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Quantum Optimal Control

Alberto Castro and Eberhard K. U. Gross

13.1 Introduction

All applications of time-dependent density-functional theory (TDDFT) until now
have attempted to describe the response of many-electron systems to external fields.
Given its success in this task, it seems timely, therefore, to address the inverse
problem: given a prescribed goal (e.g., the transfer of electronic charge to a given
region in space, or the population of a given excited state), what is the external
perturbation that achieves this goal in an optimal way? This is the problem studied
by quantum optimal control theory (QOCT). The essentials of this theory make
no assumption on the nature of the quantum system whose behaviour is being engi-
neered, or on the particular methodology used to model the system. It must, therefore,
be complemented with a suitable model for describing the dynamics of the quantum
system. In this chapter, we describe how this model can be TDDFT.

QOCT (Shapiro and Brumer 2003; Rice and Zhao 2000; Werschnik and Gross
2007; Werschnik 2006; Brif et al. 2010; Rabitz 2009) provides the necessary tools to
theoretically design driving fields capable of controlling a quantum system towards
a given state or along a prescribed path in Hilbert space. This discipline has grown
steadily in the last two decades. The reason is that it is the most powerful theoretical
counterpart to the exponentially growing field of experimental quantum coherent
control. The key aspect for the success of this area is that the laser pulse creation and
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shaping techniques have improved impressively over the last decades (Weiner 2000),
and thus the area of experimental optimal control has become a well established field.
An outstanding number of possible technological applications are to be expected: the
quest for systems able to perform quantum computing (Tesch et al. 2001; Palao and
Kosoff 2002), the synthesis of design-molecules by laser-induced chemical reactions
(Laarmann et al. 2007), or the control of electron currents in molecular switches using
light (Geppert et al. 2004), to name a few examples, may benefit from these recent
advances.

The essential concepts of QOCT can be formulated for arbitary quantum systems,
that are to be described either via the wave function, the density matrix, or in some
cases the propagator of the process. Since the full quantum dynamics of interacting
particles cannot be treated exactly for more than a few degrees of freedom, the
application of QOCT, therefore, relies on the previous existence of a methodology
capable of constructing a sufficiently good model for the relevant process. In fact,
the solution of the necessary equations typically requires multiple propagations, both
forwards and backwards, for the system under study. We know that this is especially
challenging if this is a many-electron system. In fact, in most applications, few-level
simplifications and models are typically postulated when handling the QOCT equa-
tions. Unfortunately, these simplifications are not always accurate enough: strong
pulses naturally involve many electronic levels, and normally perturbative treatments
are not useful. Non-linear laser-matter interaction must sometimes be described
ab initio.

As it is shown elsewhere in this book, TDDFT is a viable alternative to computa-
tionally more expensive approaches based on the wave function for the description
of this type of processes. We are referring to many-electron systems irradiated with
femtosecond pulses, with intensities typically ranging from 1011 to 1015 Wcm−2, a
non-linear regime that nevertheless allows for a non-relativistic treatment. This may
lead to a number of interesting phenomena, e.g. above-threshold or tunnel ioniza-
tion, bond hardening or softening, high harmonic generation, photo-isomerization,
photo-fragmentation, Coulomb explosion, etc (Protopapas et al. 1997; Brabec and
Krausz 2000; Scrinzi et al. 2006).

It is therefore necessary to inscribe TDDFT into the general QOCT framework.
In this chapter, we describe the manner in which this inscription can be done. We
present here generalized equations, valid for non-collinear spin configurations as
well as providing detailed derivations of the key equations.

13.2 The Essential QOCT Equations

For the sake of completeness, we start by recalling the essential QOCT equations (by
which we mean those that provide the gradient or numerical derivative of the target
functional with respect to the control function). We do so for a generic quantum
system, before establishing the results for TDDFT in the next section. For alternative
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presentations of the following results, we refer the reader, for example, to (Peirce et
al. 1988; Tersigni et al. 1990; Serban et al. 2005).

