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We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms
and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical
partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional
calculations. By using a geometrical approach, we provide a simple description of momentum-resolved
photoemission including multiphoton effects. The approach is validated by comparison with results in the
literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for
randomly oriented nitrogen molecules in a short near-infrared intense laser pulse and helium-(I) angular spectra
for aligned carbon monoxide and benzene.
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I. INTRODUCTION

Photoelectron spectroscopy is a widely used technique to
analyze the electronic structure of complex systems [1,2]. The
advent of intense ultrashort laser sources has extended the
range of applicability of this technique to a vast variety of
nonlinear phenomena like high-harmonic generation, above-
threshold ionization (ATI), bond softening, and vibrational
population trapping [3]. Furthermore, it turned attosecond
time-resolved pump-probe photoelectron spectroscopy into
a powerful technique for the characterization of excited-
states dynamics in nanostructures and biological systems [4].
Angular-resolved ultraviolet photoelectron spectroscopy is
by now established as a powerful technique for studying
geometrical and electronic properties of organic thin films
[5,6]. Time-resolved information from streaking spectrograms
[7], shearing interferograms [8], photoelectron diffraction
[9], photoelectron holography [10], etc. hold the promise
of wave function reconstruction together with the ability to
follow the ultrafast dynamics of electronic wave packets.
Clearly, to complement all these experimental advances, and
to help to interpret and understand the wealth of new data,
there is the need for ab initio theories able to provide
(time-resolved) photoelectron spectra (PES) and photoelectron
angular distributions (PAD) for increasingly complex atomic
and molecular systems subject to arbitrary perturbations (laser
intensity and shape).

Photoelectron spectroscopy is a general term which refers to
all experimental techniques based on the photoelectric effect.
In photoemission experiments a light beam is focused on a
sample, transferring energy to the electrons. For low light
intensities an electron can absorb a single photon and escape
from the sample with a maximum kinetic energy h̄ω − IP

(where ω is the photon angular frequency and IP the first
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ionization potential of the system), while for high intensities
electron dynamics can be interpreted considering a three-step
model [11]. This model provides a semiclassical picture in
terms of ionization followed by free electron propagation in
the laser field with return to the parent ion, and rescattering.
Such rescattering processes are the source of many interesting
physical phenomena. In the case of long pulses, for instance,
multiple photons can be absorbed resulting in emerging kinetic
energies of sh̄ω − IP − UP (where s is the number of photons
absorbed, UP = ε2/4ω2 is the ponderomotive energy, and ε the
electric field amplitude) forming the so-called ATI peaks in the
resulting photoelectron spectrum. In all cases the observable
is the escaping electron momentum measured at the detector.

In general, the interaction between electrons in an atom
or molecule and a laser field is difficult to treat theoretically,
and several approximations are usually performed. Clearly,
a full many-body description of PES is prohibitive, except
for the case of few (one or two) electron systems [12–14].
As a consequence, the direct solution of the time-dependent
Schrödinger equation (TDSE) in the so-called single-active
electron (SAE) approximation is a standard investigation
tool for many strong-field effects in atoms and dimers and
represents the benchmark for analytic and semianalytic models
[7,10,15–26]. Perturbative approaches based on the standard
Fermi golden rule are usually employed. For weak lasers,
plane wave methods [5] and the independent atomic center
approximation [27] have been applied, while in the strong-field
regime, Floquet theory, the strong-field approximation [10,28],
and semiclassical methods [11,29,30] are routinely used.

From a numerical point of view, it would be highly desirable
to have a PES theory based on time-dependent density-
functional theory (TDDFT) [31,32] where the complex many-
body problem is described in terms of a fictitious single-
electron system. For a given initial many-body state, TDDFT
maps the whole many-body problem into the time dependence
of the density from which all physical properties can be
obtained. The method is in principle exact, but in practice
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FIG. 1. (Color online) Schematic description of (a) the partition-
ing of space for the phase space method and (b) the mask method.
Region A is the interaction region, B is the Volkov propagation region,
and C is the overlap region where �A and �B mix under the mask
function.

approximations have to be made for the unknown exchange-
correlation functional as well as for specific density functionals
providing physical observables. This latter issue is much less
studied than the former. In any case, several works were pub-
lished addressing the problem of single and multiple ionization
processes within TDDFT. For example, ionization rates were
calculated for atoms and molecules [33–37], and TDDFT with
the sampling point method (SPM) has been employed in the
study of PES and PAD for sodium clusters [38–41].

