in the right-hand
side of the above equation. Applying the Cauchy integral
one proves that the integrated loss matrix of the enhanced
transverse susceptibility is given by exactly the same expres-
sion providing the exchange-correlation kernel is taken to be
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frequency independent:∫
dx′L

[ ∫ ∞

−∞
dωχ±(x,x′,ω + i0+)

]
= ∓2πmGS(x). (33)

The same relation holds true for the lattice Fourier-transformed
susceptibilities defined by Eq. (A5):∫

dr′L
[ ∫ ∞

−∞
dωχ±

KS(r,r′,q,ω + i0+)

]

=
∫

dr′L
[ ∫ ∞

−∞
dωχ±(r,r′,q,ω + i0+)

]
= ∓2πmGS(r), (34)

where r,r′ ∈ �WS.
The above relation has a clear physical interpretation. The

self-consistency condition expressed by the Dyson equation
leads to the redistribution of the spectral density of spin-flip
excitations. As long as the frequency dependence of the
exchange-correlation kernel can be neglected, the integrated
spectral weight does not change. However, the character of
the excitations is now very different including spin waves and
hybrids between spin waves and Stoner transitions. In many
cases, in particular for small spin-wave momenta, most of
the spectral power is concentrated in the spin-wave peaks.
The surprising result that the Stoner excitations present in
the underlying system cannot be excited by the field of the
corresponding frequency may be understood as follows. In
the energy region of the Stoner continuum there exists a
significant phase shift between the external driving field and
the magnetization response given by χKS due to the large
anti-Hermitian part of the latter matrix. This results in the
induced exchange-correlation field that is out of phase with the
external driving field. In the next step, the induced exchange-
correlation field adds up to the external field and produces
again a contribution that is out of phase to both external
field and initial exchange-correlation field. This process to be
performed up to the self-consistency leads to the compensation
of the external field by the contributions of the induced
exchange correlation fields and the suppression of the Stoner
transitions.

III. COMPUTER IMPLEMENTATION

In this section we shall discuss major issues concerning the
actual numerical determination of the response functions. The
problem can be split into two parts, reflecting the structure of
LRTDDFT. First, one finds χKS on the basis of the knowledge
of the KS eigensystem. Second, the Dyson equation is solved
in order to determine the enhanced (physical) susceptibility.

The determination of the KS susceptibility is the most
computationally demanding part of the calculations. We begin
with formally noninteracting KS Green’s function

Gαβ(x,x′,z) =
∑

j

φj (xα)φj (x′β)∗

z − εj

, z ∈ C, (35)

where φj (xα)’s and εj ’s denote KS eigenfunctions and
corresponding eigenenergies. The numerical evaluation of
G is based on Korringa-Kohn-Rostoker method. The actual

representation of the GF in the multiple scattering formalism
is given in Appendix C.

By applying the Cauchy theorem one obtains the following
expression for the KS susceptibility87,88 (γ > γ ′ = 0+):

χ
ij

KS(x,x′,ω + iγ ) = − 1

2πi

∫ ∞

−∞
dε

× [fT (ε + iγ ′)Sij (x,x′,ε + ω + iγ + iγ ′,ε + iγ ′)
− fT (ε − iγ ′)Sij (x,x′,ε + ω + iγ − iγ ′,ε − iγ ′)
+ fT (ε + iγ ′)Sij (x,x′,ε + iγ ′,ε − ω − iγ + iγ ′)
− fT (ε − iγ ′)Sij (x,x′,ε − iγ ′,ε − ω − iγ − iγ ′)], (36)

where the S is the product of two KKRGFs,

Sij (x,x′,z1,z2) ≡ σ i
αβσ

j

γ δGβγ (x,x′,z1)Gδα(x′,x,z2). (37)

When working in k space, the product above is transformed
into a convolution of two Green’s functions over the Brillouin
zone; see Appendix C. The convolution converges badly
for energies z1,2 close to the real KS energies. This in
turn precludes the direct determination of the retarded KS
susceptibility.38 For computational expediency one calculates
the susceptibility for a set of the points in the upper complex
semiplane, away from the real axis. As shown in Appendix B,
in this case, the necessary energy integrations in Eq. (36) can
be reduced to integrations along finite complex contours, away
from the poles of the GFs. At the end of the calculations the
resultant susceptibility can be analytically continued to the real
axis to recover the real-time dynamics.

Note the presence of the Fermi-Dirac weight in Eq. (36).
The formulation presented avoids integration over energies
above the Fermi level. This is so because KKRGF contains
information about all KS states; see Eq. (35). Thus, the
serious technical problem of including explicitly unoccupied
KS orbitals, as is the case when evaluating χKS directly
from Eq. (8), is avoided.37 No finite basis set corrections
are necessary, either, when working with KKRGF,37,89–91 as
the multiple scattering problem is solved separately for every
complex energy. In this context, it is not clear how large
is the error introduced by the minimal energy independent
d-symmetry basis used by Lounis et al.,64,65 an approximation
avoided in this work. In our current study the major advantage
of using KKRGF is the possibility of an efficient description
of systems featuring surfaces and interfaces,92,93 in particular
films absorbed on a substrate. The construction of χKS taking
into account specific representation of KKRGF is given in
Appendix C.

It is convenient to cast the (x,x′) dependence into a
separable basis when solving the Dyson equation. This aspect
is discussed in Appendix A. Subsequently, Eq. (21) can be
solved by matrix inversion or, for frequencies away from the
spin-wave poles, iteratively. The CPU time necessary to solve
the susceptibility Dyson equation is negligible compared to
the time of computing the KS susceptibility.

Below we turn to the important question of the consis-
tent description of the Goldstone mode. As discussed in
Sec. II D, χ (q = 0,ω = 0) is a singular matrix with a diverging
eigenvalue signifying the formation of the Goldstone mode.
Seen alternatively, see Eqs. (31), the matrix

D ≡ I − χ±
KS(0)Kxc (38)
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features a vanishing eigenvalue corresponding to the eigenvec-
tor representing ground-state magnetization |mGS〉. This is the
consequence of the spin rotational invariance of the problem.

Because of the numerical inaccuracies the condition of zero
eigenvalue in the limit of q → 0 is not satisfied exactly since
the calculated Kohn-Sham susceptibility does not correspond
exactly to the ground-state exchange-correlation magnetic
field and ground-state magnetization. Below we discuss the
method to compensate for this error.63 Numerical diagonaliza-
tion of matrix D gives one eigenvalue that is very close to zero
and much smaller than other eigenvalues. In our calculations
for systems discussed in this paper this eigenvalue is typically
of the order of 10−3 whereas other eigenvalues are of the
order of unity. It is easy to verify that this small eigenvalue
corresponds to the eigenvector very close to |mGS〉. To obtain
the matrix with zero eigenvalue we proceed as follows. Upon
the diagonalization of the calculated D, the small eigenvalue is
set to zero and the remaining eigenvalues are left unchanged.
Using the original eigenvectors of D the corrected diagonal
matrix is transformed back into nondiagonal form. Because
of the high precision of the diagonalization routines the
corrected matrix Dcorr will have a zero eigenvalue with a
very high accuracy. Dcorr is now used to find the corrected
exchange-correlation kernel

Kcorr
xc = (χ±

KS(0))−1
(I − D). (39)

This corrected kernel corresponds to the calculated Kohn-
Sham susceptibility χ±

KS(0) in the sense of the fulfillment
of the Goldstone theorem and is used for the calculation of
the enhanced susceptibility for all q vectors and frequencies.
For the example of bcc Fe the uncorrected small eigenvalue
of D matrix in our calculation was ε ≈ 3.6 × 10−3 which
corresponded to the shift of the Goldstone mode from zero by
about 2.3 meV (compare to the energy width of magnon band
of order of 0.5 eV).