We depart from a generic Schrödinger equation in the form:

ϕ̇(t) = −iĤ [u, t]ϕ(t), (13.1a)
ϕ(t0) = ϕ0, (13.1b)

where ϕ(t) is the state of the system at time t (that lives in the Hilbert space H),
and Ĥ [u, t] is the Hamiltonian, that dependes on some parameter u (or perhaps a
set of parameters) that we will call hereafter control. We wish to find the control u
that makes the evolution optimal in some manner. The goodness of the process is
encoded into a functional that depends on how the system evolves:

F : H0 × P → R (13.2a)
(ϕ, u) → R, (13.2b)

The set H0
is defined in the following way: if we consider that the process occurs

in the time interval [0, T ], the possible evolutions of the sytem can be contained in
the space H = H×[0, T ]. However, we restrict the domain of F to those evolutions
whose initial condition is consistent with Eq. 13.1b:

H0 = {ϕ ∈ H such thatϕ(t0) = ϕ0}. (13.3)

The set P contains the allowed control parameters u. The explicit dependence of F
on the control u is typically due to the presence of a penalty function, whose role
is to avoid undesirable regions of the control search space (e.g., too high frequency
components of a laser pulse, unrealistical intensities, etc.). In many cases, the func-
tional F is split as:

F[ϕ, u] = J1[ϕ] + J2[u], (13.4)

where J1 is the real objective, and J2 is the penalty function. The objective may
depend on the full evolution of the system during the time interval [0, T ], and/or on
the state of the system at the final time T:

J1[ϕ] = J i
1[ϕ] + J f

1 [ϕ(T )], (13.5)

where the functional J i
1 depends on the full evolution of the system, whereas J f

1 is
a functional of the final state. In most cases, these functionals are expectation values
of some observable:

J i
1[ϕ] =

∫
dt〈ϕ(t)|Ôi (t)|ϕ(t)〉, (13.6a)

J f
1 [ϕ] =

∫
dt〈ϕ(T )|Ô f |ϕ(T )〉. (13.6b)
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The specification of a particular control u determines the evolution of the system;
in mathematical terms, we have a mapping:

ϕ : P → H0
(13.7a)

u → ϕ[u]. (13.7b)

Therefore, the optimization problem can be formulated as the problem of finding the
extrema of the function G:

G[u] = F[ϕ[u], u]. (13.8)

There are many optimization algorithms capable of maximizing functions utilizing
solely the knowledge of the function values (“gradient-free algorithms”). We have
recently employed one of them in this context (Castro et al. 2009). However, QOCT
provides the solution to the problem of computing the gradient of G—or, properly
speaking, the functional derivative if u is a function.

The equations that we are seeking, therefore, are those that provide the gradient
of G, that will permit us to efficiently perform its optimization. We start by noting

that not all the elements of the domain H0
are possible evolution of the system: the

search for maxima of F must be constrained to the subset of solutions of Schrödinger’s
equation. This is achieved by introducing a Lagrangian functional in the form:

L[ϕ, λ, u] = −2Re

T∫

0

dt 〈λ(t)|ϕ̇(t)+ iĤ [u, t]ϕ(t)〉, (13.9)

and defining a new “total” functional as the sum of F and this new Lagrangian term:

J [ϕ, λ, u] = F[ϕ, u] + L[ϕ, λ, u]. (13.10)

Note that, for a possible evolution of the system ϕ[u], the Lagrangian function is
zero, and therefore J [ϕ[u], λ, u] = F[ϕ[u], u] = G[u]. And note that setting to
zero the functional derivative of J with respect to λ gives precisely Schrödinger’s
equation:

δ J [ϕ, λ, u]
δλ∗(x, t)

= −ϕ̇(x, t)− iĤ [u, t]ϕ(x, t) = 0. (13.11)

In other words, nullifying this functional derivative is equivalent to establishing the
map u → ϕ[u]. Analogously, a u → λ[u] mapping can be established by nullifying
the functional derivative of J with respect to ϕ:
δ J [ϕ, λ, u]
δϕ∗(x, t)

= λ̇(x, t)+ iĤ [u, t]λ(x, t)− δ(t − T )λ(x, t)+ δ J i
1

δϕ∗(x, t)

+ δ(t − T )
δ J f

1

δϕ∗(x, T )
. (13.12)
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The u → λ[u] mapping is thus established by prescribing the following equations
of motion:

λ̇(x, t) = −iĤ [u, t]λ(x, t)+ δ J i
1

δϕ∗(x, t)
, (13.13a)

λ(x, T ) = δ J f
1

δϕ∗(x, T )
. (13.13b)

Note that (i) if J i
1 is not zero (i.e. the target functional depends on the evolution

of the system during the time interval [0, T ], or as it is sometimes put, there is
a time dependent target), the equation of motion is an inhomogeneous Schrödinger
equation. If J i

1 is zero,λ follows the same Schrödinger equation as y; (ii) the boundary
condition given by Eq. 13.13b is given at time T. Therefore, Eq. 13.13a must be
propagated backwards.