In this work, besides presenting a formal derivation of a
photoelectron orbital functional, we report on a physically
sound scheme to compute PES of interacting electronic
systems in terms of the time-dependent single electron Kohn-
Sham (KS) wave functions. The scheme relies on geometrical
considerations and is based on a splitting technique [16–20].
The idea is based on the partitioning of space in two regions
(see Fig. 1): in the inner region, the KS wave function is
obtained by solving the TDDFT equations numerically; in the
outer region, electrons are considered as free particles, the
Coulomb interaction is neglected, and the wave function is
propagated analytically with only the laser field. Electrons
flowing from the inner region to the outer region are recorded
and coherently summed up to give the final result. In addition to
the adaptation of the traditional splitting procedure to TDDFT,
we propose a scheme where electrons can seamlessly drift from
one region to the other and spurious reflections are greatly
suppressed. This procedure allows us to reduce considerably
the spatial extent of the simulation box without damaging the
accuracy of the method.

The rest of this paper is organized as follows. The formalism
for describing photoelectrons in TDDFT is delineated in
Sec. II. In order to make contact with the literature, we first give
a brief introduction to the state-of-the-art for the ab initio cal-
culation of PES for atomic and molecular systems. In Sec. II A
we introduce the geometrical approach in the context of quan-
tum phase space. The phase-space approach is then derived
in the case of effective single-particle theories like TDDFT
in Sec. II B. In Sec. II C we introduce the mask method, an
efficient propagation scheme based on space partitioning.

Three applications of the mask method are presented
in Sec. III. One application deals with the hydrogen atom
and illustrates the different mask methods in a simple
one-dimensional model also in comparison with the sam-
pling point method [38]. The above threshold ionization of

three-dimensional hydrogen is examined and compared with
values from the literature. In the second application we
illustrate PADs from randomly oriented nitrogen molecules in
a strong near-infrared ultrashort laser pulse. Comparison with
the experiment and molecular strong-field approximation is
discussed [28]. The third application of the method regards
helium-(I) (wavelength 58 nm) PADs for oriented carbon
monoxide and benzene. Results are discussed in comparison
with the plane wave approximation. Finally, in Sec. IV we
discuss the results and present the conclusions.

All our numerical calculations were performed with the
real-time, real-space TDDFT code OCTOPUS [42,43], freely
available under the GNU public license. Atomic units are used
throughout unless otherwise indicated.

II. MODELING PHOTOELECTRON SPECTRA

In order to put in perspective the results of the present
paper, we will give a brief introduction on the status of the
principal techniques available for ab initio PES calculations.
We start our description with the methods employed to study
one-electron systems.

For one-electron systems PES can be calculated exactly
from the direct solution of the TDSE. Several methods have
been employed to extract PES information from the solution
of the TDSE. The most direct and intuitive way is via direct
projection methods where the PES is obtained by projecting
the wave function at the end of the pulse onto the eigenstates
describing the continuum. These eigenstates are extracted
through the direct diagonalization of the Hamiltonian without
including the interaction with the field. The momentum
probability distribution can then be easily obtained from the
Fourier transform of the continuum part of the time-dependent
wave function [23].

Another approach, that avoids the calculation of the full
continuum spectrum, involves the analysis of the exact wave
function |�〉 after the laser pulse via a resolvent technique
[15,26]. In this case, the energy-resolved PES is given
by the direct projection on outgoing wave functions with
P (E) = |〈�(E)|�〉|2 = 〈�|D̂(E)|�〉, where �(E) denotes
an outgoing (unbound) electron of energy E of the laser-
free Hamiltonian, and D̂(E) is the corresponding projection
operator that can be conveniently approximated [15,26].

Normally, one needs accurate wave functions in a large
space domain to obtain the correct distribution of the ejected
electrons. This is because the unbound parts of the wave packet
spread out of the core region, and conventional expressions for
the transition amplitude need these parts of the wave function.
Solving the TDSE within all the required volume in space can
easily become a very difficult computational problem. Several
techniques were developed during the years to solve the
problem. For simple cases these difficulties can be overcome
by the use of spherical coordinates. Geometrical splitting
techniques have also been employed [16–20]. Furthermore,
formulations in the Kramers-Henneberger frame of reference
[44] and in momentum space [24] led to calculations with
remarkable high precision. Recently, a promising surface flux
method has also been proposed [25].

