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Discontinuities of the exchange-correlation kernel and charge-transfer excitations
in time-dependent density-functional theory
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We identify the key property that the exchange-correlation (XC) kernel of time-dependent density-functional
theory must have in order to describe long-range charge-transfer excitations. We show that the discontinuity of
the XC potential as a function of particle number induces a space- and frequency-dependent discontinuity of the
XC kernel that diverges as r — 00. In a combined donor-acceptor system, the same discontinuity compensates
for the vanishing overlap between the acceptor and donor orbitals, thereby yielding a finite correction to the
Kohn-Sham eigenvalue differences. This mechanism is illustrated to first order in the Coulomb interaction.
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I. INTRODUCTION

The theoretical prediction of the excitation spectra of
interacting electronic systems is a major challenge in quantum
chemistry and condensed-matter physics. A method that has
been gaining popularity is time-dependent density-functional
theory (TDDFT), offering a rigorous and computationally
efficient approach for treating excited states of large molecules
and nanoscale systems. In TDDFT the interacting electronic
density is calculated from a system of noninteracting electrons
moving in an effective local Kohn-Sham (KS) potential [1].
The KS potential is the sum of the external, the Hartree,
and the so-called exchange-correlation (XC) potential vy (r?),
which, due to the Runge-Gross theorem [2], is a functional
of the density. In the linear response regime, the excitation
energies can be extracted from the poles of the linear density
response function. As a consequence, given the variational
derivative fyc(rt,r't") = Svy(rt)/3n(r't’), also known as the
XC kernel [3], it is possible to formulate a random-phase-
approximation-like equation for the exact excitation spec-
trum [4,5]. In practical calculations, this equation is solved
using some approximate XC potential and kernel where the
most popular ones are based on the adiabatic local-density
approximation (ALDA), leading to kernels local in both space
and time. Despite this simple structure, optical excitations of
small molecules are successfully predicted. However, several
shortcomings have also been reported: Excitons in solids are
not captured [6,7], double excitations are missing [8], and
charge-transfer (CT) excitations are qualitatively incorrect
[9-12]. In this work we will be concerned with the last
problem and to see why ALDA fails in this case, we consider
a charge transfer between two neutral Coulombic fragments.
The asymptotic limit of the excitation energy is then given by

wcr =14 — A, — 1/R, 9]

where I; is the ionization energy of the donor, A, is
the affinity of the acceptor, and R is their separation. In
TDDFT the starting point is the KS system, which yields
the exact I; but only an approximate A,. Thus the XC
kernel must both account for the 1/R correction and shift the
KS affinity. The linear response equations, however, involve
only matrix elements of fy. between so-called excitation
functions ®;,(r) = ¢;(r)p,(r), i.e., products of occupied and
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unoccupied KS orbitals. As the distance between the fragments
increases these products vanish exponentially and thus there
is no correction to the KS eigenvalue differences unless the
kernel diverges [13,14]. Kernels from the ALDA, or adiabatic
generalized gradient approximations for that matter, do not
contain such divergency and it is as yet not understood how
this extreme behavior should be incorporated in approximate
functionals.

Whenever two subsystems are spatially well separated it is
possible to treat one of the subsystems in terms of an ensemble
containing states with different number of particles. Density-
functional theory (DFT) has been generalized to noninteger
charges and as an important consequence it was found that the
XC potential jumps discontinuously by a constant at integer
particle numbers in order to align the highest occupied KS
eigenvalue with the chemical potential [15]. In this way, the
true affinity A is equal to the sum of the KS affinity A; and
the discontinuity. Not surprisingly, it has therefore been argued
that the discontinuity must play an important role in describing
CT excitations within TDDFT [16].

So far, only the XC potential has been the target of inves-
tigating discontinuities in DFT and TDDFT [17-19]. In this
work we instead examine possible discontinuities of the XC
kernel. We demonstrate the existence of a discontinuity and we
study its properties. Furthermore, we give an explicit example
through a numerical study of the exact-exchange (EXX)
functional. Finally, as a first application, we demonstrate the
crucial role of the discontinuity for capturing CT excitations
in linear response TDDFT.

