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Effect of discontinuities in Kohn-Sham-based chemical reactivity theory
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We provide a new derivation of a formula for the Fukui function of density functional chemical
reactivity theory which incorporates the discontinuities in the Kohn-Sham reference system. Orbital
relaxations are described in terms of the exchange-correlation (XC) kernel, i.e., the derivative of
the XC potential with respect to the density and it is shown that in order to correctly measure the
reactivity toward a nucleophilic reagent a discontinuity of the XC kernel has to be taken into account.
The importance of this finding is illustrated in model molecular systems. © 2012 American Institute

of Physics. [http://dx.doi.org/10.1063/1.3694103]

. INTRODUCTION

Predicting how molecules respond to external perturba-
tions is an important subject in theoretical chemistry. On
a fundamental level this entails a very difficult problem as
molecules are composed of interacting electrons and nuclei
which require a solution to the many-body Schrédinger equa-
tion. In an attempt to simplify the description a set of reac-
tivity descriptors and associate empirical equalization prin-
ciples have been formulated, constituting what is known as
chemical reactivity theory (CRT).!'* An approach which
naturally combines with CRT is density functional theory
(DFT),'*!> which is an exact framework for treating the
electron-electron interaction in terms of only the electronic
density. Normally, the Kohn-Sham (KS) formulation'® is used
in which the density is calculated from a fictitious system of
non-interacting electrons moving in an effective local multi-
plicative potential—the KS potential. It is well known that
an independent-particle description using a local potential
sometimes introduces singularities in the KS quantities and
that many physical properties are crucially dependent on this
singular behavior. A classic example is the dissociation of
closed-shell molecules composed of open-shell atoms.!”'® In
order to dissociate with a correct integer number of electrons
on each atom a discontinuous positive step in the exchange-
correlation (XC) part of the KS potential has to develop
over the atom with the larger ionization potential. Important
progress was made when it was understood that this feature
can be related to a derivative discontinuity of the total en-
ergy as a function of particle number.'® In order to make this
identification DFT was generalized to ensembles allowing for
fractional charges.

In CRT the use of non-integer number of particles is at
the basis of all definitions of reactivity indices since the reac-
tion probability is mostly measured in terms of a sensitivity
to a global or local change of particle number. In KS-based
CRT, one therefore expects singularities as those discussed
above to become important. The aim of this paper is to show
an example which points out this fact, namely in the determi-
nation of the Fukui function, a local reactivity index. In this
case, the quantity having the crucial discontinuity is the XC
kernel defined as the functional derivative of the XC potential
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with respect to the density. The XC kernel is the quantity that
accounts for the effects of orbital relaxation, which may pro-
duce a large difference when predicting the reactivity of cer-
tain molecules.?” In this paper, we will show how a discon-
tinuity of the XC kernel enters when determining the Fukui
function and that this quantity is in fact what gives the largest
contribution in describing the reaction toward a nucleophilic
reagent.

The paper is organized as follows. In Sec. II, we start by
deriving an expression for the Fukui function in terms of the
XC kernel. In Sec. III, we discuss discontinuities in DFT with
a particular emphasis on the discontinuities of the XC ker-
nel and show their importance for the formula derived in Sec.
II. A numerical investigation in terms of two-electron model
molecular systems in the exact-exchange (EXX) approxima-
tion is given in Sec. IV. Finally, we give our conclusions in
Sec. V.

Il. FUKUI FUNCTION

In order to define quantities such as the chemical poten-
tial or Fukui functions which involve derivatives with respect
to the number of particles the theory must be generalized to
systems which involve fractional charges. This implies an en-
semble description in terms of states with different electron
numbers. For an average number of electrons N = Ny + o,
where Nj is an integer and 0 < @ < 1 Perdew et al.'® pro-
posed an ensemble of the form

77 =1 — )| WU ) Pn, | + O Ungs1(Pngs1]. (1)

where W, is the ground state wave function of k particles.
Similarly, for N = Ny — 1 + @ we can define

7= =1 — )| Wn—1)(Wno-1] + @ W, | Wh, |- )

Using these ensembles any derivative with respect to N is
equal to the derivative with respect to w.