Once we have prepared these ingredients, we may compute the gradient of G[u]
by utilizing the chain rule in the identity:

G[u] = J [ϕ[u], λ[u], u]. (13.14)

Since the functional derivatives of J with respect to ϕ and λ, applied at ϕ[u] and λ[u]
are zero, we are left with the expression:

∇uG[u] = ∇u J2[u] + 2Im

T∫

0

dt 〈λ[u](t)|∇u H [u, t]|ϕ[u](t)〉. (13.15)

Often, the controlling field is not specified by a discrete set of parameters, but
rather by a real function ε(t). For example, the Hamiltonian may be:

Ĥ [ε, t] = Ĥ0 + ε(t)V̂ . (13.16)

The search space, in this case, is the space of real continuous functions in [0, T ].
The function G is then a functional G = G[ε], and consequently the gradient of
Eq. 13.15 must then be replaced by a functional derivative with respect to ε, and the
result is:

δG

δε(t)
= δ J2

δε(t)
+ 2Im〈λ[ε](t)|V̂ |ϕ[ε](t)〉. (13.17)

Finally, let us give an example of a very common choice of penalty function: let
the Hamiltonian given by Eq. 13.16 be the one that describes an atom or molecule
irradiated by a laser pulse, whose temporal shape is determined by ε(t). The total
irradiated energy or fluence will be proportional to

∫ T
0 dt ε2(t), and it is usually

considered an undesired feature to require very high fluences. A natural choice for
the penalty functional is therefore:
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J2[ε] = −α
T∫

0

dt ε2(t), (13.18)

for α some positive weighting constant. The critical points of G in this case can then
easily found by substituting this expression in Eq. 13.17, and equating the functional
derivative to zero:

ε(t) = 1

α
Im〈λ[ε](t)|V̂ |ϕ[ε](t)〉. (13.19)

In this case, the simplest algorithm to find the optimum consists of the following steps:
(i) Propagate the Schrödinger equation 13.11 forward in time with some given initial
condition; (ii) Propagate the Schrödinger equation (13.13a) with the initial condition
(13.13b); (iii) From the solutions ϕ(t) and λ(t) of steps (i) and (ii), calculate a new
control field from Eq. 13.19 and then perform again steps (i) and (ii) using the new
control field, etc. This algorithm has been shown to be monotonically convergent
(Zhu et al. 1998; Ohtsuki et al. 2004; Serban et al. 2005).

13.3 Optimization for the TDKS System

In the previous section, we have summarized some of the fundamental aspects of
QOCT for a generic quantum system. Equation 13.15, or alternatively, Eq. 13.17,
permits to utilize some optimization algorithm that may lead to a satisfactory
maximum. The use of those equations, however, requires the solution of Eqs. 13.1a
and 13.1b, and Eqs. 13.13a and 13.13b which are forwards and backwards propa-
gation of Schrödinger’s equation for the process being studied. Depending on the
nature of the process and on the complexity of the model used to describe it, this task
may be anywhere from trivial to unfeasible. In particular, for many-electron systems,
an exact numerical solution is not possible, and thus TDDFT may be used to tackle
the problem.

At this point, let us recall that TDDFT is not a scheme that permits to solve
the Schrödinger equation in some approximate manner, but rather a methodology
aimed at bypassing the use of the many-electron wave function, and avoiding the
Schrödinger equation fulfilled by this wave function. The theory provides us with
a method to obtain the time-dependent electron density (by means of solving the
equations of the associated Kohn–Sham system), but the many electron wave func-
tion is not available. However, the previous description of the QOCT methodology
works directly with the wave function, and, in particular, it is assumed that the target
functional is defined in terms of this object, i.e. the objective is to find the control u
that maximizes a functional of the many-electron wave function,

Fint = Fint[Ψ, u]. (13.20)
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As usual, we allow for the possibility of an explicit dependence of the functional
on the control u in order to include, if necessary, a penalty function. The label “int”
means that this functional is defined in terms of the wave function of the interacting
system of electrons. Every observable, however, is known to be a functional of the
time-dependent density by virtue of the fundamental one-to-one correspondence of
TDDFT, and therefore, in principle it should be possible to find a functional of the
density F̃, such that:

Fint[Ψ, u] = F̃[n[Ψ ], u], (13.21)

where n[Ψ ] is the electronic density corresponding to the many-electron wave func-
tion Ψ (we consider hereafter a system of N electrons):

n[Ψ ](r, t) = 〈Ψ (t)|
N∑

i=1

δ(r − r̂ i )|Ψ (t)〉, (13.22)