The methods to correct for the numerical deviations from
the requirement of the Goldstone theorem suggested by Lounis
et al.,65 Kotani et al.,66 and Şaşıoğlu et al.70 are all based on
the same general idea of bringing in necessary correspondence
of the unenhanced susceptibility and underlying potential
expressed by Eq. (31). That is also the essence of our
approach. Our correction of one eigenvalue of order of 10−3

should be compared with the 2%–12% correction for the
exchange-correlation kernel reported by Lounis et al.65 and
the 50% correction for the screened Coulomb interaction of
Şaşıoğlu et al.70 that demonstrates the robustness and accuracy
of our method.

Finally, we mention that the computations of KS sus-
ceptibility can be massively parallelized and we resorted to
the message passing interface (MPI).94–96 The calculations
of nonenhanced susceptibility for every frequency and wave
vector are essentially independent from each other and can
be performed on separate processors. No interprocessor
communication is involved in this mode and the effectiveness
of parallelization increases linearly with the number of pro-
cessors even when their number is as big as several thousand.
The most time-consuming calculations presented in this paper
required several days of computational time on a modern
64-processor machine.

IV. NUMERICAL RESULTS AND DISCUSSION

The standard picture of magnons in itinerant ferromagnets
is based on the random-phase approximation treatment of the
uniform electron gas.1 In this model the only spin-wave branch
evolves from the zero-energy Goldstone mode. At q = 0, the
whole spectral power of the Stoner continuum is transferred to
the magnon pole; see Sec. II D. As the momentum increases the
energy of the magnon rises (∼ q2 for small momenta) and its
lifetime remains infinite until the magnon band makes contact
with the Stoner continuum, where the spin wave abruptly
looses its resonant character and cannot be considered as a
well-defined excitation. The strength of the latter effect, called
“spin-wave disappearance,”97 follows from the properties of
the uniform electron gas. For the frequencies corresponding to
Stoner transitions the imaginary part of the KS susceptibility
is practically everywhere comparable in magnitude to its real
part.

Real materials feature much richer spin dynamics. There are
at least two important reasons for this qualitative difference
with the uniform electron gas. The first is the formation of
atomic magnetic moments resulting from highly nonuniform
spatial distribution of charge and spin densities. Although
the atomic magnetic moments are formed by the itinerant
electrons, the strong intra-atomic exchange interaction keeps
them well defined even at elevated temperatures. This feature
is the reason for the usefulness of the Heisenberg model
of interacting atomic spins in the discussion of the physics
of itinerant-electron magnets. The strongly nonuniform dis-
tribution of magnetization on the atomic length scale leads
to two further effects not present in the uniform electron
gas. First, multiple spin-wave branches form for momenta
from the first Brillouin zone of the system.39,40 Second,
not the entire spectral weight of the Stoner continuum is
shifted to the Goldstone mode for q = 0; part of it resides
in the optical spin-wave modes and the residual Stoner
continuum.

The second reason is the complexity of the Stoner contin-
uum reflecting the rich electronic structure of real materials.
The latter is always of a multiple-band type; the bands differ
strongly from each other in the character of the hybridization
of the atomic s, p, and d states of the same and different
atoms. It is common to characterize the electronic structure of
a ferromagnetic system by the exchange splitting � = Im

where I is the so-called Stoner parameter of the material
and m is the magnetic moment per atom. It is, however,
very important that � characterizes the energy splitting only
between the 3d states of similar spatial form. On the other
hand, the Stoner continuum contains the spin-flip transitions
between all available pairs of electron states with opposite spin
projections. For a given energy and wave vector the value of
the spectral density of the Stoner transitions is determined by
the number of the states available for the transitions weighted
with the respective matrix element. It depends crucially on the
overlap of the wave functions of the initial and final electronic
states. For the states separated by the exchange splitting �,
the overlap of the wave functions is large which leads to
high spectral density of the Stoner transitions around this
energy. As follows from the discussion in Sec. II D, a strong
destructive influence of the Stoner transitions on the spin-wave
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states is expected for spin waves forming in this frequency
range. In many systems, however, the value of � exceeds
substantially the spin-wave energies and the corresponding
Stoner transitions cannot contribute to the Landau damping.
The latter is governed by the low-energy part of the Stoner
spectrum involving the electron transitions between states with
possibly very different orbital character and therefore with
a low transition probability. The low intensity of the Stoner
spectral density at given q and ω leads to the weak Landau
damping. As a result, the spin waves corresponding to these q
and ω remain well defined.

Obviously, the form of the Stoner continuum, and in
particular its low-energy part, is strongly system dependent
reflecting details of the electronic hybridizations in the system.
Not only the chemical composition but also the dimensionality
of the material exercises strong influence on these properties.
In ultrathin films, the presence of the nonmagnetic substrate
brings the states of the magnetic film in contact with the
states of the substrate, which complicates further the electron
spectrum and correspondingly the Stoner continuum. In
Ref. 41 we showed that arguments based on the simplified
analysis of the dimensionality aspects are not sufficient

−
L[

χ
(q

,ω
)]

ω

q = (0.1, 0, 0)2π/a

−
L[

χ
(q

,ω
)]

ω

q = (0.26, 0, 0)2π/a

−
L[

χ
(q

,ω
)]

ω

q = (0.32, 0, 0)2π/a

−
L[

χ
(q

,ω
)]

ω

q = (0.37, 0, 0)2π/a

−
L[

χ
(q

,ω
)]

ω

q = (0.53, 0, 0)2π/a

FIG. 1. (Color online) Examples of spin-flip spectra in bcc iron, atomic units, for different momenta along (100) direction. The largest
eigenvalues of respectively enhanced and KS loss matrix are shown. Low-energy spin-wave peaks have simple Lorentzian shapes small
linewidths and carry substantial spectral power. Above the critical energy of 82 meV corresponding to qc = 0.35 2π

a
wave vector the spin-wave

band enters abruptly a region of dense Stoner continuum. The spin-wave peaks become broad, acquire irregular non-Lorentzian shapes reflecting
the energy dependence of the density of Stoner continuum, and carry much smaller spectral weight.
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to predict the properties of the spin-wave damping in the
magnetic films. The concrete details of the electronic structure
are essential. Depending on these details, the interpretation
of the features of the spectral density of spin-flip excitations
varies from the infinitely living Heisenberg-type spin-wave
modes, through moderately damped well-defined magnons,
up to the spin-wave disappearance effect.