The ensemble ground-state energy E(N) will consist of
straight line segments between the values at the integers.
Hence, the chemical potential u = dE/9N, i.e., the slope, on
the —/4 side of E(Ny) is equal to the negative of the ionization
energy and affinity (I/A), respectively.
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The Fukui function is defined as

_ an(r) _ S
O =38 = som)

where n(r) is the electron density and w(r) is the external po-
tential. These two definitions are equal which is easily seen
from the identity E/Sw(r) = n(r). Using the first definition
we immediately see that the Fukui function is constant (in-
dependent of N) between integers. The limits N — NOi is,
however, usually what is of interest and we therefore write

FHE) = nyg1(r) — ny (1), “

3

J7 (@) = ny, () — ny,-1(r), )

where here and in the following the +/— sign refers to these
different limits. These results are a direct consequence of us-
ing the above defined ensembles, where the species is as-
sumed to be completely independent of its environment. To
address this aspect, the concept of chemical-context depen-
dent reactivity descriptors has been proposed.”!

So far we have not used DFT but it appears to be a natural
framework for calculating reactivity indices such as the Fukui
function which is defined in terms of the density only. The ex-
tension of DFT to fractional charges'® allows us to formally
take derivatives with respect to N. The density is usually cal-
culated within the KS framework which assumes the ensem-
ble density to be non-interacting ensemble v-representable.
The ensemble KS potential, Vi, has been the subject of sev-
eral investigations all showing that the XC part vy.(r) must
have a discontinuous behavior as a function of N,?>%3 a topic
we will elaborate further on in Sec. III.

In order to derive expressions for the Fukui function in
terms of KS quantities we start by writing the density corre-
sponding to Egs. (1) and (2) in terms of KS orbitals

No
n() =) |of (6)
k
No—1
n=(r) =Y lpf ) + olel, (). (7
k

We notice that the orbitals depend on w (or N) since the en-
semble KS potential will be different for every value of w.
Keeping this in mind we can take the derivative with respect
to N and determine the Fukui functions®*

der(m)]?

@ = lon @ +Z N ®)

d
£ = low@P +Z i iy ©)

The superscript @ on the orbitals is now dropped since the
limit N — N(f has been taken. The orbitals are continu-
ous with respect to N and are therefore unambiguously de-
termined by the Ny-system. The frontier molecular orbital
(FMO) approximation corresponds to ignoring orbital relax-
ations, i.e., f1(r) & |py,+1(r)|? and f~(r) &~ |y, (r)|*. In the
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formulation by Parr and Yang'® orbital relaxations due to

Coulomb interactions can be taken into account via the second

terms on the right-hand side of Egs. (8) and (9). The differen-

tiation of the orbitals can easily be performed using the chain
Sepi(r) AV(r)

rule,
dgu(r) _ / "
oN sV,(r') ON

A variation in the number of particles will induce a variation
in the KS potential via the density,

ovi(r') / dr//ﬁ[va(r/)nvac(r/)]
N Sn(r”)

— /dr”[v(r’,r”)+fxc(r/,r”)]f(r”), (11)

(10)

fa”)

where vy(r) = [dr'v(r, r')n(r’) is the Hartree potential, v is
the bare Coulomb interaction, or the Hartree kernel, and f;. is
the XC kernel. It is then easy to see

) = f7@)
+ f avdr” y,(v,x) fif (¢, ) fE@"), (12)

where x, = én/éV; is the KS density response function,
fuaxe = v + fxc and f;" is the Fukui function in the FMO ap-
proximation defined above. Here, we have been careful in tak-
ing the limit N — N of the XC kernel since it has been
recently shown that f;. has discontinuities.”> Defining the ma-
trix,

K*(r,r¥)=8(r, 1) — / dr’ x, (e, v") fik (0, v)), (13)

we can recast Eq. (12) into

) = / dr' [K*(r, t)]7' fE@). (14)

This formula was obtained by Cohen et al.>?’ apart from
the fact that we here allow the kernel to have discontinuities.
That these play a dominant role when calculating the Fukui
function f* will be shown in Sec. IV.

