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Abstract

The bending of crystalline plates in response to a non-isotropic stress on one of the two surfaces is investigated with
special attention to magnetoelastic effects. The crystalline plates are assumed to have cubic symmetry, expose either

(1 0 0) or (1 1 1) surfaces, and be clamped along one edge. It is shown that the effect of clamping can be described by a
dimensionless parameter, the ‘‘dimensionality’’ D, which in general depends on the length-to-width ratio of the sample,
the Poisson ratio n, and the elastic anisotropy A. Using a finite element analysis we find that the dimensionality

parameters for anisotropic and isotropic surface stresses are identical. The theory is applied to the bending caused by
magnetoelastic stresses in deposited thin films. Expressions are derived to calculate the magnetoelastic coupling
constants of films with cubic, tetragonal, or hexagonal symmetry from a measurement of the change of radius of
curvature of the film–substrate composite upon an in-plane reorientation of the film magnetization. # 2001 Elsevier

Science B.V. All rights reserved.

PACS: 75.70; 75.70.Ak; 75.80
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1. Introduction

The cantilever bending technique is a well
established method for the experimental determi-
nation of surface stress [1–7] as well as for
magnetoelastic constants [8–13]. The basic idea
of the method is to observe the bending of a thin
sheet of material subject to an excess stress on one

of the two surfaces. Rectangular crystalline
samples clamped at one end are typically used.
Because of the constraints on the bending imposed
by the boundary condition of clamping, the
bending becomes non-uniform and the surface
stress cannot be calculated from the bending using
the simple Stoney equation as discussed pre-
viously, see e.g. Ref. [14]. Neglecting the effect of
the clamping can lead to a significant error of the
order of 50% [15] in the surface stress or in the
magnetoelastic constant. In a previous paper [15],
we reported on finite element calculations on the
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bending of rectangular plates which are clamped
along one edge. While we admitted cubic elastic
anisotropy of the substrate, the surface stress was
assumed to be isotropic. We showed that the effect
of clamping can be expressed in terms of a single
parameter, the ‘‘dimensionality’’ D, where the
limiting cases of a pure one-dimensional or two-
dimensional bending are characterized by D ¼ 1
and 2, respectively. In this paper, we extend these
calculations to the case of a non-isotropic stress
load. Such non-isotropic loads are typical for the
magnetoelastic stresses that are exploited to
measure the magnetoelastic properties of thin
magnetic films deposited on one side of a substrate
crystal. We show that the effect of an anisotropic
surface stress is described by the same dimension-
ality parameter as in the isotropic case, and a set of
simple rules and equations for the determination
of a magnetoelastic constant from the bending of
the crystal plate is provided. Relations between the
measured magnetoelastic constant of the deposited
film and the magnetoelastic constants of bulk
material are established by considering various
common crystal structures for the thin films,
including the contributions from different struc-
tural domains.
The paper is organized as follows. In order to

make the paper self-contained, the next section
provides a brief summary of the main results of the
previous analysis [15] as well as the introduction to
the notation. Section 3 addresses the bending of
plates under the load of an anisotropic surface
stress. It is shown how the components of the
surface stress tensor can be obtained from the
measurement of the curvature in two principal
directions. Section 4 considers the special case of a
film stress caused by a magnetoelastic coupling to
an external field. It is shown that a magnetoelastic
constant of the film can be determined directly
from the measurement of the change in the
curvature along one direction upon rotation of
the magnetization, without using the frequently
unknown elastic constants of the film. In Section 5
the effect of elastic interactions between different
crystal domains in the film are studied and the
relations between the film magnetoelastic constant
and the components of the magnetoelastic coupling
constants Bijkl of bulk materials are established.