Below we report a systematic comparison of the spin-wave
damping in the bulk and film forms of Fe, Co, and Ni. We
show that the trends in the dimensionality dependence of the
spin-wave properties are different for different elements and
interpret them on the basis of the analysis of the underlying
electronic structure and spin-flip spectrum. We primarily
analyze spin-wave spectra based on the eigensystem of the
loss matrices. The energy ω0 of the magnon is identified
with the energy position of the spin-wave peak maximum.
The full width at the half maximum (FWHM) of the peak
gives the inverse lifetime of the excitation. We present also the
cases where the energy dependence of the eigenvalues cannot
be described by a well-defined peak. We briefly assess the
applicability of the adiabatic methods to estimate frequencies
of short-wavelength magnons.

A. Fe

1. Bulk bcc Fe

According to our calculations, the spin-wave disappearance
effect is particularly pronounced in the bcc Fe; see Figs. 1
and 2. Above the critical energy of 82 meV corresponding
to the qc = 0.35 2π

a
wave vector the spin-wave band enters

abruptly a region of dense Stoner continuum and the intensity
contained in the spin-wave peak drops by an order of
magnitude. The strong loss of spin-wave intensity above
around 80 meV was clearly observed in the neutron scattering
experiments; see, e.g., Ref. 97. The effect is rather anisotropic
and sets in mainly along the �-H direction, which nicely
matches the experiment as well.97 Figure 1 shows clearly
that the strong damping is directly related to the appearance

FIG. 2. (Color online) Spin waves of bcc iron obtained using
LRTDDFT implementation described in this paper. Solid circles (�)
correspond to the maximum of spin-wave peak, while the error bars
denote full width at half maximum (FWHM) of the peak. Solid line
denotes spin-wave energies obtained from magnetic force theorem
(MFT). Strong increase of Landau damping in all directions in the
Brillouin zone (spin-wave disappearance effect) is seen for spin-wave
energies above 82 meV. High-energy spectrum along �HN directions
is dominated by Stoner excitations and cannot be represented by a
simple Lorentzian. Representative examples of the spectral power
functions are given in Fig. 1.

FIG. 3. (Color online) The largest eigenvalues of loss matrix
associated with unenhanced (KS) susceptibility for a selected mo-
mentum in bulk bcc Fe. There are several eigenvalues of comparable
magnitude corresponding to transitions between different KS orbitals.
On the contrary, the loss matrix associated with the enhanced
susceptibility features only one eigenvalue, identified as a single
spin-wave mode of the monatomic material.

of low-energy Stoner excitations at qc. The origin of these
low-energy Stoner transitions can be traced back to the
relatively large density of majority d spin electrons at the
Fermi level in this material.

Also the energies of spin waves in the adiabatic local density
approximation correlate nicely with experimental values.2,56

According to our data for q < qc the dispersion can be well
represented by the biquadratic fit

ω0(q) = Dq2(1 − γ q2) (40)

with parameters D = 252 meVÅ
2

and γ = 0.28 Å
2
. Experi-

mentally reported values for D vary between 266 meVÅ
2

and
307 meVÅ

2
.30,97–100

For the well-defined, low-energy spin waves, the loss matrix
of enhanced susceptibility features only one large eigenvalue.
The associated eigenvector corresponds to the practically
rigid rotation of magnetic moments. This result justifies the
applicability of the Heisenberg model to describe low-energy
magnons. For high-energy strongly damped magnons, the
spectrum contains only one dominating eigenvalue as well,
but the corresponding eigenvectors involve small but clear
deformation of the atomic moment. On the other hand, the
unenhanced susceptibility features multiple eigenvalues of
comparable magnitude, see Fig. 3, corresponding to transitions
between different KS orbitals.

2. Fe films

Contrary to the bcc bulk case, the freestanding monolayers
of Fe, both of (100) and (110) crystallographic orientations,
feature well-defined spin waves for all momenta;41,44–47,101

see also Figs. 4 and 5. This property can be traced back to
the enhanced exchange splitting of d-symmetry orbitals and
the band narrowing in the free film. It effectively removes the
majority-spin d states from the Fermi level,102,103 resulting
in the small density of low-energy Stoner excitations. The
same behavior is observed in unsupported Ni and Co (100)
monolayers, which will be discussed later.

When the monolayers of Fe are deposited on a substrate the
spin dynamics is modified. We demonstrated recently41 that
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FIG. 4. (Color online) Spin waves of Fe(100) monolayer free-standing and supported on Cu(100) surface. Solid lines correspond to ω0(q),
while the width of the shaded region to FWHM. The spin dynamics of the freestanding and supported monolayers differ weakly. From Ref. 41.

the impact of the substrate varies strongly depending on the
substrate and its orientation. Explicit LRTDDFT calculations
for the Fe/Cu(100) system have been performed by us
for one41 and three monolayer12 coverages. The damping
increases somewhat compared to the freestanding case, but
the spin waves are well defined in the whole two-dimensional
Brillouin zone; see Fig. 4. The substrate-induced renormaliza-
tion of magnon energies turns out to be small. In the case of
Fe/Cu(100) the states of the substrate hybridize rather weakly
with the states of the magnetic overlayer. The films feature
small density of majority-spin states at the Fermi level and the
spin dynamics of the films resembles qualitatively the one of
freestanding layers.

The situation is dramatically different in Fe/W(110), as
is evident from Fig. 5. The substrate renormalizes magnon
energies and strongly enhances the damping. Here, an
important role is played by the interface electronic complexes,
formed by hybridized surface states of W(110) and electron
states of the film.41 The complexes provide an efficient source
of Stoner pairs in the region of the magnetic overlayer. The
strongly damped collective precession has been observed
experimentally at the zone boundary in the 1 ML Fe/W(110)
system.104 We emphasize, however, that even for Fe/W(110)
the region in the Brillouin zone featuring the spin-wave
disappearance effect is small compared to the bulk case.
Experiment105 shows also that the damping-to-energy ratio
in a 2 ML Fe/W(110) film decreases compared to the
single-monolayer case. The trend correlates well with our
calculations; see Fig. 6. We remark that the system is char-

acterized by a quite complex structure and in our calculations
we took into account the atomic relaxations.106–108

In the 2 ML Fe/W(110) system there are two types of
nonequivalent Fe atoms and the loss matrix associated with
the enhanced susceptibility features two large eigenvalues
corresponding to the acoustic and optical spin-wave modes.
The spectra are qualitatively very similar to those of hcp Co
presented in Sec. IV B 1.

The observed magnon energies are roughly 40% smaller
than predicted by our theory. The reason for the discrepancy
is still not clear, especially in light of the good performance
of ALSDA in bulk bcc iron.109 It is worth remarking here
that the LRTDDFT performs much better compared to model
Hamiltonians, in which the spin-wave energies of 1 ML
Fe/W(110) are grossly overestimated.45,71,104 Furthermore,
the experiment did not reveal any presence of an optical
branch in the 2 ML case. It has been conjectured110 that
SPEELS could probe only the modes with significant am-
plitude in the top layer, because of a limited penetration
depth of electrons. However, our calculations do not predict
the formation of modes localized at the surface of the film.
Therefore, the excitation of both types of spin waves should be
expected.

For large wave vectors both spin-wave peaks in the spectral
density are substantially broadened and might appear as a
single feature in the spectrum, especially if the finite SPEELS
resolution is taken into account. On the other hand, in the
center of the zone the optical mode should be discernible.
Possibly, the optical mode, being substantially broadened even

FIG. 5. (Color online) Spin waves of Fe(110) monolayer freestanding and supported on W(110) surface. Solid lines correspond to ω0(q),
while the width of the shaded region to FWHM. The surface state of W(110) leads to a qualitative change in the spin dynamics of the absorbed
film. From Ref. 41.
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FIG. 6. (Color online) Spin waves of 2 ML Fe/W(110). Two magnon modes can be discerned in the whole two-dimensional Brillouin zone.
Experimental points come from Ref. 105.

for q = 0, is lost in the background of the signal dominated
by the acoustic mode.