This is the object provided by TDDFT, and so we may substitute the problem of
formulating QOCT in terms of the real interacting system, by the formulation of the
optimization problem for the non-interacting system of electrons. The equations of
motion for the single-particle orbitals of this system, also known as time-dependent
Kohn–Sham equations, are:

i
∂

∂t
ϕi (rσ, t) =

[
−∇2

2
+ V̂0 + vH[n(t)](r)+ V̂xc[nσσ ′(t)] + V̂ext[u]

]
ϕi (rσ, t)

(13.23)
with the (spin-) densities

nσσ ′(r, t) =
N∑

i=1

ϕ∗
i (rσ, t)ϕi (rσ ′, t), (13.24)

and

n(r, t) =
∑
σ

nσσ (r, t), (13.25)

for i = 1, . . . , N orbitals. The greek indexes σ, σ ′ run over the two spin configu-
rations, up and down. The densities are, by construction, equal to that of the real,
interacting system of electrons. V̂0 represents the internal, time independent fields—
usually a nuclear Coulomb potential Vn(r), and may include as well a spin-orbit
coupling term of the form σ ·∇Vn × α̂ (where σ is the vector of Pauli matrices). The
term

vh[n(t)](r) =
∫

d3r ′ n(r ′, t)

|r − r ′| (13.26)
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is the Hartree potential, and V̂xc[nσσ ′ ] is the exchange and correlation potential
operator, whose action is given by:

V̂xc[nσσ ′(t)]ϕi (rσ, t) =
∑
σ ′
vσσ

′
xc [nσσ ′(t)](r)ϕi (rσ ′, t). (13.27)

Note that, for the sake of generality, we allow a spin-resolved exchange and corre-
lation potential, that depends on the four spin components nσσ ′ (in many situations
more restricted dependences are assumed). However, we do assume here an adia-
batic approximation, i.e. vxc at each time t is a functional of the densities at that
time, nσσ ′(t). This restriction is non-essential for the derivations that follow, but the
availability of non-adiabatic functionals is very scarce, and adiabatic approximations
will result in simpler equations.

The last potential term, V̂ext, is the external time-dependent potential, which
is determined by the “control” u. In a typical case, this external potential is the
electric pulse created by a laser source in the dipole approximation, and u is
the real time-dependent function that determines its temporal shape (in this case,
V̂ext[u]ϕi (rσ, t) = u(t)r · α ϕi (rσ, t), where α is the polarization vector of the
pulse). We write it however in general operator form, since it can be a 2 × 2 matrix
which may include both a time-dependent electric field as well as a Zeeman-coupled
magnetic field.

If we group the N single particle states into a vector ϕ(t), we can rewrite the
time-dependent Kohn–Sham equations in a matrix form:

iϕ̇(t) = Ĥ [nσσ ′(t), u, t]ϕ(t), (13.28)

where Ĥ [nσσ ′(t), u, t] = ĤKS[nσσ ′(t), u, t]I
N

and I
N

is the N-dimensional unit
matrix. With this notation we stress the fact that we have only one dynamical system—
and not N independent ones, since all ϕi are coupled. This coupling, however, comes
solely through the density, since the Hamilton matrix is diagonal.

The structure of these equations is slightly different from that of the generic case
presented in the previous section, and in consequence we cannot directly apply the
final results obtained there. First, note that now the system is not described by one
single wave function, but rather by the full group of Kohn–Sham orbitals. This does
not add a fundamental complication (in fact, the system may be regarded as described
by a single wave function—the Slater determinant composed of the N orbitals). But
more importantly, the TDKS equations are non-linear, since the Hamiltonian depends
on the density, which is computed from the wave functions that are to be propagated.
In consequence, we must follow carefully the derivation presented in the previous
section, modifying the steps that used the linearity of the usual Hamiltonians. This
is what we will do in the following.