2. Bending of plates under the influence of an

isotropic surface stress

In a typical cantilever bending experiment, a
thin crystal with a rectangular shape is held in a
fixed position by clamping along one edge. The
notation used in the following is illustrated in
Fig. 1. The crystalline plate with the thickness t
has a length L parallel to the x1-direction and a
width W parallel to the x2-direction (Fig. 1a). The
bending is assumed to be measured in the center of
the free end of the sample. Depending on the
detection scheme for the experimental deter-
mination of the bending [1–13], either the dis-
placement z, the slope z0 or the curvature
k=1/R=(z0(L2)�z0(L1))/(L2�L1) or a combina-
tion of the three is probed (Fig. 1b). In Ref. [15]
we defined the displacement related ‘‘curvature kz’’

kz ¼
2zðLÞ
L2

; ð1Þ

the slope related ‘‘curvature kz0’’

kz0 ¼
z0ðLÞ

L
; ð2Þ

and the curvature kz00

kz00 ¼
z0ðL2Þ � z0ðL1Þ

DL
¼

Dz0

DL
�

q2z
qx21

: ð3Þ

In case of a uniform bending (constant curvature
throughout the sample) the displacement and

Fig. 1. Cantilever bending method: (a) A rectangular (crystal-

line) plate with the length L, the width W and the thickness t.

(b) The induced change of the deflection z, or the change of the
slope z0 or the change of the curvature z00 can be measured in the
center at the free end of the plate. The relations between the tilt

angle a and the slope z0 and between the local radius R and the

curvature z00 are written down in the boxes.
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slope related ‘‘curvatures’’ (kz, kz0) are identical to
the true curvature kz00. In the case considered here,
which is a sample clamped on one end, they are
not. The surface stress is determined from the
measurement of either one of the ‘‘curvatures’’
with the help of elasticity theory. We restrict the
considerations to cubic crystalline plates display-
ing (0 0 1)-surfaces with their x1-direction oriented
either along the [1 1 0]- or [1 0 0]-direction, and to
cubic crystals with (1 1 1)-surfaces of arbitrary
orientation. Hence, the surface has either C3v or
C4v symmetry. We note in passing that the case of
an HCP crystal with (0 0 0 1)-surfaces conforms
with a cubic crystal with (1 1 1) surfaces. The
elastic properties with respect to the crystal
orientation are denoted by the Young modulus
Y0, the Poisson number n0 and the in-plane
anisotropy parameter A0. These constants can
be obtained from the elastic constants s11, s12
and s44 of cubic crystals following established
procedures [13,15,16]. The results are summarized
in Table 1.
For an unsupported, free plate, a surface stress

load with stress tensor components oriented
parallel to the x1- and x2-direction is connected
with the corresponding curvatures via the follow-
ing two equations:

k1 ¼
6

t2Y 0 t
ðsÞ
11 � n0tðsÞ22

h i
; ð4Þ

k2 ¼
6

t2Y 0 t
ðsÞ
22 � n0tðsÞ11

h i
: ð5Þ

Here, t represents the thickness of the plate. If
the curvatures k1 and k2 in the x1- and x2-direction
are measured, the principal components of the
surface stress tðsÞ11 and tðsÞ22 can be calculated using
Eqs. (4) and (5). This case is referred to as a ‘‘two-
dimensional’’ bending. If the bending is con-
strained to one direction e.g., the x1-direction, then
the curvature deviates from the two-dimensional
bending. For arbitrary tðsÞ22 the relation between
the curvature k1 and the stress compo-nent tðsÞ11 is

k1 ¼
6

t2Y 0ð1� n0Þð1þ n0ÞtðsÞ11 : ð6Þ

The latter case is referred to as ‘‘one-dimensional’’
bending. In a realistic experiment, the sample is
clamped along one edge (Fig. 1a). Then, the
curvature is (mostly) between the one-dimensional
limit Eq. (6) and the two-dimensional limit Eq. (4).
In Ref. [15] we have shown that for an isotropic
surface stress (tðsÞ11 ¼ tðsÞ22 ¼ tðsÞ) the curvature k1
measured along the center line of the sample
parallel to the x1-direction (Fig. 1a) can be
calculated using a generalized Stoney equation:

k1 ¼
6

t2Y 0ð1� n0Þ 1þ ð2� DÞn0
� �

tðsÞ: ð7Þ

All effects induced by the clamping of the sample
are condensed into a single parameter, the
‘‘dimensionality D’’. The dimensionality D is 2
for a free plate. Eq. (7) is then equal to Eq. (4) for
isotropic stress. Inserting D=1 makes Eq. (7)
equal to Eq. (6). Hence, in the two limits, the
dimensionality D as defined by Eq. (7) represents