We will now show an alternative derivation of Eq. (14)
based on the equivalent definition of the Fukui function as the
functional derivative of the chemical potential with respect to
the external potential.>®=° We begin by evaluating the chem-
ical potential and show its equivalence with the highest occu-
pied eigenvalue of the KS system. The ground-state energy is
a functional of the density and can be written as

E[n] = T,[n] + % / drdr'n(r)v(r, r'n(’)

+/dr w(r)n(r) + Ex.[n], (15)

where T is the non-interacting kinetic energy functional and
E,. is the XC energy. Taking the derivative with respect to the
number of particles we write

aE XC
= / dr [w(®) + (O] ) + a6

where we have identified the Fukui function. The derivative
of the kinetic energy can easily be evaluated once written in
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terms of occupied KS eigenvalues €. Let us first focus on an
ensemble of the form of Eq. (1), i.e., with N = Ny + w. We
can then write

IE> D
AN ~ 9N

No
[Z Skt wEN 11— / drfw(r)+ v (r)+vye(r) n(rﬁ

k

+ [ dr [w(r) + vu(r)] f(r) + aab;f. (17)

The eigenvalues are functions of N via the KS potential and
we find after a few manipulations,

IE> IE,
= e - / dr v+ = ey, ()
where we have used the identity
e _ / dr v () £(F) (19)
aN - UXC £

and the definition of the XC potential vy, = § Ex./én. The same
steps can be performed for the ensemble in Eq. (2) and we find
similarly

dE=
oN

Equations (18) and (20) thus prove that the highest occupied
eigenvalue must be equal to the chemical potential®! and
should therefore not change with N. Many problems with ex-
isting functionals are related to a lack of this straight-line be-
havior when extended to fractional charges.’>3? In the limit
N — NSE, we have

= e, (20)

IE . _
aN|, T e G| T e @D

In this limit 8;}0 = stMO, i.e., the lowest unoccupied KS
orbital obtained from the KS potential in the limit N — N,
(V;"). In the same way €ny = €Homo- 1-€., the highest occu-
pied KS orbital obtained from V. These different limits are
important to keep since a constant shift (or discontinuity) in
Uxc has been shown to occur as an integer is crossed. The dis-
continuity in vy, is in general positive, shifting the KS affinity
As = & ymo to the true affinity A = stMO in order to obey
the relation in Eq. (18). Before continuing the discussion on
discontinuities (Sec. III) we will determine the Fukui function
from

Sp _ 8 a_E _ 88N0/N0+l
Swr) Swr) N  Sw(r)

fr)= (22)

The variation of a KS eigenvalue with respect to the external
potential can straightforwardly be obtained from first order
perturbation theory. Taking into account that varying w will
induce a variation of vy and vy, via the density, we find

o = fx)
+ / dr'dr” x (v, v") fi (", V) fiE (). (23)
Using the relation

X = Xs + xs[v + fxelXs 24
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it is easy to see that Egs. (23) and (14) are equivalent. In the
following we will prefer the use of Eq. (23) since any discon-
tinuity of fi. enters linearly.

lll. DISCONTINUITIES IN DFT

It has been shown that the ground-state energy exhibits
derivative discontinuities at integer particle number.!® For
non-interacting electrons in a system with discrete energy lev-
els, this happens only when N crosses an integer for which a
new orbital with a different eigenvalue starts to be occupied.
In this case, the effect is mainly due to the kinetic energy. In
an interacting system with discrete energy levels a large part
of the derivative discontinuity will be contained in Ey. and the
discontinuity will even show up when N crosses an integer ly-
ing within a shell with the same eigenvalue.

A derivative discontinuity in Ey. gives rise to a discon-
tinuity in vy, in the form of a constant shift Ay.. The same
discontinuity also leads to discontinuities in the XC kernel fx.
which are of more complex nature than those of vg.. In this
section we briefly review the discontinuities of vy, and f;c.