The specification of the value of the control u, together with the initial conditions,
determines the solution orbitals: u → ϕ[u]. Our task is now the following: we wish
to find an external field—in the language of OCT, a control u—that induces some
given behaviour of the system, which can be mathematically formulated by stating
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that the induced dynamics maximizes some target functional F. Since we are using
TDDFT, this functional will be defined in terms of the Kohn–Sham orbitals, and will
possibly depend explicitly on the control u:

F = F[ϕ, u]. (13.29)

And since the orbitals depend on u as well, the goal of QOCT can be formulated as
finding the maximum of the function:

G[u] = F[ϕ[u], u]. (13.30)

As we have mentioned in the beginning of the section, the optimization of this
function will be equivalent to that of the initial, real problem posed in terms of
the interacting many electron system, if the functional Fint that constitutes the true
optimization target is in fact equal to a functional of the density alone:

Fint[Ψ, u] = F̃[n[Ψ ], u], (13.31)

and thus we may define our “Kohn–Sham” target as:

F[ϕ, u] = F̃[n[ϕ], u], (13.32)

thanks to the fundamental TDDFT identity n[ϕ] = n[Ψ ].
In the most general case, the functional F depends on ϕ at all times during the

process (we have a “time-dependent target”). In many cases, however, the goal is
the achievement of some target at a given time T that determines the end of the
propagation interval (we then have a “static target”). In both cases, the determination
of the value of the function G is obtained by performing the propagation of the system
with the field determined by the control u.

As it happened in the generic case, first we must note that searching for a maximum
of G is equivalent to a constrained search for F—constrained by the fact that the ϕ
orbitals must fulfill the time-dependent Kohn–Sham equations. In order to do so, we
introduce a new set of orbitals χ that act as Lagrange multipliers, and define a new
functional J by adding a Lagrangian term L to F:

J [ϕ, χ, u] = F[ϕ, u] + L[ϕ, χ, u], (13.33)

of the form

L[ϕ, χ, u] = −2
N∑

j=1

Re

⎡
⎣

T∫

0

dt 〈χ j (t)|i d

dt
+ ĤKS[nσσ ′(t), u, t]|ϕ j (t)〉

⎤
⎦. (13.34)

Setting the functional derivatives of J with respect to theχ orbitals to zero, we retrieve
the time-dependent Kohn–Sham equations. In an analogous manner, we obtain a
set of solution χ[u] orbitals by taking functional derivatives with respect to ϕ—
remembering that the KS Hamiltonian depends on these orbitals, and in consequence,
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one must consider its functional derivatives. From the condition δ J/δϕ∗ = 0, we
obtain

iχ̇ (t) =
[

Ĥ
KS

[nσσ ′ [u](t), u, t] + K̂ [ϕ[u](t)]
]
χ(t)− i

δF

δϕ∗ , (13.35a)

χ(T ) = 0. (13.35b)

The presence of the non-diagonal operator matrix K̂ [ϕ[u](t)] is the main difference
with respect to the normal QOCT equations for a linear quantum system. Its origin
is the non-linear dependence of the Kohn–Sham Hamiltonian with respect to the
propagating orbitals. It is defined by:

K̂i j [ϕ[u](t)]ψ(rσ) = −2i
∑
σ ′
ϕi [u](rσ ′, t)× Im

×
⎡
⎣∑
αβ

∫
d3r ′ψ∗(r ′α) f αβ,σσ

′
Hxc [nσσ ′ [u](t)](r, r ′)ϕ j [u](r ′β, t)

⎤
⎦, (13.36)

where f αβ,σσ
′

Hxc is the kernel of the Kohn–Sham Hamiltonian, defined as:

f αβ,σσ
′

Hxc [nσσ ′ ](r, r ′) = δαβδσσ ′

|r − r ′| + δv
αβ
xc [nσσ ′ ](r)
δnσσ ′(r ′)

. (13.37)

If we now note that G[u] = J [ϕ[u], ϕ[u], u], we arrive to:

∇u G[u] = ∇u F[ϕ, u]
∣∣∣
ϕ=ϕ[u] + 2Im

⎡
⎣ N∑

j=1

T∫

0

dt 〈χ j [u](t)|∇u V̂ext[u](t)|ϕ j [u](t)〉
⎤
⎦.

(13.38)
Several aspects deserve further discussion:

(i) Equation 13.35a represents a set of first-order differential equations, whose
solution, as it happened in the generic case, must be obtained by backwards
propagation, since the boundary condition, Eq. 13.35b is given at the end of
the propagation interval, T. Note that this propagation depends on the Kohn–
Sham orbitals ϕ[u]. Therefore, the numerical procedure consists of a forward
propagation to obtain ϕ[u], followed by a backwards propagation to obtain
χ [u].