Table 1

The relationship between the elastic compliance constants sij and the transformed elastic constants Y0, n0 and A0 for the crystal

orientations which are elastically orthotropic (s11=s22) and have two axis of mirror symmetry. The constants Y , n, and A are related to

the (0 0 1)-plane oriented along the h1 0 0i axis

Crystal plane

Crystal orientation

Y0 n0 A0

ð0 0 1Þ
h1 0 0i

Y ¼
1

s11
n ¼ �

s12
s11

A

ð0 0 1Þ
h1 1 0i

1

s11 � 1=2 S
�

s12 þ 1=2 S

s11 � 1=2 S

1

A

f1 1 1g
All

1

s11 � 1=2 S
�

s12 þ 1=6 S

s11 � 1=2 S
1

S ¼ s11 � s12 � 1=2 s44 A ¼ 2
s11 � s12

s44
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the true dimensionality of the problem. For all
intermediate cases, the value of the dimensionality
D depends on the method of the determination of
the curvature (via z, z0 or z00), the Poisson ratio n0,
the in-plane anisotropy A0 ¼ 2ðs011 � s012Þ=s

0
44, the

aspect ratio a=length/width of the sample, and on
the position where the bending is measured. In
Ref. [15] we calculated the full equilibrium shapes
of thin plates under an isotropic surface stress load
with the help of the finite element method. Here we
briefly review the results of that calculation.
The dimensionality Dz00 referring to the mea-

surement of the local curvature kz00, Eq. (3), is
found to become independent of the elastic
constants and has the value of roughly 2.0 for
plates longer than about twice the width of the
clamped edge. Hence, if the curvature is measured
at the end of plates having an aspect ratio a larger
than 2, the curvature is as for a free plate. A
measurement of the curvature is, therefore, the
most direct access route to experimental data on
the surface stress and can be straightforwardly
implemented by an optical deflection technique
[17] which measures the change of slope Dz0 of the
sample between two points with a known separa-
tion DL0, see Eq. (3).
The dimensionality Dz0 measured with the

change of the slope z0 depends more significantly
on the aspect ratio a and the elastic constants of
the substrate. For a52 the dimensionality Dz0 is
well described by the approximate relation [15]

Dz0 ¼ 2:0� ð0:29þ 0:10A0Þ=a for a52:0;

0:14n040:6; 0:254A044:0: ð8Þ

This approximation gives a marginal error of less
than 2.5% as compared to the numerical results,
even in the worst case of large Poisson numbers n0

and high anisotropy parameters A0, where the
effect of clamping is most pronounced.
The dimensionality of samples determined via

the displacement z always depends significantly on
the aspect ratio a, the Poisson number n0 and the
in-plane anisotropy A0, even for long plates. The
results of the calculations for Dz are presented in
Fig. 2a and b, for the aspect ratios a=2 and 5,
respectively. Because of the dependence of the
deflection on many parameters even for large
aspect ratios the determination of the surface

stress from the total deflection is more problematic
than in other cases. This is somewhat unfortunate
since the most sensitive methods for the determi-
nation of small bendings, the capacitance method
[3,18] and the scanning tunneling microscope [4,5]
measure the deflection.

3. Anisotropic surface stress

In the following, we generalize our earlier
calculations for isotropic surface stresses and
admit non-equal diagonal tensor components tðsÞ11,
tðsÞ22 (in the reference frame of the principal axes
along the x1- and x2-direction). For arbitrary
components tðsÞ11 and tðsÞ22 the surface stress tensor
can be decomposed into an isotropic tensor tðs;þÞ

with equal diagonal components tðs;þÞ
11 ¼ tðs;þÞ

22 and
an antitropic tensor tðs;�Þ with diagonal compo-
nents which are the negative of each other tðs;�Þ

11 ¼
�tðs;�Þ

22

tðsÞ11 0

0 tðsÞ22

 !
�
1

2
ðtðsÞ11 þ tðsÞ22Þ

1 0

0 1

 !