II. DERIVATIVE DISCONTINUITY IN DFT

We start by considering a static system of electrons
described by a statistical operator p = >, x| Wi ) (W[, where
|W,) denotes the ground state of k particles corresponding to
the Hamiltonian # = 7 + V + [ dr w(r)i(r), in which 7 is
the kinetic energy, V is the interparticle interaction, and w
is the external potential. The ground-state energy Ey of the
system with average number of particles N is obtained by
minimizing the functional E,[n] = F[n]+ f dr w(r)n(r),
where F[n] = min,_,, Tr[ﬁ(f + \7)], under the constraint
that N = [drn(r). At the minimum n=n[w,N]
coincides with the ground-state density. The XC energy
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is defined as Ey/[n] = F[n]— Ts[n] — U[n], where
Ti[n] = ming_,, Tr[,éf“] is the noninteracting kinetic energy
and U [n] is the Hartree energy. Assuming that the density can
be reproduced by an ensemble of noninteracting electrons, the
XC part of the KS potential is given by vx.(r) = § Ex./dn(r).
In general Eq (and in particular Ey.[n[w,N]]) has derivative
discontinuities at integer particle numbers Ny [20,21]. The
partial derivative of Ex. with respect to N,

9 Exc an(r)
= | dru(r)—, 2
aN / I V(1) aN 2)
has two sources of discontinuous behavior: (i) the quantity
Bn(r)
= — 3
fr)= N 3)

known as the Fukui function [22], may have different right
and left limits f+ and f~ (the superscript & refers to the
value of the quantity at N = Ny + 0%) and (ii) the XC
potential may be discontinuous v} (r) = v (r) + A, where
A, 1s a constant. Below we will show that also the second
variation of Ey. with respect to the density, the static XC
kernel fy(r,r') = Svy(r)/én(r’), has discontinuities that are
related to derivative discontinuities in the density itself. As
pointed out in previous work [5,23,24], the particle number
conserving density response is unaffected by adding to fic
a function depending only on one of the coordinates. In line
with the results of Ref. [25], we therefore argue that the
discontinuities of fx. must be of the form

(1) = fo (1) + gxe(r) + gxe(r). “)

In the following we will show a simple procedure for determin-
ing Ay. and gx.(r) that is useful whenever Ey. is an implicit
functional of the density via, e.g., the KS Green’s function.

A. XC potential

For N > Ny, we write vx(r) = v (r) + Ay (r) and cast
Eq. (2) into

/ A () = 2

In the limit N — N, Ax(r) > Ay and we find a formal
expression for the discontinuity of vy,

9 Exc
N |,

This expression can be used as the starting point for deriv-
ing the well-known many-body perturbation theory (MBPT)
formula for the correction to the gap [26], as we will now
demonstrate. From the Klein functional within MBPT [27]
it is possible to construct an XC energy functional in terms
of the KS Green’s function G,(r,r’,w) [28]. In this case
Yge = i8Ex./8Gy, where X is the self-energy evaluated at
G,. The derivative of Ex. with respect to N is then given by

dEy d dG(r,r,
ZTxe _i/_w /drdr’Zxc(r,r’,w)M. (7
oN 27 oN

In order to evaluate the derivative of G, with respect to N
we consider an ensemble described by a spin-compensated
mixture of states with electron number Ny and Ny + 1. A
spin-component of the KS ensemble Green’s function for

/dr Uy (1) f (). ®)

Axc =

—fdr Ve (O FT (D). (6)
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N € [Ny,Ny + 1] is given by
N 00

Z ()i (r') Z

®— & —1i
=1 k1

O (r’)

G,(r,r',w)
—¢&r+in

P o)L (r’) P\ er(MeL(r’)
+ LA (1= ) e

2w—¢gr —in w—¢gp +in’

(®)

where N = Ny/2,p = N — N, and the subscript L signifies
the lowest unoccupied molecular orbital (LUMO) of the KS
system, which is considered partially occupied and partially
unoccupied. Note that the KS orbitals ¢, and eigenvalues &
also depend on N via the KS potential V. The derivative of
G, with respect to N is now easily carried out,

0Gs(rr'o) 1 oMer(r) 1 gr(r)er(r)
IN 2w—¢e, —in 2w—¢gL+in
SGS ’ /7 aVS
/dl (r,r',w) dVs(ry) ©)
3Vs(ry) oN
From Eqgs. (9) and (7) we find
0Ey
¢ /drdr%pf(r)i] (r,r' e/ ()
oN
. dw / + /
—i [ — ([drdr'dr|Z(r,r',o)
2
8G(r,r',w) dVy(ry) (10)
8Vi(ry) aN |y

The second term on the right-hand side of Eq. (6) can be written
as

f dru (r) f(r) = / dr v (0)lgf ()]

1) LA
/dr’dn v (r )5"/1((1;1)) 8](\:1)

L

(1D
The discontinuity Ay is now easily determined. The second
terms on the right-hand sides of Egs. (10) and (11) will cancel

by virtue of the linearized Sham-Schliiter equation [29] and
we find

A = f drdr' o, O e e (r)

- / drvg(n)eL(n)?, (12)

where we have omitted the superscript on the orbitals since
they are continuous with respect to N. Equation (12) agrees
with the one in Ref. [26].