We remark that in the case of 1 ML Fe/W(110) the
MFT yields the spin-wave energies101,109 of similar values
as LRTDDFT; the same is the case for 1 ML Fe/Cu(100)
studied by Pajda et al.111 Udvardi et al.112 considered also
the relativistic corrections. In the relativistic limit the spin
is coupled to the lattice and the Hamiltonian looses its
spin-rotational invariance. As a consequence the lowest energy
magnon does not have vanishing frequency and the Goldstone
mode disappears. Udvardi et al. show that in light transition
metals the relativistic corrections to the spin-wave spectra
are of minor importance on the energy scale of exchange
interactions. Simultaneously, they predict the appearance of
a series of weakly dispersive spin-wave bands associated
with the dynamics of small magnetic moments induced in
the Cu substrate. These additional resonances are absent in
our data, also in the case of Fe/W(110), where the moment
induced in the interface layer of W is sizable (≈0.14 μB) and
antiferromagnetically aligned with the film magnetization. As
has been already discussed113 the appearance of additional
spin-wave modes related to the induced moments is an artifact
of the adiabatic approach where small induced moments are
treated as independent adiabatic degrees of freedom. The
methods based on the evaluation of magnetic susceptibility

are better suited for the investigation of such “induced”
magnetization dynamics.39

B. Co

At ambient pressure and low temperature cobalt is a
ferromagnet featuring ε (hcp) structure.114 As the temperature
increases a transition to γ (fcc) structure occurs at around
750 K and above Curie temperature of around 1400 K the
system becomes paramagnetic. To our knowledge, all previous
ab initio studies of spin-waves in Co employ the adiabatic
approximation.2,51,56

1. ε(hcp)-Co

An experimental lattice constant of hcp cobalt ahcp =
4.738 au was used.115 The calculated magnetic moment per
Co atom reads 1.61 μB.

The loss matrix associated with the susceptibility features
two large eigenvalues for q in the first Brillouin zone and we
interpret them as acoustic and optical spin-wave branches; see
Fig. 7. The positions and widths of the peaks are presented
in Fig. 8 together with adiabatic spectra obtained from the
magnetic force theorem. Our methods, MFT and STSM, yield
rather similar energies. For the qz = π

c
plane, both modes

are degenerate; this is a consequence of the symmetry of the
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FIG. 7. (Color online) Examples of spin-flip excitation spectrum in hcp Co, atomic units, for two momenta along �A direction. Panels (a)
and (b) present the two dominant eigenvalues of the loss matrix, Lχ (q,ω); the eigenvalues correspond to the acoustic and optical spin-wave
branches. As expected from symmetry arguments, they become degenerate for qz = π

c
. Panels (c) and (d) show the imaginary part of the

Fourier-transformed susceptibility, ImχKK(q,ω), for momenta inside and outside the first Brillouin zone. The momenta differ by a reciprocal
lattice vector. ImχKK(q,ω) is probed in the neutron scattering experiments. By varying the momentum one can access the optical and acoustic
spin wave branch.

hcp lattice. Theoretical spin-wave energies correspond very
well to the experimental results along the �M direction, but
are larger along the c axis (�A) direction; see Fig. 8. For
small momentum transfers the peak position can be very well
described by the biquadratic fit; see Eq. (40). Table I presents
the results of the fit for q � 0.3 2π

ahcp
along different directions.

Note that for the hcp system the dispersion relation for small
q is isotropic in the basal plane. Our parameters D weakly
depend on the direction in the reciprocal space because of
the limited accuracy of the biquadratic function in the fitted
interval of the wave vectors.

Additionally to the spectrum of the loss matrix, L[χ (q,ω)],
we present in Fig. 7 the imaginary part of the Fourier transform
of the enhanced susceptibility, ImχGG(q,ω), for two selected
momenta. By varying the momentum transfer in the inelastic
scattering experiments, one can modify the intensity of peaks
coming from the optical and acoustic spin waves.117 In the
example of hcp Co, along the �A direction, only the acoustic
magnons are observed in the first Brillouin zone, while the

TABLE I. Parameters of the biquadratic fit of Eq. (40) for different
direction in Brillouin zone in hcp Co.

Direction D ( meVÅ
2
) γ (Å

2
)

�M 539 0.27
�K 520 0.26
�A 529 0.32

optical ones are detectable only in the second Brillouin zone.
Perring et al.116 succeeded in detecting spin waves for q
beyond the first Brillouin zone along the (00ξ ) direction, thus
accessing the optical SW branch of the �A segment. The
formalism of this paper predicts that the two branches exist
in the whole Brillouin zone. The acoustic mode corresponds
to the moments oscillating in phase and the optical mode in
antiphase. The energy of the optical mode is overestimated in
ALSDA. The optical magnons are of much shorter lifetime
than the acoustic magnons because of the higher density of the
Stoner transitions, as expected for higher energies. Character-
istic peaks in the FWHM curves correspond to the areas where
the spin-wave branch crosses the region of larger density of
Stoner excitations. The damping of spin waves is moderate in
the case of Co and peaks have a well-defined Lorentzian shape.
All the majority spin d electrons are occupied and located
rather far from the Fermi level. As a consequence, the low-
energy Stoner excitations involve primarily s↑ and p↑ to d↓
transitions which results in the small Stoner intensity because
of weak overlap of the wave functions of the initial and final
states.

Earlier theoretical works on spin susceptibility of hcp cobalt
utilize an empirical tight-binding scheme.118,119 They predict
correctly the energies of acoustic modes, yielding however too
low values of optical modes, in fact in a range where they were
not detected despite being experimentally observable. Except
for the �A segment the optical branch energies predicted in our
study lie above 0.5 eV, the maximal energy addressed in the
calculations mentioned, and one guesses that certain complex
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FIG. 8. (Color online) Spin waves of of hcp cobalt. (a) Position of the peak ω0(q) obtained from the enhanced susceptibility. The energies
of spin waves are degenerated within the numerical error along ALHA directions. The experimental energies come from Refs. 98 and 116.
(b) Adiabatic magnon spectra obtained by means of magnetic force theorem. (c) Half-widths at half maximum; FWHM ≡ 2β(q).

structures of the spectral density of spin-flip excitations (see
the case of bcc Fe in Fig. 1) might have been erroneously
identified as the optical mode.

2. γ (fcc)-Co

The lattice constant employed in the calculations was
determined from the condition of equal atomic volumes for
hcp and fcc systems, yielding afcc = √

2ahcp. The ground-state
magnetic moment is very close to the one obtained for the hcp
phase.

The loss matrix of the enhanced susceptibility features only
one large eigenvalue. The high-wave-vector magnons show
slightly higher energy, when compared to the MFT results; see
Fig. 9. The spin waves are clearly damped, but the spectrum
can be well described by a Lorentzian peak for all momenta;
no spin-wave disappearance is observed.