þ
1

2
ðtðsÞ11 � tðsÞ22Þ

1 0

0 �1

 !
: ð9Þ

The first part is tðs;þÞ, the second tðs;�Þ. The
contribution of the isotropic part of the total
surface stress tðs;þÞ to the curvature along the x1-
direction (measured via the displacement z, the
slope z0 or the true curvature z00 ) is according to
Eq. (7):

kþ1 ¼
6

t2Y 0ð1� n0Þ½1þ ð2� DðþÞÞn0�tðs;þÞ
11 : ð10Þ

By considering the bending of an unclamped
crystal with a free bending in two dimensions
and the bending constrained to one dimension,
one can derive a generalized Stoney relation also
for the case of the antitropic part of surface stress
tðs;�Þ. The contribution to the curvature is then

kð�Þ
1 ¼

6

t2Y 0ð1þ n0Þ 1� ð2� Dð�ÞÞn0
� �

tðs;�Þ
11 : ð11Þ

The isotropic and antitropic dimensionalities
D(+) and D(�) depend on the measured type of
curvature (kz, kz0 or kz00 , Eqs. (1–3)), as in the
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isotropic case. Because of the linearity of the
bending for small loads, the total bending aris-
ing from an arbitrary stress load is the sum of
the bending caused by the isotropic and antitropic
parts of the surface stress tensor. Hence, by
decomposing the surface stress into an isotropic
and antitropic part, one can calculate the

bending for general anisotropic surface stres-
ses also. All geometric factors are contained in
the dimensionalities D(+) and D(�). With the
abbreviation

F ðþ=�Þ ¼
6

t2Y 0ð1� n0Þ½1� ð2� Dðþ=�ÞÞn0�; ð12Þ

Fig. 2. Dimensionality D for kz referring to the deflection of an elastically anisotropic plate clamped along one edge and loaded with

an isotropic or anisotropic surface stress on one surface as a function of the Poisson number n0 and the anisotropy A0 for the aspect

ratio (a) a=2 and (b) a=5.

K. Dahmen et al. / Journal of Magnetism and Magnetic Materials 231 (2001) 74–8478



the total curvature along the x1-direction is

k1 ¼ kðþÞ
1 þ kð�Þ

1 ¼ F ðþÞ tðs;þÞ
11 þ F ð�Þ tðs;�Þ

11

¼
1

2
ðF ðþÞ þ F ð�ÞÞtðsÞ11 þ

1

2
ðF ðþÞ � F ð�ÞÞtðsÞ22 : ð13Þ

In Ref. [15] the isotropic dimensionality D(+) was
calculated. We have now extended our finite
element analysis to the case of an antitropic stress
load. For all aspect ratios a, Poisson ratios n0 and
elastic anisotropies A0 we find

Dð�Þ ¼ DðþÞ: ð14Þ

This relation can presumably be proven analyti-
cally from general symmetry principles; we were,
however, unable to do so. From the practical
standpoint, Eq. (12) is very convenient since the
values for D(+) calculated in Ref. [15] (see also
Eq. (8) and Fig. 2) transfer directly to the anti-
tropic case. We note that the stress considered in
the work of Watts et al. [20] is of antitropic nature.
Their calculations for kz, n0 ¼ 0:22, A0 ¼ 1 and the
aspect ratios a ranging from 0.0625 to 16 match
our results exactly.
In most cases one is interested in the determina-

tion of the surface stress from a measured bending
of the substrate. For the determination of the two
independent components of an anisotropic surface
stress tensor, one needs to measure in addition the
curvature along the x2-direction. In an analogy to
Eq. (13), one can write down the equivalent
equation for the curvature k2. The transverse
dimensionality entering the equation for k2 which
differs from the longitudinal dimensionality as
defined above can again be calculated using finite
element methods. For the surfaces considered here
having either C3v or C4v-symmetry, the macro-
scopic surface stress as measured by the cantilever
bending method is necessarily isotropic. This holds
even if the local symmetry is lower due to the
structure of the surface or the thin deposited film.
In that case, an equal number of domains of
different orientation exist to make the overall
surface stress isotropic. A possible anisotropy of
the actual bending, as reflected in different
numbers for the longitudinal and transverse
dimensionality is only an effect of the clamping.
Hence, if the experimental method permits an
independent measurement of the two curvatures,

one may compare these measurements for an
estimate on the residual effect of the clamping.