B. XC kernel

Next we turn to the XC kernel for which we exhibit the
discontinuities by taking the functional derivative of d Ex./0 N
[Eq. (2)] with respect to w. This yields

§ O0FEx drd
Sw(ry) 8N / r l'X(l"l,l‘ )fxc(r 1) f(r)
3f (r)
d XC 13
/rv (l')(s o)’ (13)
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where we have used the chain rule

Suxe(r) f gy Ssel®) 8n(x)
Sw(r))

sn(r’) Sw(ry)

and identified the linear density response function y (r;,r’) =
Sn(r')/8w(ry). Then we write fi(r,r')= f.(rr)+
gxe(r,1’), insert in Eq. (13), and take the limit N — NS’.
According to the discussion above, in this limit gy.(r,r’) —
gxe(r) + gxc(r'). Using, furthermore, that [dr x(r,r') =0
and [drf(r)=1, we find the following equation for the
discontinuity gxc of fic:

(14)

/drx(rn,r)gxc(r)

_ 0 9Bk / e
T Sw(ry) AN |, /drdfx(rhr)fxcmr)f )
_ 4 Of ()
/dl‘vxc(l') Sw(ry) +. (15)

We note that Eq. (15) only determines gy up to a constant.
This constant can, however, be easily fixed by considering
32Exc/IN? in the limit N — N,

= / drvi ey )
. ON

2

PEye
2 [ dr gt = 3

+
- /dl‘ dr' f(r) oo () ().
(16)

This equation does not allow an arbitrary constant in gxc.
Consequently, Egs. (15) and (16) together uniquely determine
the discontinuity of fyc.

To gain insight into the r dependence of gx.(r) we employ
a common energy denominator approximation (CEDA) [30]
to Eq. (15). To do so, we first note that the derivative with
respect to w can be replaced by the derivative with respect
to V; using the chain rule since the density is a functional of
w only via V;. The CEDA then allows us to partially invert
the KS response function x, analytically. We will focus on the
left-hand side of Eq. (15) and on the last term on the right-hand
side. These terms are less sensitive to the approximation used
for E4. and therefore should give rise to a general behavior. If
all energy denominators are set to the constant Ae we find on
the left-hand side of Eq. (15)

2
/dr Xs(r1,T)gxe(r) & —A—en(rl)gxc(rl)

2
t e /dl‘ Y (1) gxe )y (r.ry), (17)
€

where y is the KS density matrix. If we focus on the last term
in Eq. (15) and use f*(r) ~ | (r)|> we find in the CEDA

/ drvl(r) AL
§Vy(ry)

~ —i|m(r1>|2v-<r1>+ im(n)ﬁ / drler(r))?
Ae X A€

+

4
XU+ ) / dr (v P ua(m).  (18)
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From Egs. (17) and (18) we can extract an approximate
asymptotic behavior

oL (r)]? _ .
(p’j(r) ,\,62(@ V24, , (19)

where [ is the ionization energy [31] and A is the KS
affinity. Thus we can conclude that if / > Ay, g, contains
a term that diverges exponentially as r — oc. That the first
term of Eq. (15) would exactly cancel the term of Eq. (19)
is highly unlikely and we will explicitly see that within an
approximation that accounts for the derivative discontinuity
as the EXX approximation this is not the case. To obtain
Eq. (19) we have used the CEDA, but we will show below that
the discontinuity obtained from the full solution of Eq. (15)
exhibits the same behavior. In addition, we will demonstrate
that this feature is responsible for sharp peak structures as well
as divergences in the kernel of a combined donor-acceptor
system.