Inelastic neutron scattering experiments revealed magnons
of slightly smaller energies.121,122 The stiffness constant esti-
mated from our data amounts to D = 492 meVÅ

2
, while D =

369 meVÅ
2121 and D = 356 meVÅ

2122 were reported. The
results of spin-polarized electron energy loss spectroscopy32

and inelastic scanning tunneling spectroscopy120 match rather
well the neutron scattering data. The difference with our
calculations can be traced back to the finite temperature

of the experiment. For the data extracted from the film
measurements32,120 the Cu substrate might influence the
results, but our calculations reported in the next section exclude
this possibility. In the case of bulk (neutron) measurements fcc
Co must be alloyed with about 6% of Fe for the sake of stability,
which might further contribute to the quantitative differences
between the theory and experiment.

FIG. 9. (Color online) Spin waves of fcc Co. Solid circles (�)
correspond to ω0(q), while the error bars denote full width at
half maximum (FWHM) of the peak. Solid line denotes spin-wave
energies obtained from MFT. Solid triangles (�) stand for the
experimental estimation of the dispersion relation by Balashov
(Ref. 120).
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FIG. 10. (Color online) Spin waves of Co(100) monolayer free and supported on Cu(100) surface. Solid circles (�) correspond to ω0(q),
while the error bars denote full width at half maximum (FWHM) of the peak. Solid line denotes spin-wave energies obtained from MFT.

Rather limited data exist regarding the lifetime of magnons.
Vollmer et al.32 were able to perform constant q scans and
provided an estimate of FHWM of about 40–75 meV. This
matches quite well our low-energy results.

3. 1 ML Co/Cu(100)

The spin waves of 1 ML Co/Cu(100) are clearly of higher
energy than in the bulk fcc case; see Fig. 10. Interestingly,
the Landau damping is slightly smaller. Compared to the
freestanding monolayer we observe almost no magnon energy
renormalization and moderate increase of the Landau damp-
ing. This behavior is qualitatively very similar to the 1 ML
Fe/Cu(100) case.

C. Ni

1. Bulk fcc Ni

The transverse magnetic susceptibility of bulk fcc Ni
has been earlier studied using different first-principle
approaches.37,68–70 All previous calculations and the present
study performed by us, see Figs. 11 and 12, yield a very
similar picture. The spin dynamics of nickel differs strongly
from that of iron; in particular, no spin-wave disappearance is
found. Magnon peaks are well defined in practically the entire
Brillouin zone, characterized by a relatively small Landau
damping. This is rather surprising, realizing that the Stoner
continuum is pronounced in Ni at relatively low energies,

FIG. 11. (Color online) Spin waves of fcc nickel. Solid circles
(�) correspond to ω0(q), while the error bars denote full width at
half maximum (FWHM) of the peak. Solid line denotes spin-wave
energies obtained using MFT and STSM; the two methods differ
significantly for this system. Most of the spectrum can be described
using Lorentzian distribution function, except most energetic spin
waves along [ξξ0] direction. An example of such a irregular spectrum
is presented in Fig. 12.

corresponding to the exchange splitting predicted by LSDA to
be only about 0.7 eV. The effect of the low damping of the Ni
magnons has its roots in the fact that the spectral power of the
Stoner continuum is pronounced mostly around the exchange
splitting energy and is not spread over a wide range of energies
as in Fe. Furthermore, all the majority spin d electrons are
occupied and located well below the Fermi level. Therefore,
the Stoner transitions involving these states are not effective at
the energies characteristic of magnon excitations in fcc Ni. In
this respect the system is similar to hcp and fcc Co.

Another special property of Ni is a pronounced non-
monotonous dependence of damping on q, seen most clearly
along [ξ00] in the Brillouin zone; see Fig. 13. At the X point
the spin waves are very weakly Landau damped. This behavior
originates again from the very narrow Stoner continuum at
the X point; it is almost entirely concentrated around the
exchange splitting energy, while at the � ≡ [ 1

2 00] point it
has a significant contribution at smaller energies. This leads
to a very interesting effect at the X point where the spin-wave
peak (identified by a small eigenvalue of I − χ±

KS(0)Kxc matrix)
appears just below a peak of the Stoner continuum. Existing
experimental studies point to a rather monotonous increase
of the magnon linewidth with increasing momenta.123,124

However, the momenta close to the zone boundary are
difficult to probe experimentally using thermal neutrons. We
conjecture that the coexisting magnon and Stoner peaks were

FIG. 12. (Color online) An example of spin-flip excitation spec-
trum in Ni, −L[χ (q,ω)]λ, atomic units. Only eigenvalue of the loss
matrix dominates. One clearly sees the energy dependence of the
Stoner continuum reflected in the behavior of enhanced susceptibility.
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FIG. 13. (Color online) Two examples of spin-flip excitation
spectrum in Ni, atomic units, along (100) direction. The non-
monotonous dependence of the damping with the magnon momentum
is clearly seen. Additionally, close to the X point in the Brillouin zone
a clear coexistence of the spin-wave peak and a Stoner continuum
peak can be observed.

not separately resolved, giving rise to one broad spectral
feature.

Much attention has been paid to the appearance of the
so-called “optical spin-wave mode” experimentally detected
in fcc Ni.70,124 In our calculations a low-energy double magnon
peak structure appears only in a very small part of the Brillouin
zone around q = (0.15,0,0)2π/a; see Fig. 14(a). The feature
is strictly absent in the Heisenberg model, as it features only a
single degree of freedom in monatomic Ni. We note, however,
that (i) the loss matrix of the enhanced susceptibility features
only one large eigenvalue in this energy region, and (ii) both
peaks are associated with similar eigenvectors and therefore
describing similar magnetization shape. In this respect the
double-peak structure clearly differs from the “real” optical
spin-wave mode of hcp Co arising from the presence of two
magnetic atoms in the primitive cell. The splitting of the
peak was explained by Karlsson et al.69 by analyzing the
non-enhanced susceptibility in the region of the double-peak
structure, see Fig. 14(b), characterized by an appearance of a
rather narrow low-energy Stoner peak. The corresponding real
part of the susceptibility changes nonmonotonously with the
energy bringing an eigenvalue of I − χ±

KS(0)Kxc close to zero
twice on the energy scale of the peak splitting.

Unfortunately, the agreement with experiment is much
worse regarding the magnon energies. The stiffness con-

FIG. 15. (Color online) Magnon energies in fcc Ni in the limit
of small momenta obtained from dynamic susceptibility (�) and
MFT (line). In the limit both methods yield identical results. This
mathematical identity (Refs. 57,85) provides a neat check for our
numerics.

stant extracted from our data equals 851 meVÅ
2

and is
roughly twice as large as the experimentally observed
374–433 meVÅ

2
.122,123 At larger momenta, the same factor

two discrepancy between measured and calculated magnon
energies is seen. The problem is associated with the overesti-
mation of the exchange splitting in LDA for Ni.43,70

The adiabatic STSM and the results based on the dynamic
susceptibility calculations agree very well with each other but
yield clearly higher energies than MFT; see Fig. 11. As has
already been pointed out by Grotheer et al.,56 the systematic
error of the MFT method57 is particularly pronounced in Ni,
owing to its small exchange splitting. Nevertheless, the spin-
wave stiffness obtained from all adiabatic methods is identical
to the one obtained from dynamic susceptibility; see Fig. 15.