The exact solution of the TDSE in three dimensions for
more than two electrons is unfeasible and the limit rises to

062515-2



Ab INITIO ANGLE- AND ENERGY-RESOLVED . . . PHYSICAL REVIEW A 85, 062515 (2012)

four electrons for one-dimensional models [45]. Due to this
limitation basically all ab initio calculations for multielectron
systems are preformed under the SAE approximation. In the
SAE only one electron interacts with the external field while
the other electrons are frozen [21], and the TDSE is thus solved
only for the active electron. This approximation has been
successfully employed in several photoemission studies for
atoms and molecules in strong laser fields [7,10,22]. However,
the failure of this simple model to describe multielectron
(correlation) effects calls for better schemes [22].

The inclusion of exchange-correlation effects for a system
of many interacting electrons can be achieved within TDDFT
while keeping the simplicity of working with a set of
time-dependent (fictitious) single-particle orbitals. In spite of
transferring all the many-body problems into an unknown
exchange-correlation functional, the lack of a density func-
tional providing the electron emission probability is a major
limitation for a direct access to photoelectron observables
from the time evolution of the density (note that, in spite
of the Runge-Gross theorem [31] stating that all observables
are functionals of the time-dependent density, in practice we
know few observables that can be written in terms of the
time-dependent density, one example being the absorption
spectra).

There have been some attempts to describe PES and
multiple ionization processes with TDDFT in the standard
adiabatic approximation [33–37]. All these works use bound-
ary absorbers to separate the bound and continuum part of the
many-body wave function. The emission probability is then
correlated with the time dependence of the number of bound
electrons.

An alternative and simple scheme is provided by the SPM
[38]. Here the idea is to record single-particle wave functions
in time at a fixed sampling point rS away from the core. The
time Fourier transform of the wave function recorded at rS

represents the probability of having an electron in rS with
energy E. The probability to detect one electron with energy
E in rS is then given by the sum over all occupied orbitals:

PrS
(E) =

occ∑
i=1

|ψi(rS,E)|2. (1)

This method is easy to implement, can be extended to give
also angular information [41], and is also clearly applicable
to the TDSE in the SAE. However, it lacks formal derivation
as it is directly based on Kohn-Sham wave functions without
a direct connection to the many-body state. Furthermore, it
is strongly dependent on the position of the sampling point
and the minimum distance. This distance sometimes turns out
to be quite large in order to avoid artifacts, and is strongly
dependent on the laser pulse properties. We discuss further
details concerning this method in Sec. III A.

In the following, we present an alternative method inspired
by geometrical splitting and derive it from a phase-space point
of view. The method can be naturally converged by increasing
the size of the different simulation boxes.

A. Phase-space geometrical interpretation

An intuitive description of photoelectron experiments can
be obtained resorting to a phase-space picture. Experimental

detectors are able to measure photoelectron velocity with
a certain angular distribution for a sequence of ionization
processes with similar initial conditions. The quantity available
at the detector is therefore connected to the probability to
register an electron with a given momentum p at a certain
position r. From this consideration it would be tempting to
interpret photoemission experiments with a joint probability
distribution in the phase space (r,p). Such a classical picture,
however, conflicts with the fundamental quantum mechanics
notion of the impossibility to simultaneously measure mo-
mentum and position, and prevents us from proceeding in this
direction. A link between the classical and quantum picture is
needed beforehand.

In order to make a connection to a microscopic description
it turns out to be convenient to extend the classical concept
of phase-space distributions to the quantum realm. A common
prescription comes from the Wigner transform of the one-body
density matrix with respect to the center of mass R = (r +
r′)/2 and relative s = r − r′ coordinates. The d-dimensional
(here and after d � 3) transform is defined as

w(R,p,t) =
∫

ds

(2π )
d
2

eip·sρ(R + s/2,R − s/2,t), (2)

with

ρ(r,r′,t) =
∫

dr2 . . . drN�(r,r2, . . . ,rN,t)

×�∗(r′,r2, . . . ,rN,t), (3)

being the one-body density matrix, and �(r1,r2, . . . ,rN,t)
the N -body wave function of the system at time t . The
Wigner function defined above is normalized and its integral
over the whole space (momentum) gives the probability to
find an electron with momentum p (position R). As the
uncertainty principle prevents the simultaneous knowledge of
position and momentum, w(R,p) cannot be a proper joint
distribution. Moreover, it can assume negative values due
to nonclassical dynamics. Nevertheless, the Wigner function
w(R,p) constitutes a concept close to a probability distribution
in phase space (R,p) compatible with quantum mechanics.