A. XC potential

Any discontinuity of vy, is related to a derivative discon-
tinuity in Ex.[n[w, N]]. Using the chain rule we can write

dEx dn(r)
W —/drvxc(r) aN . (25)

This identity has to hold true for any value of N and we can
use it to formally write down the value of the discontinuous
shift Ayc at Ny. For N > Ny, we write v, (r) = v (r) + Ay (r)
and insert this expression in Eq. (25)
0E
N

= / dr [ (r) + Axe(n)] f(r). (26)

Now we take the limit N — N(;r and after a rearrangement,
we find
0 FExc

B =GN

- [ droawr @7)
+

where we have used the fact that the Fukui function integrates
to unity. If 9 E./dN is discontinuous at Ny, Ay, will be finite.>*
As an example we can use the case where E,. is a func-
tional of the KS Green function G, and E./0G, = —iXy,
where Xy is called the self-energy. Using Eq. (27) we find
the celebrated many body perturbation theory formula for the
discontinuity,!”

Axe = /drdr/sOL(l‘) [Zxe(r. 7', £ yumo0)

— v ()8(r — )] pr(r), (28)

where ¢ is the LUMO orbital. In Sec. IV, we will use this
formula in the EXX approximation for which the self-energy
corresponds to the Hartree-Fock (HF) self-energy but evalu-
ated with KS orbitals.

A discontinuous shift in the XC potential implies also a
shift in the eigenvalues with the same magnitude. We can thus



114102-4 M. Hellgren and E. K. U. Gross

write Eq. (21) in Sec. II as
oFE
A —

=N X = &Lumo T Dxes (29)

that is, the affinity is equal to the KS affinity plus the discon-
tinuity, a well-known result.!”

B. XC kernel

In order to determine the discontinuities of the XC kernel
we start by noting that for particle number conserving varia-
tions of the density f;. is only defined up to the sum of two
arbitrary functions gy.(r) 4+ gx(r’). This observation follows
immediately after inspecting the definition of fi.

SEy = /dr’drfxc(r, r)én(r')sn(r). (30)

When we allow for non-particle conserving density variations
the arbitrariness disappears but leaves the functional discon-
tinuous. In the case of the XC kernel these discontinuities will
have to take the form

w0, 1) = £ (0, 1) = gue(®) + gue(X). €1y

In order to determine gy. with the same procedure used for
the XC potential we study the quantity

8 VE.
sw(r) aN

Varying Eq. (25) with respect to the external potential allows
us to write this quantity in terms of the XC kernel. The kernel
can then be written as f_(r', r) = f(r', r) 4+ gx(r', r). Tak-
ing the limit N — Ng’ implies gxc(r', r) = gxc(r) + gxe(r’)
and we arrive at

(32)

5 9Ex
sw(r) IN

/er(rl, r)gxc(r) =

+

8f*(r)

Sw(ry)’
(33)

—/drdr/x(rl, r)fo(r,r) ) —/dl’ vi(r)

From this equation gy is only determined up to constant. This
constant is, however, easily fixed by considering the second
derivative of Ey. with respect to N

92E,.
IN2

+
_fdr/ v;rc(r’)af )
. N

"/y“dff*amﬂxnrﬁf*ﬂﬁv
(34)

2/dl’ f+(r)gxc(r) =

yielding a condition to be imposed on Eq. (33). The function
gxc obtained via Egs. (33) and (34) was recently analyzed in
Ref. 25 showing a diverging behavior of the form

2
r
grc) ~ P O itz (35)
n(r)
as r — oo. The diverging behavior can be deduced by per-
forming a common denominator approximation to Eq. (33).%
That this is indeed a reliable approximation to Eq. (33) was
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shown in Ref. 25. We can now go back to Eq. (23) and add
the appropriate term to f"(r) arising from the discontinuity of
Jxe- We find

f*(r)=f0+(r)+/dr”dr/x(r, ) o, ¥+, ¥)] £ (")

+ f dr'x (r, ¥')gx(r), (36)

or
o= frm+ / dr’ x(r, r')gy(r'), (37

which defines f;"(r) as the Fukui function when the disconti-
nuity is not taken into account.