8xe(r) ~

III. DISCONTINUITY OF THE DYNAMICAL XC KERNEL

So far the analysis has been limited to the static case.
To investigate if the kernel has discontinuities at finite
frequency the discussion above must be generalized to an
ensemble that allows the number of particles to change in
time. To this end, we consider the statistical operator p(¢) =
Dk W () (Wi (1)], where a (1) are given time-dependent
coefficients whose sum is equal to 1 and |W;(¢)) is the
many-body state of k particles at time ¢. It is possible to prove
a Runge-Gross-like theorem for this ensemble that allows us to
define the XC potential as a functional of the ensemble density.
In this way, the functional derivative §vx.(rt)/8n(r't") contains
no arbitrariness, but leaves the possibility for a discontinuity
of the form

faerst —1) = fort—1)
+gxc(r;t - t/) + gxc(r,;t - [,)-
If we vary vx.(rt) with respect to the time-dependent number
of particles N(¢') and evaluate the derivative at the ground

state with N = N, an expression for the frequency-dependent
discontinuity gx.(r,w) can be derived

Sy (rt)
SN(t)

= /dr’fxz(r,r’,t — 1) ()

ng
+ / At gt — ) ) + gt — 1),
20)

where we again have used the chain rule. Below we will
see with a numerical example how the frequency dependence
modifies the discontinuity, making the divergency stronger
than in the static case, and allows for a correct description of
CT excitations in a combined donor-acceptor system. This will
be illustrated in the time-dependent exact-exchange (TDEXX)
approximation. For a derivation and analysis of the EXX kernel
we refer the reader to Refs. [32,33]. From now on the subscript
“xc” will be replaced by “x” to denote quantities in the TDEXX
approximation.
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IV. RESULTS

In the single-pole approximation (SPA) [4] of TDDFT the
XC correction to the KS excitation energy w, is given by twice
the matrix element

(] fre(@)lq) = f dr dr' &, (1) fro(r,F o), (F)

at o =w,;, where the index ¢ =ia corresponds to
an arbitrary excitation. In Ref. [34] it was shown
that in TDEXX 2(q|fx(wg)lg) = {(a|Ex — vxla) — (i|Ex —
vx|i) — (aa|v|ii), where v is the Coulomb interaction. Consid-
ering a CT excitation between the highest occupied molecular
orbital (HOMO) (i = H) and the LUMO (a = L), we see
that the last term goes as 1/R. Setting, as usual [35],
(H|Xx —vx|H) =0 and using the previously mentioned
result (L|Xx — vx|L) = Ay, we can deduce that [36]

wer = wpr + 2(HL|v + fx(wur)|HL)
— oy + Ax — 1/R. @n

The kernel fx thus produces a finite correction if evaluated at
wpy and yields exactly the results corresponding to first-order
Gorling-Levy perturbation theory [34,37-39]. In the following
we will see that it is the discontinuity of the kernel that yields
this correct result. We have deliberately used the SPA and
not the full solution of Casida equations in conjunction with
the EXX kernel, a procedure that would imply the inclusion
of higher orders in the explicit dependence on the Coulomb
interaction. Our motives are to study an exact property of the
kernel well captured in the SPA of TDEXX, but may be subject
to errors inherent to the approximation when including higher
orders [32].

We model [40] a stretched diatomic molecule in terms
of one-dimensional atoms described by Q//(x — x¢)? + 1,
where x( is the location of the atom and Q is the nuclear
charge, and replace everywhere the Coulomb interaction v
with a soft Coulomb interaction 1/4/(x — x")? + 1. We study
two different systems, one ionic and one neutral system. In
the ionic system the discontinuity is important already at the
level of the XC potential, whereas in the neutral system the
discontinuity appears only in the XC kernel.

A. Tonic system

In the first example we study an ionic system and set Q = 2
on the left atom (donor) and Q = 4 on the right atom (acceptor)
and solve the ground-state KS problem with four electrons. In
the ground state at internuclear separation R = 10 a.u. we find
two electrons on each atom and in Fig. 1 (left panel) the EXX
potential is displayed (solid gray line) in arbitrary units. Two
steps are clearly visible, one between the atoms and another
one on the right side of the acceptor. As a consequence, vy is
shifted upward in the acceptor region placing the KS LUMO of
the isolated acceptor above the HOMO of the isolated donor.
This implies that the KS affinity of the acceptor becomes
closer to the true affinity. In the same figure and panel we also
display the quantity Fy(x,w) = fdx/fx(x,x/,a))@HL(x/) at
o = 0. The function Fy is seen to have peaks in correspon-
dence with the steps of v and is shifted downward over the
acceptor with respect to the donor. Despite the fact that ® 5,
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FIG. 1. (Color online) Left: EXX potential and kernel for a
heteronuclear system of four electrons. Right: the discontinuity
gx(x,0) calculated from Eq. (15) for the isolated two-electron
subsystem as well as G(x) for N = 2.0001. Note that the potentials
have been rescaled and shifted for better visibility.