The quantum phase space naturally leads to a geometrical
interpretation of photoemission. One could think to divide the
space in two regions A and B as in Fig. 1(a), where region
B represents the region where detectors are positioned and
A is defined as the complement of B. In this picture, PES
can be seen as the probability to have an electron with given
momentum in B. It is then natural to define the momentum-
resolved photoelectron spectrum as

P(p) = lim
t→∞

∫
B

dR w(R,p,t), (4)

where the spatial integration is carried out in region B, and the
limit t → ∞ assures that region B contains all photoelectron
contributions. From the knowledge of the momentum-resolved
PES [cf. Eq. (4)] one can access several different quantities by
simple integration. For instance, in three dimensions (d = 3)
the energy-resolved PES is obtained integrating over the solid
angle 	:

P (E = p2/2) =
∫ 4π

0
d	P(p), (5)
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and the photoelectron angular distribution in the system
reference frame is given by

P (E = p2/2,θ ) =
∫ 2π

0
dφ P(p). (6)

In spite of giving an intuitive picture of PES, Eq. (4) is
not suited for direct numerical evaluation since it requires
the knowledge of the full one-body density matrix in the
whole space. In the next section we will make a contact with
effective single-particle theories like TDDFT to overcome the
limitations due to the knowledge of the many-body wave
function. In order to avoid integration over the whole space
an efficient evolution scheme is presented in Sec. II C.

B. Phase-space interpretation within TDDFT

TDDFT is an effective-single particle theory where the
many-body wave function is described by an auxiliary single
Slater determinant �KS(r1, . . . ,rN) built out of Kohn-Sham
orbitals ψi(r) [31,32]. In order to simplify the notation, we
drop the explicit time dependence from the wave functions
and assume that the following equations are written in the
limit t → ∞ as prescribed by Eq. (4).

Being represented by a single determinant, the one-body
Kohn-Sham density matrix is given by

ρKS(r,r′) =
occ∑
i=1

ψi(r)ψi(r′), (7)

where the sum in carried out over all occupied orbitals.
Performing a decomposition of each orbital according to the
partition of Fig. 1(a) we obtain

ψi(r) = ψA,i(r) + ψB,i(r), (8)

where �A,i(r) is the part of the wave function describing states
localized in A and �B,i(r) is the ionized contribution measured
at the detector in B. The one-body density matrix can now be
accordingly decomposed as a sum of four terms:

ρKS(r,r′) =
occ∑
i=1

[ψA,i(r)ψ∗
A,i(r

′) + ψA,i(r)ψ∗
B,i(r

′)

+ψB,i(r)ψ∗
A,i(r

′) + ψB,i(r)ψ∗
B,i(r

′)]. (9)

From Eq. (9) we can build the KS Wigner function defined
in Eq. (2) and obtain the momentum-resolved probability
distribution by inserting it into Eq. (4). We note that this
step involves a nontrivial approximation, namely that the KS
one-body density matrix is a good approximation to the fully
interacting one in region B. This is, however, much milder
than the assumption that the Kohn-Sham determinant is a good
approximation to the many-body wave function in region B,
as it is done, e.g., in the SPM.

The final result is a sum of four overlap double integrals that
can be simplified further. For a detailed calculation we refer to
Appendix A. The first overlap integral, containing a product
of two functions localized in A [cf. Eq. (9)], is zero due to
the spatial integration in B. The two next overlap integrals,
containing mixed products of wave functions localized in A

and B, can be reduced by increasing the size of region A.
Assuming A to be large enough to render these terms negligible

the only integral we are left with is the one containing functions
in B, leading to

P(p) ≈
∫

B

dR
∫

ds

(2π )
d
2

eip·s
occ∑
i=1

ψB,i

(
R + s

2

)
ψ∗

B,i

(
R − s

2

)
.

(10)

The approximation sign ≈ is a reminder for the error
committed in discarding the mixed overlap integrals. Since the
probability of finding an ionized electron in region A is zero
for t → ∞, we can extend the integration over B in Eq. (10)
to the whole space. Using the integral properties of the Wigner
transform, we finally obtain

P(p) ≈
occ∑
i=1

|ψ̃B,i(p)|2, (11)

where ψ̃B,i(p) is the Fourier transform of ψB,i(r) and the
expression is written in the limit for t → ∞. Equation (11)
gives an intuitive formulation of momentum-resolved PES as
a sum of the Fourier component of each orbital in the detector
region. It is worth noting that Eq. (11) is not restricted to
TDDFT and can be applied to other effective single-particle
formulations such as time-dependent Hartree-Fock and the
TDSE in the SAE approximation.

The numerical evaluation of the ionization probability from
Eq. (11) requires the knowledge of the wave function after the
external field has been switched off. For ionization processes
this means that one has to deal with simulation boxes that
extend over several hundred atomic units and this practically
constrains the method only to one-dimensional calculations.
In the next section we will derive a simple scheme to overcome
this limitation making the present scheme applicable for
realistic simulations of molecules and nanostructures.