4. Magnetoelastic coupling

The cantilever bending method has a long
tradition in the experimental determination of
magnetoelastic coupling constants of thin films
[8,9,19] and the discussion of the curvature
analysis has attracted a series of publications
[20–27]. While the importance of the clamping
condition on the bending was realized in earlier
papers, no detailed analysis has been presented so
far, except for the numerical calculation of Watts
et al. for a special set of elastic constants of the
substrate [28]. Other previous treatments consid-
ered either merely a two-dimensional bending of a
free plate or a one-dimensional bending. These
extremes correspond to large and small length-to-
width ratios of the film–substrate composite,
respectively. With the curvature analysis presented
in Section 3, magnetoelastic data of the film can
now be extracted from measurements on crystal-
line samples with a wide range of aspect ratios,
provided that their surfaces have C3v or C4v

symmetry. By making use of the results above,
we show that the effective magnetoelastic coupling
constant Beff is obtained by measuring the change
of a single curvature upon re-orientation of the
magnetization. In several recent papers, the
magnetoelastic effects of films with various or-
ientations and with different domain structure on
the surface were considered and the effect of film
strain on the modified magnetoelastic properties
has been investigated [12,17,29–31]. Our analysis,
therefore, includes the consideration of films with
crystal structures which differ from the substrate
and also films which consist of differently oriented
domains. The discussion is restricted to the case of
thin deposited films so that the effect of the (bulk)
magnetoelastic stress tensor tf in the magnetic film
on the bending of the substrate plate can be
treated as a surface stress tðsÞ ¼ tftf , with tf5t the
thickness of the film.
We consider the difference in the bending of a

plate for the magnetization either oriented along
the x1- or the x2-direction. The bending itself can
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be measured as k1 ¼ k1z, k1 ¼ k1z0 , or as k1 ¼ k1z00
at the end of the plate (Fig. 1a). Because of the
symmetry of the substrate, the components of
the surface stress tensor (averaged over structural
domains) obey the relations

tðsÞ11ðMjjx1Þ ¼ tðsÞ22ðMjjx2Þ;

tðsÞ11ðMjjx2Þ ¼ tðsÞ22ðMjjx1Þ;
ð15Þ

where Mjjx1 and Mjjx2 denote a film magnetiza-
tion along the sample length and along the sample
width, respectively. It is assumed that for each
magnetization state a saturated, single domain
magnetization state of the whole film is obtained,
as should be verified experimentally, e.g. by
magneto-optical Kerr effect measurements [32].
With Eq. (15) inserted into Eq. (13) one obtains

for the change in k1 upon a rotation of the
magnetization by 908

Dk1 � k1ðMjjx1Þ � k1ðMjjx2Þ

¼ F ð�Þ tðsÞ11ðMjjx1Þ � tðsÞ22ðMjjx1Þ
� �

ð16Þ

or alternatively

Dk1 � k1ðMjjx1Þ � k1ðMjjx2Þ

¼ F ð�Þ tðsÞ11ðMjjx1Þ � tðsÞ11ðMjjx2Þ
� �

ð17Þ

with F ð�Þ ¼ ð6=t2Y 0Þ ð1þ n0Þ½1� ð2� Dð�ÞÞn0� from
Eq. (12).
Using these remarkably simple equations, the