2. 1 ML Ni/Cu(100)

Similar to the case of Fe and Co, the magnons in the
freestanding monolayer of Ni (100) are weakly damped, as
seen in Fig. 16. Their energies are much higher than in the fcc
Ni bulk. However, upon absorption on Cu(100) surface, the
spin dynamics of the system changes dramatically and in a way
that is in strong contrast to the other two transition metals. Spin
waves in 1 ML Ni/Cu(100) are defined only close to the center

(a)

−
L[

χ
(q

,ω
)]

ω

q = (0.15, 0, 0)2π/a

(b)

−
χ

K
S

0
0

(q
,ω

)

ω

q = (0.15, 0, 0)2π/a

FIG. 14. (Color online) (a) Double-peak feature in bulk fcc Ni. (b) Behavior of the corresponding Kohn-Sham susceptibility.
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FIG. 16. (Color online) Spin waves of Ni(100) monolayer free and supported on Cu(100) surface. Solid circles (�) correspond to ω0(q),
while the error bars denote FWHM. Solid line denotes spin-wave energies obtained from MFT. Spin waves with large momenta are not
well-defined excitations in the case of the absorbed film, while for the freestanding film they exist in the whole Brillouin zone.

of the Brillouin zone and strongly damped for larger momenta.
Two examples of spin-flip spectra are shown in Fig. 17. The
hybridization of the states of the Ni overlayer and the Cu
substrate states leads to (i) reduction of the exchange splitting
(the Stoner excitations for q = 0 are centered around 218 meV
vs 700 meV in the bulk), reflected in the smaller magnetic
moment (0.27 μB vs 0.62 μB in the bulk), and (ii) larger energy
width of the Stoner continuum. These two effects result in the
enhanced density of low-energy Stoner excitations, washing
out most of the sharp high-energy spin-wave features. In 1 ML
Ni/Cu(100) the localized moment picture of spin excitations
(i.e., the Heisenberg model) fails altogether. The Landau maps
of 1 ML Ni/Cu(100), see Fig. 18, are qualitatively similar to
the case of the Fe and Co monolayer41 but characterized by
much broader hot spots and more intense diffused background.
This property reflects strong hybridization of the electronic
states in the film with the substrate electrons.

V. CONCLUDING REMARKS

The spin-flip dynamics of elementary 3d transition-metal
ferromagnets is rich and strongly system dependent. The
magnons of Co live relatively long for momenta in the whole
Brillouin zone. One might be tempted to associate this property
with the large exchange splitting of bands, which usually
results in the Stoner continuum pronounced at high energies,
but such explanation fails badly for Fe, which features even
larger exchange splitting and at the same time severe Landau

damping of spin-waves. The effect is even more spectacular
in Ni, where the band splitting is only a bit larger than the
typical magnon energy. Owing to the compactness of the
Stoner spectrum and the small density of majority spin d states
at the Fermi level, Ni features rather long-living magnons
in most of its Brillouin zone. We see that these are fine
properties of Stoner continuum which determine the spin-wave
attenuation. Obviously, the first-principles approaches based
on the calculation of transverse magnetic susceptibility are
indispensable in the consistent description of spin dynamics
in real materials.

This statement holds particularly true for the spin excita-
tions of ultrathin films. Freestanding monolayers studied in
this paper show usually well-defined long-living spin waves
for all momenta. Upon absorption of the magnetic film on a
nonmagnetic substrate the damping generally increases, but
the details of the spin-flip dynamics are very sensitive to the
details of the electronic hybridization between the electron
states of substrate and film. Monolayers of Fe [supported
both on Cu(100) and W(110) surfaces] feature relatively long-
living, well-defined spin waves in most of the two-dimensional
Brillouin zone, in striking contrast to the bulk bcc phase. In
1 ML Ni/Cu(100) spin waves exist only for small momenta;
the spin-flip spectrum in the rest of the Brillouin zone is
dominated by incoherent Stoner excitations. The situation is
again opposite to the one in the bulk fcc Ni bulk characterized
by generally long-living high-energy spin-flip dynamics. The
spin dynamics of cobalt assumes an intermediate position and

−
L[

χ
(q

,ω
)]

λ

ω

q = (0.5, 0)2π/a

−
L[

χ
(q

,ω
)]

λ

ω

q = (0.5, 0)2π/a

FIG. 17. (Color online) Example of spectra in 1 ML Ni(100) and 1 ML Ni/Cu(100), atomic units. q = (0.5,0)2π/a corresponds to X̄
point in the Brillouin zone. In the supported monolayer, for large wave vectors, the Stoner continuum becomes very broad (in contrast to the
freestanding film) and the Landau damping completely washes out any sharp spin-wave features.
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FIG. 18. (Color online) Landau maps of 1 ML Ni(100) and 1 ML Ni/Cu(100): intensity of Stoner transitions with momentum q =
(0.5,0)2π/a (X̄ point) and energy ω0 = 400 meV in the Ni layer resolved for different final k vectors in the first Brillouin zone. The Stoner
states cause the damping of magnons presented in Fig. 17.

changes weakly upon the transition from the bulk to 1 ML
Co/Cu(100).

Based on the examples above we suggest the following
classification of the spin-wave Landau damping in 3d magnets.
We distinguish three regimes: (A) For small wave vectors the
acoustic magnon pole appears outside the energy range of
the Stoner continuum and the spin waves resemble closely
the atomic-spin-like precession assumed in the Heisenberg
model. For the elemental transition metal ferromagnets this
region contains typically only a very small part of the Brillouin
zone, whereas it might span a large part of the q space
in the case of half-metals.39 (B) in the energy region of
low-intensity Stoner excitations (ReχKS � ImχKS �= 0) the
trend to form the coherent precession of atomic moments
is still observed. However, it is opposed by the one-electron
Stoner transitions at this energy. This hybridization results in
a broadening of the spin-wave peak and, respectively, in finite
lifetime of the magnon. The magnons, however, can still be
regarded as well-defined excitations. This regime is absent in
the uniform electron model, but much of the spin-flip dynamics
in Fe, Co, and Ni falls into this category. (C) Finally, the
“spin-wave disappearance” regime corresponds to the situation
where the expected position of the magnon pole lies in the
energy region with high density of Stoner states. In this case
ReχKS ≈ ImχKS and no well-defined resonance peak can form
since the phase relationship between the external field and
the induced exchange-correlation field is destroyed due to the
intense excitations of incoherent Stoner pairs.

In different systems the relative importance of different
spin-wave damping regimes may vary. In this respect already
the comparison of the bulk 3d metals brings interesting
observations. In bcc Fe, along certain directions in the
Brillouin zone, the “spin-wave disappearance” regime sets
in very abruptly. In fcc Ni and fcc and hcp Co regimes A
and B dominate and practically no spin-wave disappearance
is seen. The case of ultrathin films can differ strongly
compared to the corresponding bulk system under the influence
of the dimensionality and the presence of nonmagnetic
substrate.