C. The mask method

In the previous sections we described a practical way to
evaluate the momentum-resolved PES following the spatial
partitioning of Fig. 1(a) and how this can be conveniently
cast in the language of TDDFT. In this section we take a step
further in developing an efficient time evolution scheme by
exploiting the geometry of the problem together with some
physical assumptions.

We start by introducing a split-evolution scheme. At each
time t we implement a spatial partitioning of Eq. (8) as follows:{

ψA,i(r,t) = M(r)ψi(r,t),

ψB,i(r,t) = [1 − M(r)]ψi(r,t),
(12)

where M(r) is a smooth mask function defined to be 1 deep in
the interior of region A and 0 outside, as shown in Fig. 2. Such
a mask function, along with the partitions A and B, introduces
a buffer region C (technically handled as the outermost shell
of A), where ψA,i(r,t) and ψB,i(r,t) overlap [see Fig. 1(b)].

We can set up a propagation scheme from time t to t ′ as
follows:{

ψA,i(r,t ′) = M(r)U (t ′,t)[ψA,i(r,t) + ψB,i(r,t)],
ψB,i(r,t ′) = [1 − M(r)]U (t ′,t)[ψA,i(r,t) + ψB,i(r,t)],

(13)
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1

FIG. 2. (Color online) Mask function implements a smooth
transition from region A to region B. The functional shape used
for actual calculations is defined in Eq. (18).

where U (t ′,t) is the time propagator associated with the
full Hamiltonian including the external fields. Equation (13)
defines a recursive propagation scheme completely equivalent
to a time propagation in the whole space A ∪ B.

In typical experimental setups, detectors are situated far
away from the sample and electrons overcoming the ionization
barrier travel a long way before being detected. During their
journey toward the detector, and far away from the molecular
system, they practically evolve as free particles driven by an
external field. It seems therefore a waste of resources to solve
the full Schrödinger equation for the traveling electrons while
their behavior can be described analytically. In addition, an
ideal detector placed relatively close to the molecular region
would measure the same PES.

From these observations we conclude that we can reduce
region A to the size of the interaction region and assume
electrons in B to be well described by noninteracting Volkov
states. Volkov states are the exact solution of the Schrödinger
equation for free electrons in an oscillating field. They
are plane waves and are therefore naturally described in
momentum space. In the velocity gauge the Volkov time
propagator is formally expressed by

UV (t ′,t) = exp

{
−i

∫ t ′

t

dτ
1

2

[
p − A(τ )

c

]2
}

, (14)

where the time-ordering operator is omitted for brevity and
A(τ ) is the vector potential. This is equivalent to the use of
a strong-field approximation in the outer region in the same
spirit of the Lewenstein model [46].

In summary, the method we propose consists in solving
numerically the real-space TDDFT equations in A and
analytically propagating the wave functions residing in B

in momentum space. In this setup region C acts as a
communication layer between functions in A and B. Under
this prescription, and by handling B functions in momentum
space, Eq. (13) becomes{

ψA,i(r,t ′) = ηA,i(r,t ′) + ηB,i(r,t ′),
ψ̃B,i(p,t ′) = ξ̃A,i(p,t ′) + ξ̃B,i(p,t ′),

(15)

with

ηA,i(r,t ′) = M(r)U (t ′,t)ψA,i(r,t), (16a)

ηB,i(r,t ′) = M(r)
∫

dp eip·r

(2π )
d
2

UV (t ′,t)ψ̃B,i(p,t), (16b)

ξ̃A,i(p,t ′) =
∫

dr e−ip·r

(2π )
d
2

[1 − M(r)]U (t ′,t)ψA,i(r,t), (16c)

ξ̃B,i(p,t ′) = UV (t ′,t)ψ̃B,i(p,t) −
∫

dr e−ip·r

(2π )
d
2

ηB,i(r,t ′).

(16d)

At each time step the orbital ψA,i is evolved under the mask
function and stored in ηA,i , forcing ηA,i to be localized in A.
At the same time, the components of ψA,i escaping from A

are collected in momentum space by ξ̃A,i . We then add to ξ̃A,i

the contribution of the wave functions already present in B

at time t by summing up UV ψ̃B,i . In order to allow electrons
to come back from B to A we include ηB,i in A and correct
the function in B by removing its Fourier components [second
term in Eq. (16d)].