tends to zero as R increases, the peaks of F; become sharper
and higher and the shift increases in size. The right panel in the
same figure shows the function G(x) = [ dx’ fy(x,x’,0) f(x"),
accessible from Eq. (15), for the isolated acceptor when
N =2.0001 (solid black line), as well as the discontinuity
gx(r,0) in the limit N = 2% (dashed line). The potentials vy
are also shown (solid gray lines) calculated from the same
ensembles, i.e., N = 2.0001 and 2. The function G(x) has
peaks whose positions follow the steps of v and whose height
increases as N approaches 27. In the same limit, also the
difference between the G(oo) value and the value of G in
the central plateaulike region increases consistently with the
fact that [ dx G(x)f(x) has to remain finite [see Eq. (16)].
Eventually G(x) turns into the discontinuity gy(x,0), which
diverges as x — o0, in agreement with our previous analysis.
Notice that the CEDA has not been made here. If we compare
Fy; and G from the different panels we see a very similar
structure. We therefore conclude that the peaked structure of
the kernel in the donor-acceptor system is just the discontinuity
of the ensemble EXX kernel. As discussed above, most part
of the CT excitation energy is contained already in the KS
eigenvalue differences due to the step in vx. A more critical
example is therefore the neutral system, studied below.

B. Neutral system

An example where the kernel needs to account for Ay is the
same system but with six electrons, i.e., a neutral system. The
ground-state has two electrons on the left atom (acceptor) and
four electrons on the right atom (donor). In Fig. 2 we plot the
EXX potential (solid gray line) for R = 12 a.u. and a steplike
structure between the atoms can be observed. However, as
R is increased the step reduces in size and eventually goes
to zero. In the left panel we plot Fy; at w =0, i.e., in
the adiabatic exact-exchange (AEXX) approximation, and for
different separations R. Again, we find a peak structure in the
kernel between the donor and the acceptor as well as a shift
that increases exponentially with R. In this case, compared to
the previous, the peaks are less pronounced, but the step due
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FIG. 2. (Color online) Same system as in Fig. 1 but with six
electrons. Left: AEXX kernel. Right: TDEXX kernel at wy; . Note

that the potentials have been rescaled for better visibility.

to the plateau is much larger. Evaluating the kernel at the first
KS CT excitation frequency increases the exponential growth
of the step by a factor of approximately 2 (right panel). Thus,
whereas the overall shape remains unaltered, the magnitude of
the shift is strongly influenced by the frequency dependence.
This fact plays a crucial role in the description of the CT
excitation for this system. We notice here that even if the
step in vy disappears, in the dissociation limit the step in fxc
remains. This is not a contradiction as the discontinuity might
show up only in the second derivative. Figure 3 illustrates the
behavior of the single-pole CT excitation energy as a function
of R for the system of Fig. 2 in four different approximations.
In TDEXX with the correction (HL|fx(wgr)|HL) we find
that the divergency of the kernel over the acceptor exactly
compensates for the decreasing overlap ® 4, thus yielding a
finite value as R — oo as well as the right 1/R asymptotic
behavior, as it should according to Eq. (21). In the adiabatic
case we find instead that (HL|fx(0)|HL) tends to O as
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FIG. 3. (Color online) CT excitation energies as a function of
separation R in different approximations.

R — o0, although reproducing the fully frequency-dependent
result up to around R = 8. We note that even if the kernel is
very large over the acceptor it will not affect the excitations that
are localized there since any constant will vanish by the fact
that @, integrates to zero. Thus only excitations involving a
transfer of charge from one atom to the other will be influenced
by the discontinuity.

V. CONCLUSION

In conclusion, we have analyzed the discontinuity of the XC
kernel of an ensemble with time-dependent particle numbers.
In a combined system of two atoms we have seen that
the divergency of the discontinuity as » — 0o can generate
a kernel that diverges in the dissociation limit and thus
compensate for the vanishing overlap of acceptor and donor
orbitals. This feature is crucial for the description of CT
excitations, but may also be important whenever there are
excitations for which the KS orbital overlap is too small to
give a correction.
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