ACKNOWLEDGMENTS

PB acknowledges stimulating discussions with Vladimir
P. Antropov, Patrick Bruno, E. K. U. Gross, Balázs Győrffy,
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APPENDIX A: REPRESENTATION OF THE SPATIAL
DEPENDENCY OF SUSCEPTIBILITIES

The susceptibilities depend on two spatial arguments and
are represented in a separable basis as follows:

χ (x,x′) =
∑
λλ′

χλλ′ϕλ(x)ϕλ′(x′)∗, (A1)

where the functions ϕλ form a complete basis. χλλ′ is the
susceptibility matrix in this basis.

In this work, we mostly used the following function set,
referred to as the Y-Ch basis, to represent the susceptibilities.
The angular dependence in an atomic (Voronoi) cell s is cast
into real spherical harmonics Ylm(r̂) whereas the radial depen-
dence is represented by Chebyshev polynomials Chμ(ξ ):

ϕλ(x) ≡ 1

rs

Chμ(ξ[0,Rs ](rs))Ylm(r̂s)�s(x). (A2)

Here, rs ≡ x − ss , where ss is the center of the Voronoi
cell containing point x. �s(x) is the shape function equal
to 1 when x is inside cell s and 0 otherwise. In the atomic
sphere approximation, the Voronoi cells are substituted by
atomic spheres with radii Rs .rs ≡ |rs | and r̂s ≡ rs/rs .ξ[a,b](r)
is an invertible function mapping interval [a,b] into interval
[−1,1]. The additional multiplier r−1 in (A2) improves the
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convergence properties of the basis and is convenient when
solving the susceptibility Dyson equation. The composite
index λ = sμlm determines a supermatrix structure of the
susceptibility.

The Y-Ch basis offers a complete, accurate, and efficient
representation of the spatial dependencies of the suscepti-
bilities. Compared to other approaches64–66 no assumptions
regarding the nature of orbitals responsible for magnetism are
necessary: All orbitals are included on an equal footing. Also
the full spatial dependence of the exchange-correlation kernel
is taken into account. The number of necessary Chebyshev
polynomials per site per spherical harmonic needed for
accurate representation of the susceptibilities for systems
considered in this work varies between 8 and 16. The basis
functions are localized on atomic sites and, unlike the plane
wave basis, can be used equally well for representing the spatial
dependencies in the periodic solids, at surfaces and interfaces
and in finite clusters of atoms.

In the case when the cells are approximated with spheres,
the basis functions are orthonormal regarding slm indices
but not the Chebyshev index μ. Prior to eigenvalue analysis
it is convenient to transform the susceptibility matrices
into an orthonormal representation. We use the Löwdin
transformation125,126 based on the matrix square root algorithm
of Denman and Beavers.127

For systems featuring a discrete translational invariance, it
is convenient to express the quantities using the following
mixed r-q representation. We define the lattice Fourier
transformation

f (r,q) =
∑

R

f (r + R)e−iq R, (A3)

where the summation proceeds over the crystal lattice and r
belongs to the Wigner-Seitz cell �WS of the crystal. q is a vec-
tor in the first Brillouin zone �BZ. The retarded susceptibility
χij (r,r′,q) relates the components of the external field and the
induced density (the frequency argument has been suppressed)

δni(r,q) =
∑

j

∫
�WS

dr′χij (r,r′,q)
j (r′,q), (A4)

where

χ (r,r′,q) =
∑

R

χ (r + R,r′)e−iq R. (A5)

The (r,r′) dependency above is given in the Y-Ch basis.
The inelastic scattering experiments probe the imaginary

part of the Fourier-transformed susceptibility,84 obtained by
projecting it on the plane waves

ϕK(r) ≡ 1

�
1/2
WS

eiK r, (A6)

where r ∈ �WS and K is the reciprocal lattice vector. The
Fourier transformation is defined now as

χKK′(q) ≡ �−1
WS

∫ ∫
�2

WS

drdr′e−i(q+K) rχ (r,r′,q)ei(q+K′) r′
.

(A7)

K,K′ are reciprocal lattice vectors and q ∈ �BZ. The definition
is consistent in the sense that in uniform systems one obtains

χKK′(q) = χ̃ (q + K)δKK′ , χ̃ (q) =
∫

dxχ (x)e−iq x. (A8)

APPENDIX B: EVALUATION OF THE INTEGRAL
IN EQ. (36) AND ANALYTIC CONTINUATION

Our purpose is to transform the integral in Eq. (36) in such a
way that in the complex integration contours as few as possible
evaluations of KKRGF are performed close to the real axis.

This can be easily achieved in the case when ω = 0 and γ =
2nπkBT ≡ ωb

n,n ∈ Z, as Eq. (36) reduces to the Matsubara
susceptibility evaluated at bosonic frequencies35,38

χ
ij

KS

(
x,x′,iωb

n

) = 1

β

∑
n∈Z

Sij (x,x′,θm,θm−n), (B1)

where θn ≡ μ + iω
f
n , μ stands for the chemical potential, and

ω
f
n ≡ (2n + 1)πkBT is the fermionic Matsubara frequency.

We remark that the temperature is introduced everywhere in
this work for the computational expediency only, in order to
smooth the discontinuity of the Fermi-Dirac distribution. T

does not influence the results as long as it remains much smaller
than the characteristic bandwidth.128

The case ω �= 0 is more difficult to handle. Here we use the
procedure that we refer to as the nearly real axis approach.88

We take advantage of the periodicity of fT (z) on the imaginary
plane and consider only the case when γ = ωb

2M,Z � M > 0.
The first and the last terms of Eq. (36) can be computed rather
straightforwardly, since the Green’s functions involved are
evaluated on the same complex semiplanes (upper in the case of
the first term and the lower for the fourth term). The integration
contours can be deformed in order to perform the integration
away from the singularities corresponding to valence states, as
presented in Fig. 19. For energies ε well below the bottom of
the valence band Eb and above the core states Ec the respective
contours can be taken parallel to the real axis; in this case their
joint contribution reads

i

2π

∫ Eb−�

Ec+�

dε

(
fT

(
ε − ω

2
− i

γ

2

)
− fT

(
ε + ω

2
+ i

γ

2

))
× Sij

(
x,x′,ε + ω

2
+ i

γ

2
,ε − ω

2
− i

γ

2

)
, (B2)

where � > |ω/2|. In the vicinity of the core states the
integration contours must be deformed again so the KKRGF
evaluation is performed away from the singularities. The
contribution given by Eq. (B2) vanishes rigorously for ω = 0
and γ = ωb

n. In the case of finite ω it can still be safely
neglected, providing that kBT and ω are small.