change in the curvature can be calculated from
the magnetoelastic stresses. The stresses in turn
are related to the magnetoelastic coupling con-
stants. Depending on the crystal structure of the
magnetic film and the orientation of the crystal
domains with respect to the substrate, a particular
coupling constant of the magnetic film or combi-
nations thereof are determined by measuring the
change of curvature Dk1 upon an in-plane
reorientation of the magnetization. The general
form of the magnetoelastic energy density fme can
be written as

fme ¼
X

Bijkle0ija
0
ka

0
l þ � � � ; ð18Þ

where Bijkl is a tensor of the magnetoelastic
coupling constants, e0ij the strain tensor, and a0k
are the cosines of the orientation of the magnetiza-
tion with respect to the crystal axes in the crystal

structure of the film. Higher order contributions,
indicated by dots, are neglected for clarity. Note
however, that recent experimental and theoretical
work indicate a significant contribution of second
order strain terms to the magnetoelastic energy
density in Eq. (18), see e.g. Refs. [30,33,34]. We
introduce the magnetoelastic tensor Bijkl in ana-
logy to the magnetostrictive tensor as defined by
Mason [35,36]. In contrast to bulk ferromagnets,
the use of a magnetoelastic tensor is more
appropriate for thin films, as magnetization
processes induce magnetoelastic stresses that are
given by the strain derivative of Eq. (18). A direct
calculation of magnetostrictive strain is only
possible for bulk samples, whereas for supported
films the resulting strain depends on the rigidity of
the substrate, as will be shown below. The
magnetoelastic tensor Bijkl has a reduced symmetry
as compared to the elasticity tensor cijkl. In
particular, the off-diagonal elements B1133 and
B3311 for tetragonal or hexagonal cystals need not
be equal. For a tetragonal crystal (the direction of
the c-axis denoted by the index 3), the non-
vanishing terms in the sum (18) are

fme ¼B1111ðe011 a
02
1 þ e022 a

02
2 Þ þ B3333 e033 a

02
3

þ B1122ðe011 a
02
2 þ e022 a

02
1 Þ

þ B1133ðe011 þ e022Þ a
02
3

þ B3311 e033ða
02
1 þ a022 Þ

þ 4B1313ðe023 a
0
2 a

0
3 þ e013 a

0
1 a

0
3Þ

þ 4B1212 e012 a
0
1 a

0
2: ð19Þ

The seven independent magnetoelastic constants
Bijkl of the tetragonal system reduce further for
higher crystalline symmetry. The hexagonal sym-
metry requires a constant magnetoelastic contri-
bution for a rotation within the basal plane by 608
and this leads to the relation

B1212 ¼
1

2
ðB1111 � B1122Þ: ð20Þ

Here, we are only interested in the orientation
dependence of the magnetoelastic energy, and
the number of independent constants reduces
further because of the normalization conditionP

i a
02
i ¼ 1. Omitting terms that are independent of

the magnetization direction ai, Eq. (19) reduces for
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a hexagonal crystal to

fme ¼B1ðe011 a
02
1 þ 2e012 a

0
1 a

0
2 þ e022 a

02
2 Þ

þ B2 e033ð1� a023 Þ

þ B3ðe011 þ e022Þð1� a023 Þ

þ B4ð2e023 a
0
2 a

0
3 þ 2e013 a

0
1 a

0
3Þ; ð21Þ

where

B1 ¼ B1111 � B1122; B2 ¼ B3311 � B3333;

B3 ¼ B1122 � B1133; B4 ¼ 2 B1313: ð22Þ

The constants Bi are the four independent
magnetoelastic constants in the standard notation
[13,30]. For a cubic crystal the orientation
dependence of the magnetoelastic energy can be
written as

fme ¼B1ðe011 a
02
1 þ e022 a

02
2 þ e033 a

02
3 Þ

þ B2ð2 e023 a
0
2 a

0
3 þ 2 e013 a

0
1 a

0
3 þ 2 e012 a

0
1 a

0
2Þ

ð23Þ

with

B1 ¼ B1111 � B1122 and B2 ¼ 2B2323: ð24Þ

The components of the magnetic surface stress
tensor tðsÞij for a particular orientation of the
magnetization #M in the magnetic film having the
thickness tf are given by the derivative

tðsÞij ¼ tf tij ¼ tf
qfmeð #MÞ

qeij
: ð25Þ

Here, q=qeij are the strain derivatives with respect
to the x1- and x2-axis of the substrate plate. For a
general orientation of the crystal axes in the
magnetic film, the energy fmeðe0ij ; a