One of the advantages of Eq. (15) is that all the spatial
integrals present in ηB,i(r,t ′) and ξ̃B,i(p,t ′) are performed
on functions localized in C. Therefore, integrals over the
whole space are evaluated at the cost of an integration on
the much smaller buffer region C that can be easily evaluated
by fast Fourier transform algorithms. Similar considerations
hold for integrals in momentum space under the assumption
that B functions ψ̃B,i(p,t) are localized in momentum. When
region A is discretized on a grid, in order to avoid wave
function wrapping at the boundaries and preserve numerical
stability, additional care must be taken. In our implementation,
numerical stability is addressed by the use of nonuniform
Fourier transforms (see details in Appendix B).

There are situations were the electron flow from B to A

is negligible. This is the case, for instance, when A is large
enough to contain the whole wave functions at the time when
the external field has been switched off. A propagation at later
times will see photoelectrons flowing mainly from A to B. In
this situation, ηB,i and the corresponding correction term in
ξ̃B,i can be discarded. The evolution scheme of Eq. (15) is thus
simplified and becomes{

ψA,i(r,t ′) = ηA,i(r,t ′),
ψ̃B,i(p,t ′) = ξ̃A,i(p,t ′) + UV (t ′,t)ψ̃B,i(p,t).

(17)

In the following we will refer to Eq. (17) as the
“mask method”(MM), and to Eq. (15) as the “full mask
method”(FMM). We note here again that, being single-particle
propagations schemes, both MM and FMM are not restricted
to TDDFT and can be applied to other effective single-particle
theories. As a matter of fact, an approach similar to Eq. (17)
has already been employed in the propagation of the TDSE
equations for atomic systems [16,17,19], and in TDDFT for
one-dimensional models of metal surfaces [47]. We also note
that the implementation of absorbing boundaries through a
mask function as done in Eq. (16a) can be cast in terms of
an additional imaginary potential (exterior complex scaling)
in the Schrödinger equation. Such an approach is commonly
used in quantum optics.

Within MM, the evolution in A is completely unaffected
by the wave functions in B and ionized electrons are treated
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uniquely in momentum space. Compared with FMM, MM
is numerically more stable as it is not affected by boundary
wrapping. In order to achieve the conditions where Eq. (17) is
valid may require, however, large simulation boxes. Moreover,
as the mask function never absorbs perfectly the electrons,
spurious reflections may appear. Suppression of such artifacts
requires a further enlargement of the buffer region. With FMM
spurious reflections are almost negligible.

Choosing between MM and FMM implies a tradeoff
between computational complexity and numerical stability
that strongly depends on the ionization dynamics of the process
under study. In what follows, we will illustrate the differences
and devise a prescription to help the choice of the most suitable
method in each specific case.

III. APPLICATIONS

In this section we present a few numerical applications
of the schemes previously derived. In all calculations the
boundary between A and B regions is chosen as a d-
dimensional sphere implemented by the mask function:

M(r) =
⎧⎨
⎩

1 if r < RC,

1 − sin2
( (r−RC )π

2(RA−RC )

)
if RC � r � RA,

0 if r > RA,

(18)

as shown in Fig. 2. Note that numerical studies (not presented
here) revealed a weak dependence of the final results on the
functional shape of the mask.

The time propagation of the orbitals in A is performed with
the enforced time-reversal symmetry evolution operator [48]

U (t + �t,t) = exp

(
−i

�t

2
H (t + �t)

)
exp

(
−i

�t

2
H (t)

)
,

(19)

where H is the full KS Hamiltonian, and the coupling with the
external field is expressed in the velocity gauge.

The first system we will study is hydrogen. In spite of
being a one-electron system, it is a seemingly trivial case that
has been and still is under thorough theoretical investigation
[23–25,49–52]. Clearly, we do not need TDDFT to study hy-
drogen and our numerical results are obtained by propagating
the wave function with a noninteracting Hamiltonian. The
interest in this case is focused on the numerical performance
of different mask methods as hydrogen provides a useful
benchmark.

The full TDDFT calculations performed for molecular
nitrogen, carbon monoxide, and benzene are later presented
in Sec. III B and Sec. III C, respectively. In these cases,
norm-conserving Troullier-Martins pseudopotentials and the
exchange-correlation LB94 potential [53] (that has the correct
asymptotic limit for molecular systems) are employed. Finally,
in all calculations the starting electronic structure of the
molecules is calculated in the Born-Oppenheimer approxi-
mation at the experimental equilibrium geometry and the time
evolution is performed with fixed ions.