The second and the third terms cancel each other only for
ω = 0 and γ = ωb

n. In the ω �= 0 case they are quite intricate
to compute, since they involve Green’s functions evaluated
simultaneously on both complex semiplanes. To minimize the
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FIG. 19. (Color online) Evaluating the first (a) and the fourth term (b) in Eq. (36) around the valence band. Crosses (×) denote the positions
of the fermionic poles θn. Part of the integration is transformed into the sums over fermionic frequencies (small circular contours around
selected θn). The integration weighted with the Fermi-Dirac distribution function128 can be approximated close to the chemical potential μ

using Sommerfeld expansion. This way of integration allows one to avoid evaluation of KKRGF close to its singularities originating from the
valence states; the valence band is marked with thick orange line. The sum of the integrals a, b, and the one given by Eq. (B2) gives joint
contribution of the first and fourth term in Eq. (36).

computational effort we rewrite the joint contribution of the
second and third terms as follows:

i

2π

∫ ∞

−∞
dε

(
fT

(
ε + ω

2

)
− fT

(
ε − ω

2

))
× Sij

(
x,x′,ε + ω

2
+ i

γ

2
,ε − ω

2
− i

γ

2

)

+ 1

β

−1∑
m=−M

Sij (x,x′,θm + ω + iγ,θm)

+ 1

β

M−1∑
m=0

Sij (x,x′,θm,θm − ω − iγ ). (B3)

The structure of the integral is presented in Fig. 20; it has been
“symmetrized” with respect to the real axis. The evaluations
of both GFs are performed now as far as possible from the
Kohn-Sham poles. When resorting to Sommerfeld expansion,
the integration is reduced to a finite range ε ∈ [−ω

2 , ω
2 ]. The

two Matsubara sums are computed directly term by term. The
integration involves now evaluating the Green’s function at
distance γ /2 from the real axis and for sufficiently large M

rapid convergence can be achieved.
It is well known that the analytic continuation poses a tricky

and potentially unstable numerical problem.129 In the context
of this work one faces in general two contradicting require-
ments. The evaluation of temperature susceptibility given by
Eq. (B1), corresponding to the purely imaginary frequency in

FIG. 20. (Color online) The structure of the integral in Eq. (B3).

Eq. (36), is much easier to implement and numerically much
faster. Unfortunately, the subsequent analytic continuation
becomes pathologically unstable, since the distance between
the points of the complex plane where the susceptibility is
actually evaluated and the points on the real axis where we
want to determine it by means of the analytical continuation
is large; see Fig. 21(a). In fact, the continuation cannot be
performed without assuming certain explicit analytical form
of the susceptibility, as, e.g., in Ref. 38. It is much more
beneficial to work with ω �= 0, Fig. 21(b). In this case, the
computational effort increases with decreasing γ , since much
denser sampling in the Brillouin zone integration is necessary.
Smaller γ , however, stabilizes greatly the subsequent analytic
continuation procedure.

To perform numerical analytic continuation, in most cases
we employ a rational function (Padé) approximation,129–131

where a complex function f (z) is represented by a ratio of two
polynomials. Alternatively we resort to the method of Haas,
Velický, and Ehrenreich.132,133

APPENDIX C: EXPLICIT FORM OF PRODUCTS OF TWO
KKR GREEN’S FUNCTIONS

By solving the multiple scattering problem in the atomic
sphere approximation, the Korringa-Kohn-Rostoker (KKR)
Green’s function (GF), Eq. (35), is obtained in the following
representation:

Gσ (x,x′,z) = √
z
∑
L

Hm
σL(r>,z)Rm

σL(r<,z)δmn

+
∑
LL′

Rm
σL(rm,z)Gmn

σLL′(z)Rn
σL′(r′

n,z), (C1)

where σ = (α,β) is the spin index. In the case of collinear
magnets, only the two diagonal spin components of the GF
are nonzero (α = β = ↑ , ↓). rm ≡ x − sm, where sm is the
position of the atomic site closest to x, r< denotes one of the
two vectors rm,r′

m being the shorter and r> the longer one,
and Rm

L (r,z) = Rm
L (r,z)YL(r̂) and Hm

L (r,z) = Rm
L (r)YL(r̂) are
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FIG. 21. (Color online) The analytic structure of transverse susceptibility and schematic presentations of different analytic continuation
schemes. For particular q the singularities of KS susceptibility form Stoner continuum (SC). The additional singularities introduced into the
enhanced susceptibility by the Dyson equation, i.e., spin waves, can appear outside the continuum; such magnons cannot decay via Landau
mechanism. On the contrary, when the SW pole appears in the Stoner continuum it acquires a finite lifetime manifested by an apparent shift of
the pole into the lower complex semiplane. The analytic continuation in the case of the temperature susceptibility (a) involves the reconstruction
of the real-time dynamics based on the values given in points located on the imaginary axis; it is in general unstable. (b) Nearly real axis
calculations lead to much better stability and accuracy of the analytic continuation.

the regular and irregular solutions of the radial Schrödinger
equation for atomic site m. The first term in Eq. (C1) represents
the single-scattering GF, while the second term describes
multiple-scattering processes via the back-scattering operator
G

αβ

σLL′(z), which can be computed from the algebraic KKR
Dyson equation

Gmn
σLL′(z) = gmn

LL′(z) +
∑
k,L′′

gmk
LL′′(z)t kσL′′(z)Gkn

σL′′L′(z), (C2)

where gmn
LL′ are the KKR structure constants and tmσL(z) is the

single-site scattering matrix. We note that the computational
method presented in this paper is trivially generalizable to the
full potential treatment.

In periodic systems, the product of the two Green’s
functions appearing in Eq. (36) involves additionally the
convolution over the Brillouin zone:

Sσ1σ2 (r,r′,q,z1,z2)

= σ i
αβσ

j

γ δ

∫
�BZ

dDk
�BZ

Gσ1 (r,r′,k,z1)Gσ2 (r′,r,k − q,z2).

(C3)

D stands for the dimensionality of the periodic lattice. The
number of necessary integration k points decreases rapidly
as one moves away from the singularities of KKRGF, i.e.,
Kohn-Sham energies located on the real axis.

Upon substituting the KKR form of G in Eq. (C3) we
obtain

1

�BZ

∫
�BZ

dDkGσ1 (r,r′,k,z1)Gσ2 (r′,r,k − q,z2)

=
∑

L1L2L3L4

YL1 (r̂m)YL2 (r̂′
n)YL3 (r̂′

n)YL4 (r̂m)
[σ1σ2

Cmn
L1L2L3L4

(z1,z2,q)Rm
σ1L1

(rm,z1)Rn
σ1L2

(r ′
n,z1)Rn

σ2L3
(r ′

n,z2)Rm
σ2L4

(rm,z2)

+ δmnδL1L2

√
z1R

m
σ1L1

(r<,z1)Hm
σ1L1

(r>,z1)Bm
σ2L3L4

(z2)Rm
σ2L3

(r ′
m,z2)Rm

σ2L4
(rm,z2)

+ δmnδL3L4B
m
σ1L1L2

(z1)Rm
σ1L1

(rm,z1)Rm
σ1L2

(r ′
m,z1)

√
z2R

m
σ2L3

(r<,z2)Hm
σ2L3

(r>,z2)

+ δmnδL1L2δL3L4

√
z1z2R

m
σ1L1

(r<,z1)Hm
σ1L1

(r>,z1)Rm
σ2L3

(r<,z2)Hm
σ2L3

(r>,z2)
]
. (C4)

The first term comes from the convolution of two backscattering operators

σ1σ2Cmn
L1L2L3L4

(z1,z2,q) = 1

�BZ

∫
�BZ

dDkGmn
σ1L1L2

(z1,k)Gnm
σ2L3L4

(z2,k − q), (C5)

while the next two terms involve only the diagonal part of it

Bm
σLL′(z) = 1

�BZ

∫
�BZ

dDkGmm
σLL′(z,k). (C6)

By means of Gaunt coefficients the products of four spherical harmonics are reduced to pairs YL(r̂)YL′(r̂′). The remaining
radial dependence is approximated using Chebyshev polynomials. This gives the representation of the susceptibility in the Y-Ch
basis.
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