0
kÞ has to be

expressed in terms of the strains and angles in the
substrate crystal coordinate system. By combining
Eq. (25) with Eqs. (16) or (17), the variation of the
curvature upon a rotation of the magnetization by
908 can be related to certain components of the
magnetoelastic tensor Bijkl. The analysis does not
require the knowledge of the elastic constants of
the film. The elastic constants of the film enter only
if the bending effect is expressed in terms of the
magnetostriction constants l of the film. Since the
elastic constants of the film are not well known, in
particular when the film is only a few monolayers
thick, the analysis proposed here involves less
uncertainties, as already discussed by Sander [13].

5. Cantilever bending and magnetoelastic constants

of deposited films

This section addresses the question which
magnetoelastic coupling constant of a magnetic
thin film is measured in a cantilever bending
experiment when the magnetization is rotated
by 908. The answer to this question depends on
the crystal structure of the deposited film and the
orientation of the crystal axes with respect to
the underlying substrate. Several special cases have
already been discussed in Ref. [17]. Here, a
systematic analysis is provided. The effective
magnetoelastic coupling constant measured by
the cantilever method integrates over the thickness
of the magnetic film and we focus on magnetoe-
lastic stresses which are proportional to the film
thickness. Thus, an effective magnetoelastic cou-
pling constant is measured and subsequent experi-
ments are mandatory to explore the physical origin
of the often observed deviation of the magnetoe-
lastic coupling in ferromagnetic monolayers from
the respective bulk values [12,30,31,37,38].
In the first step, we comment on the effect of a

domain structure in the deposited films. Domains
of different orientation are often encountered in
thin film epitaxy. It is thus important to under-
stand how the magnetic stresses in the individual
domains add up to the macroscopic surface stress
measured by the cantilever method. The simplest
approach would be to assume that the total
magnetoelastic energy is the sum over the magne-
toelastic energies of the domains. This neglects
interaction terms arising from the coupling of
strain fields extending into the bulk of the film and
the substrate, and it is therefore necessary to
estimate the magnitude of the interaction energy.
The problem of the elastic coupling between
domains of different orientation has been dis-
cussed frequently in the context of the stress-strain
driven self-assembly of nanostructures. A simple
analytical solution for the interaction energy exists
for the case of stress domains in the form of stripes
of infinite length. It is straightforward to see that
for this geometry the interaction is stronger than
for two-dimensional domains, since for the stripes
the strain fields extend more deeply into the
bulk. The analytical solution available for the
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interaction energy of striped stress domains [39]
can therefore serve to estimate an upper limit for
the interaction. For the stripe geometry, the strain
derivative of the interaction energy leads to a stress
perpendicular to the stripes. The ratio of this stress
tint to the mean magnetoelastic stress t in the
domain is

tint
t

¼
3

8p
ðtjj � t?Þ

2

%t2
%t tf
‘ m

ln ð‘=padÞ � 1
� �

: ð26Þ

Here tjj, t?, and %t are the magnetic stresses parallel
and perpendicular to the stripes for a given
orientation of the magnetization and the mean
magnetoelastic stress, respectively. The width of
the stripes and the width of the domain walls are
denoted as ‘ and ad, respectively, and m ¼ ðc11 �
c12 þ 4c44Þ=6 is an elastic constant of the substrate
if ‘ � tf . Since the magnitude of the magnetoe-
lastic stresses are given by the magnetoelastic
coupling constants Bi, which are of the order of
several MPa and are thus very small compared to
the elastic constants of roughly 100GPa, the ratio
tint=t is also small, even for small domain widths ‘
and large film thickness tf . For two-dimensional
domain configurations the interaction term is even

smaller for reasons discussed above. The magnetic
stresses and the bending caused by magnetoelastic
effects for films with different domains can there-
fore be calculated from the magnetic energy taken
as the sum over the various domains. With
Eqs. (16), (17), and (20) the change in the
curvature along the x1-direction upon rotating
the magnetization from the x1-direction into the
x2-direction is