(ii) These backwards equations are inhomogeneous, due to the presence of the last
term in Eq. 13.35a, the functional derivative of F with respect to ϕ.The reason is
that the previous Eqs 13.35a and 13.35b refer to a general “time-dependet target”
case, i.e. the target functional depends on the full evolution of the system. In
many cases of interest, however, the target functional F takes a “static” form,
which can be expressed as:
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J1[ϕ, u] = O[ϕ(T ), u], (13.39)

for some functional O whose argument is not the full evolution of the Kohn–
Sham system, but only its value at the end of the propagation. In this case,
the inhomogeneity in Eq. 13.35a vanishes, and instead we obtain a different
final-value condition:

χi [u](rσ, T ) = δO[ϕ[u], u]
δϕ∗

i (rσ)
. (13.40)

(iii) The previous Eq. 13.38 assumes that u is a set of N parameters, u ∈ R
N that

determines the control function. As we discussed in the previous section, if
the control is in fact a time-dependent function ε(t), the gradient has to be
substituted by a functional derivative, and the result is:

δG

δε(t)
= δF[ϕ, ε]

δε(t)

∣∣∣∣
ϕ=ϕ[ε]

+ 2Im

⎡
⎣ N∑

j=1

〈χ j [ε](t)|D̂|ϕ j [ε](t)〉
⎤
⎦. (13.41)

We have assumed here that the external potential V̂ext is determined by the function
u by a linear relationship:

V̂ext[ε](t) = ε(t)D̂. (13.42)

This is the most usual case (D̂ would be the dipole operator, and ε(t) the amplitude
of an electric field), but of course it would be trivial to generalize this to other
possibilities.

The previous scheme permits therefore to control the Kohn–Sham system. It is
important to reflect on the original assumption given by Eq. 13.21, which permits to
identify this control with that of the real system of interest. Although the existence
of a density functional equivalent to the wave function functional is known to exist
in principle, we will not always have explicit knowledge of this density functional.
We do have this knowledge immediately, for example, if the target functional Fint is
given by the expectation value of some one-body local operator Â:

Fint[Ψ ] = 〈Ψ (T )| Â|Ψ (T )〉 =
∫

d3r n(r, T )a(r), (13.43)

where Â = ∑N
i=1 a(r̂ i ). In this case, Eq. 13.40 is simply:

χi [u](rσ, T ) = a(r)ϕi [u](rσ, T ). (13.44)

Unfortunately, in some cases the situation is not that favourable. For example, a
very common control goal is the transition from an initial state to a target state. In
other words, the control operator Â is the projection operator onto the target state
Â = |Ψtarget〉〈Ψtarget|. We have no exact manner to substitute, in this case, the Fint
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functional by a functional F̃ defined in terms of the density, and afterwards in terms
of the KS determinant. It can be approximated, however, by an expression in the
form:

F[ϕ] = |〈ϕ(T )|
∑

I

cI |ϕ I 〉|2, (13.45)

where ϕ(T ) is the TDKS determinant at time T, and we compute its overlap with a
linear combination of Slater determinants ϕ I , weighted with some coefficients cI .

These Slater determinants would be composed of occupied and unoccupied ground
state KS orbitals, ϕ I = det[ϕ I

1 , . . . , ϕ
I
N ]. In this case, Eq. 13.40 takes the form:

χi [u](rσ, T ) =
∑
I J

λI J (rσ)〈ϕ(T )|ϕ I 〉〈ϕ J |ϕ(T )〉, (13.46a)

λI J (rσ) = cI c∗
J Tr{(M I )−1 Ai

I (rσ)}, (13.46b)

where M I
mn = 〈ϕm |ϕ I

n 〉 and Ai
I (rσ)mn = δmiϕ

I
n (rσ).

In conclusion, we have shown how TDDFT can be combined with QOCT, and
we have demonstrated how the resulting equations are numerically tractable. This
provides a scheme to perform QOCT calculations from first principles, in order to
obtain tailored function-specific laser pulses capable of controlling the electronic
state of atoms, molecules, or quantum dots. Most of the previous applications of
QOCT were targeted to control, with femto-second pulses, the motion of the nuclear
wave packet on one or few potential energy surfaces, which typically happens on
a time scale of hundreds of femtoseconds or picoseconds. The approach shown
here, on the other hand, is particularly suited to control the motion of the electronic
degrees of freedom which is governed by the sub-femto-second time scale. The
possibilities that are open thanks to this technique are numerous: shaping of the high
harmonic generation spectrum (i.e. quenching or increasing given harmonic orders),
selective excitation of electronic excited states that are otherwise difficult to reach
with conventional pulses, control of the electronic current in molecular junctions,
and many more.
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