IV. EXX APPROXIMATION

In order to quantify the relative importance of the two
different contributions to f*(r) (f and gx.) we have per-
formed a numerical study on model 1D molecular systems
in the EXX approximation. The EXX functional is known to
contain the derivative discontinuity at even integers when de-
fined on densities corresponding to spin-compensated ensem-
bles composed of states with different number of particles.

The EXX energy functional is an implicit functional of
the density given by>°

1
E, = ) /drdr’y(r, ru(r, r)y(r, r), (38)

where the density matrix is given by y(r,r)
=Y 0 @u(r)pe(r') after spin-summations have been
performed. The corresponding EXX potential vy = §E,/én
can be evaluated as

, SEx én(r)

SE,
= /dr .
3Vi(r) dn(r’) §Vy(r)

Since Ex[y] is an explicit functional of the density matrix the
derivative § Ex/§ V(r) is most conveniently evaluated using the
chain-rule

(39)

SEy SEx  dy(ra, 1)
= [ dridr, .

§Vy(r) Sy (ry, r) 8Vi(r)
The potential is only determined up to constant by Eq. (39) but

this constant may be fixed using Eq. (25). The discontinuity
in the EXX potential®® is given by Eq. (41)

(40)

Ay = /drerpL(r) [—y (@ ), 1)

— v ()8 — )] g (), 1)

In the case of two electrons the EXX potential takes a
particularly simple form being equal to minus half the Hartree
potential vy(r) = —1/2[dr'v(r, ¥)n(r’). The EXX kernel is
then also easily evaluated resulting in fx(r', r) = —1/2v(r/, r).
The expressions for the potential and kernel are evaluated for
N — 27 In the limit N — 2" we have to add the discontinuity
Ay to vk and two functions gy to the kernel

1
= —Ev(l’/, r) + gx(r) + gx(1). (42)
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We will now use Eq. (33) to determine gx. Using the chain-
rule

b [ar b 0
swm ) T v sw)

this equation can be written in terms of y; only and we find

(43)

/ dr x5(r1, Dgs(r)

o OBy | ] f drdr’ x,(xy, (r, ©)lgL ()]
= Y ’ ulr,
5V, 0N |, " 2 ot &
8oL (r)2
et ®F 44
/”x(r) SVo(rD) “

To calculate the Fukui function we notice that only the quan-
tity x gx is needed. The arbitrary constant can therefore be left
undetermined. We also notice that

1 /
£y = fihen) + 3 / drdr’x (1, ¥ (', r) fiF (r).
(45)
In Sec. IV A, we will solve these two-electron equations for
model molecular systems to illustrate the importance of the
discontinuity.

A. Numerical results for model systems

Our model systems consist of 1D molecules where
the singular Coulomb interaction has been replaced with
a soft-Coulomb interaction with softening parameter 1.
The inter-particle Coulomb interaction is thus model by

1/y/(x1 —x2)* + 1 and the external nuclear potentials by

Z/\/x? + 1, where Z is the nuclear charge. This model has
been used extensively in the literature’”-3® to mimic real
3D diatomic molecules with results in qualitative agree-
ment, enough also for our purposes. The equations derived in
Secs. II-1V are now all evaluated consistently using the model
potentials.

The first system we study is a 1D Be?>* (Z = 4) atom. In
Fig. 1 we show the Fukui function f* calculated using differ-
ent approximations. The black solid curve corresponds to us-
ing the FMO approximation, i.e., f7(r) & f;7(r) = |o.(r)|>.
The dotted curve is obtained by calculating the densities of
N =2 and N = 3 systems separately and then subtract them.
For a functional with a linear behavior between the integers,
this approach should give the same result as calculating the
derivative f*. The derivative is given by the red long dashed
curve and we see that although the qualitative features now
agree there are still some discrepancies. The fact that An and
£t do not agree perfectly is related to the well-known fact that
the EXX functional is not linear between integers. The green
dashed and blue solid thin curves show the different contribu-
tions to the derivative (Eq. (36)). It is remarkable to see the
effect of the discontinuity, which is very large compared to
using only the f; approximation. The effect is to give a nega-
tive contribution at the nucleus and slow down the asymptotic
decay. What is perhaps of more interest is the location of the
peak which is seen to be shifted compared to the FMO peak,
and hence becomes in good agreement with the An result.