Dk1 ¼ F ð�Þ tf Beff ; ð27Þ

where Beff represents the average effective magne-
toelastic coupling constant of the film. This
magnetoelastic constant is an unequivocal experi-
mental result and as such not affected by possibly
debatable assumptions and interpretations.
In ultra-thin films the crystal symmetry is

reduced due to the interaction with the substrate.
A heteroepitaxial film of a cubic material on the
(1 0 0) surface of a cubic substrate, e.g., is laterally
strained because of the mismatch of the lattice
constants of the two materials. The lateral strain
causes a tetragonal distortion of the film, so that
the film structure becomes tetragonal. The magne-
toelastic constant of that film may be quite

Table 2

Effective magnetoelastic coupling constants Beff measured in cantilever bending experiment on a substrate with a C3v or C4v surface

symmetry for various common crystal structures of epitaxial magnetic films. The quoted magnetoelastic coupling constants Bijkl or

combinations thereof are measured from a change of radius of curvature Dk during an in-plane reorientation of the magnetization, see
Eqs. (27) and (17)

Case no. Film structure Beff

1 Cubic or tetragonal with axes along x1 and x2 B1111�B1122 (=B1 for a cubic crystal)

2 Hexagonal, c-axis perpendicular to surface B1111�B1122=2B1212=B1

3 Cubic or tetragonal rotated by 458 with respect to x1, x2 2B1212 (=B2 for a cubic crystal)

4 Tetragonal and hexagonal with c-axis in plane, or orthorhombic,

2 domains parallel x1, x2

1

2
ðB3333 þ B1111 � B1133 � B3311Þ

5 Tetragonal and hexagonal with c-axis in plane, or orthorhombic,

2 domain rotated by 458 with respect to x1, x2

2B1313 (=B4 for a hexagonal crystal)

6 Cubic or tetragonal with c-axis perpendicular to surface, 3 domains

rotated by 1208

1

2
ðB1111 � B1122Þ þ B1212

7 Tetragonal and hexagonal with c-axis in plane, or orthorhombic,

3 domains rotated by 1208

1

4
ðB1111 þ B3333 � B1133 � B3311Þþ

B1313
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different from the magnetoelastic constant of
the undistorted cubic phase. Quite frequently,
the lattice mismatch and the interaction with
the substrate stabilizes phases which otherwise
would not be stable at all, or would not be stable
at the same temperature. In order to understand
the magnetoelastic effect of the film, it is useful to
be able to relate the measured magnetoelastic
constant of the film, as measured by the cantilever
method, to the magnetoelastic constants of the
corresponding bulk material. To establish these
relations, the magnetic energy of the particular
crystal domains in the thin film (Eqs. (19) and (21))
has to be expressed in terms of the substrate
coordinates. The magnetic stresses are then
calculated according to Eq. (25). The results for
various common crystal structure of the film are
listed in Table 2. Cases 1–5 are relevant for
substrate surfaces with C4v-symmetry and cases 6
and 7 for substrate surfaces with C3v-symmetry.
The single-index constants Bi notation (Eqs. (22)
and (24)) is also given where possible. Since only
magnetoelastic constant with indices referring to
the in-plane crystallographic axes appears, the
results for the hexagonal and tetragonal crystal
with the c-axis oriented in the surface plane also
apply to orthorhombic films (cases 4,5, and 7). For
the orthorhombic lattice the indices 1 and 3 refer
to the two crystal axes within the plane of the film.
Some of the cases in Table 2 have already been
discussed in Refs. [13,17]. As seen from Table 2,
the cantilever bending experiment determines a
very special combination of the bulk magnetoe-
lastic constants of the film which depends on the
structure and orientation of the film. A complete
characterization of the magnetoelastic properties
is, therefore, not possible with a single curvature
measurement.
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