A. Photoelectron spectrum of hydrogen

As a first example we study multiphoton ionization of a one-
dimensional soft-core hydrogen atom, initially in the ground

-180

-90

 90

 180

 0  4  8  12  16

FIG. 3. (Color online) Evolution of the electronic density as
a function of time ρ(x,t) = |ψ(x,t)|2 for a one-dimensional soft-
core hydrogen model. The laser pulse has angular frequency ω =
0.0856 a.u., intensity I = 1.38 × 1013 W/cm2, and a trapezoidal
envelope with 2 optical cycle linear ramp (one optical cycle = 1.774
fs) and 10 cycles constant center.

state, and exposed to a λ = 532 nm (ω = 0.0856 a.u.) linearly
polarized laser pulse with peak intensity I = 1.38 × 1013

W/cm2, of the form

A(t) = A0f (t) cos(ωt), (20)

where f (t) is a trapezoidal envelope function of 14 optical
cycles with two-cycle linear ramps, constant for 10 cycles,
and with A0 = 31.7 a.u. Here A(t) is the vector potential
in units of the speed of light c. A soft-Coulomb potential
V (x) = −1/

√
2 + x2 is employed to model the electron-ion

interaction. We propagate the electronic wave function in time
and then compare the energy-resolved ionization probability
obtained from different schemes. Along with MM, FMM, and
SPM we present results for direct evaluation of PES from
Eq. (5). In this method the spectrum is obtained by directly
Fourier transforming the wave function in region B. Since
the analysis is conducted without perturbing the evolution of
the wave function we will refer to it as the “passive method”
(PM). This method requires the knowledge of the whole wave
function after the pulse has been switched off, and since a
considerable part of the wave packet is far away from the
core (for the present case a box of 500 a.u. radius is needed
for 18 optical cycles), it is viable only for one-dimensional
calculations. Nevertheless, it is important as it constitutes the
limiting case for both MM and FMM.

In Fig. 3, a color plot of the evolution of the electronic
density as a function of time is shown. The electronic wave
function splits into subpackets generated at each laser cycle
(one optical cycle = 2π/ω = 1.774 fs). These wave packets
evolve in bundles and their slope corresponds to a certain
average momentum. ATI peaks are then formed by the buildup
of interfering wave packets periodically emitted in the laser
field and leading to a given final momentum [54].

From Fig. 3 is it possible to see that electrons may be
considered as escaped “already” at 30 a.u. away from the
center. We set therefore RA = 30 a.u. and calculate energy-
resolved PES with the PM. As we can see from Fig. 4 the
spectrum presents several peaks at integer multiples of ω fol-
lowing E = sω − IP − UP with UP = A2

0/4c2 = 0.0133 a.u.
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FIG. 4. (Color online) Energy-resolved photoelectron probability
P (E) (logarithmic scale) calculated with different approaches.
The spectra are shifted by multiplying a constant factor for easy
comparison. From bottom to top: passive method Eq. (5) in green,
mask method Eq. (17) in red, full mask method Eq. (15) in blue, and
sampling point method Eq. (1) in purple. Laser parameters are the
same as in Fig. 3.

being the ponderomotive energy, IP = 0.5 a.u. the ionization
potential, and s the number of absorbed photons. In this
case the minimum number of photons needed to exceed the
ionization threshold is s = 6. Of course, the spectrum is only in
qualitative agreement with three-dimensional calculations [15]
as expected from a one-dimensional soft-core model [54–56].

PES calculated from MM, FMM, and SPM all agree as
reported in Fig. 4. Numerical calculations were performed
until convergence was achieved, leading to a grid with spacing
�R = 0.4 a.u. and box sizes depending on the method. For
MM we employed a simulation box of RA = 70 a.u. and set
the buffer region at RC = 30 a.u. In order to have energy
resolution comparable with PM we used padding factors (see
Appendix B) P = PN = 4 and the total simulation time was
T = 18 optical cycles. For FMM a smaller box of RA = 40 a.u.
with RC = 30 a.u. is needed to converge results, and P =
8, PN = 2 were needed to preserve numerical stability for
T = 18 optical cycles. For SPM two sampling points at rS =
−500,500 a.u. were needed to get converged results with a box
of 550 a.u., and a complex absorber [57,58] at 49 a.u. from
the boundaries of the box. In addition, a total time of T = 74
optical cycles was required to collect all the wave packets. The
need for such a huge box resides on the working conditions of
SPM. In order to avoid spurious effects, the sampling points
must be set at a distance such that the density front arrives
after the external field has been switched off. Therefore, the
longer the pulse the further away the sampling points must be
set. For these laser parameters one could rank each method
according to increasing numerical cost starting from MM,
followed by FMM, PM, and SPM.