J. Chem. Phys. 136, 114102 (2012)

— Xfuxfq
—_— f+
--= X9x

02 - }‘Jr

0.1

,,,,,

FIG. 1. The Fukui function of a 1D Be?* atom with the nucleus located
at 10 a.u. For comparison also the density difference An(x) = nn=3(x)
— nN = 2(x) is plotted. The contribution from the discontinuity is seen to have
the largest effect.

Next, we turn to a molecular system composed of 1D
He? *Be? * (Fig. 2). What is particular about this system is
that the HOMO and LUMO orbitals are spatially well sepa-
rated. The HOMO is located at the Be site and the LUMO at
the He site. The density response function contains only prod-
ucts of occupied and unoccupied orbitals, which decay expo-
nentially with nuclear separation. In this case it is thus clear
that the correction in f; can only be very small, unless f,~ be-
comes very large, which is not the case since f,” = 1/2v. The
blue solid thin curve in the figure confirms this fact. We have,
however, seen that the discontinuity is a diverging function
and can thus compensate for small excitation functions in the
response function. Indeed, we find a large contribution to the
Fukui function from the discontinuity. Also in this case we
see that the peak position is improved compared to the FMO
approximation. From a local-density approximation-type of
functional such improvement could not be achieved due to the
lack of a diverging discontinuity. This further suggests that in
these cases f© would be more accurately calculated by sub-
tracting densities at different integer particle numbers.

I ’I \ T f+
1 vV e An

041 [ f 5 .

’.. — xJu<fy

y K --=-- X9x

0.2

FIG. 2. The Fukui function of a 1D He? *Be?* molecule with the nuclei
located at 8 and 12 a.u. For comparison also the density difference An(x)
= nN =3(x) — nN = 2(x) is plotted. The contribution from the discontinuity is
seen to have a large effect over the He atom.
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0.005

-0.005

6 8 10 12 14 6 8 10 12 14
x [a.u.] x [a.u.]

FIG. 3. The difference between the analytic (f*) and the numerical {n(N
=2+ AN) — n(N = 2)}/AN derivatives at AN = 0.1, 0.01, 0.001, 0.0001.
To the left: He? *Be? * and to the right: Be? *.

To test the consistency of our results we have also ob-
tained the Fukui function from the numerical derivative, i.e.,

we have calculated

Nder nn=24+aN(X) — ny=2(x)
) = AN

for small values of AN using the ensemble of Eq. (2) in the

EXX functional. When AN — 0 this result should coincide

with f* calculated from Eq. (37). In Fig. 3, we show that they,

indeed, agree very well.

(40)

V. CONCLUSIONS

In this paper, we have derived equations for the Fukui
function of DF CRT using a KS reference system. Our cen-
tral result is that a discontinuity of the XC kernel enters when
calculating the Fukui function for a nucleophilic attack (f").
The importance of this result has been demonstrated in model
molecular systems, where the effect of orbital relaxation has
been shown to be almost entirely due to the discontinuity.
From this we can conclude that in any system where orbital
relaxations are important the discontinuity must be incorpo-
rated. These conclusions are of course based on model sys-
tems but they naturally carry over to real three-dimensional
atoms and molecules. An implementation of the full EXX
functional for a molecule is, however, quite demanding and
we therefore leave such investigation for future work.

We would also like to point out that using the HF method
to calculate Fukui functions® in the FMO approximation as
opposed to the KS method might yield very different results
for f*. In HF theory the orbitals are determined from a non-
local potential, yielding very different virtual orbitals. If the
HF LUMO orbital is closer to the true Fukui function is, how-
ever, hard to say.

As a final remark we have in this paper only considered
the Fukui function. A whole set of other reactivity descrip-
tors exist and, in general, discontinuities will show up in the
derivatives when using a KS reference system. In particu-
lar, we believe that for the calculation of the local hardness
or hardness kernels***? discontinuities will be an essential
ingredient.
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