As a second example we study the ionization of this one-
dimensional hydrogen atom by an ultrashort intense infrared
laser. We employ a single two-cycle pulse of wavelength λ =
800 nm (ω = 0.057 a.u.), intensity I = 2.5 × 1014 W/cm2,
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 0

 0.01

-60

60

FIG. 5. (Color online) Density evolution ρ(x,t) for a one-
dimensional soft-core hydrogen and a two-cycle sin2 laser pulse
with angular frequency ω = 0.057 a.u., and intensity I = 2.5 ×
1014 W/cm2. Here one optical cycle = 2.66 fs.

and envelope

f (t) =
{− sin(ωt/2Nc)2 if 0 � t � 2πNc/ω,

0 if t > 2πNc/ω,
(21)

with Nc = 2 and A0 = 225.8 a.u.
Due to the laser strength and long wavelength, the electron

evolution shown Fig. 5 is quite different from the one presented
before. Electrons ejected from the core are driven by the laser
and follow wide trajectories before returning to the parent
ion. Such trajectories can be understood in the context of the
semiclassical model [11] where released electrons move as
a free particle in a time-dependent field with a maximum
oscillation amplitude of x0 = 2A0/ωc = 57.8 a.u. Electrons
ejected near a maximum of the electric field ε(t) = −∂A(t)/∂t

are the ones gaining the most kinetic energy and are therefore
responsible for the fast emerging electrons after rescattering
with the core.

In Fig. 6 we show the energy-resolved PES for different
methods. Here the spectra appear to be very far from any
ATI structure due to short duration of the laser pulse and is
characterized by some irregular maxima and minima [23]. The
characteristic features of the ionization dynamics is strongly
dependent on the detailed shape of the pulse as one can easily
imagine by inspecting the asymmetry in the electron ejection
from Fig. 5. Due to these dynamics, a dramatic carrier envelope
phase dependence for such short pulses is expected.

All the different methods result in similar spectra but with
different parameters. In PM we set RA = 50 a.u. and a box
of radius R = 700 a.u. is needed to contain the wave function
after T = 4 optical cycles (one optical cycle = 2.66 fs). For
MM RA = 200 a.u., RC = 40 a.u., and the padding factors
are P = 2, PN = 4. Here the value for RA is dictated by the
width of the buffer region which needs to be wide enough
to prevent spurious reflections. A considerably smaller box is
needed for FMM, where RA = 60 a.u., RC = 40 a.u., P = 4,
and PN = 2. In this case one can reconstruct the total density
in A by evaluating |ψA(x,t)|2 via Eq. (15) and compare it to
the exact evolution. As one can see in Fig. 7 the reconstructed
density displays a behavior remarkably similar to the exact one
of Fig. 5 but with a considerably reduced computational cost.
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FIG. 6. (Color online) Energy-resolved photoelectron P (E) yield
from different approaches. Spectra are shifted by a constant factor.
Order and color coding is the same as in Fig. 4. Laser parameters are
described in the caption of Fig. 5.

SMP requires sampling points at rS = −130,130 a.u. in a box
of radius R = 200 a.u. with 49 a.u. wide complex adsorbers,
and for a total time of T = 7 optical cycles.

The possibility to use relatively small simulation boxes is
especially important for three-dimensional calculations where
the computational cost scales with the third power of the box
size. Both mask methods are practicable options for three-
dimensional simulations and the advantage of using FMM
with respect to MM is driven by the electron dynamics. For
long laser pulses MM appears to be more stable and it is a better
choice than FMM, while for short pulses with large electron
oscillations FMM can be more performant. SPM is a viable
option for short pulses and small values for the oscillations.

As a last example, we present ATI of a real three-
dimensional hydrogen atom subject to a long infrared pulse.
We employ a laser linearly polarized along the x axis with
wavelength λ = 800 nm, intensity I = 5 × 1013 W/cm2, and
pulse shape of the form (21) with Nc = 20 and A0 = 91.3 a.u.

-100
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 0

 0.01

-60

60

FIG. 7. (Color online) FMM density evolution |ψA(x,t)|2 of a
one-dimensional soft-core hydrogen. Laser parameters are the same
as in Fig. 5. Dashed lines indicate the edges of the simulation box.
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FIG. 8. (Color online) Photoelectron angular distribution P (E,θ )
(logarithmic scale) of hydrogen for a 20 cycle sin2 laser pulse
of wavelength λ = 800 nm, and intensity I = 5 × 1013 W/cm2

polarized along the x axis.

Due to to the pulse length, MM appears to be the most
appropriate choice in this case. In the calculation RA = 60 a.u.,
RC = 50 a.u., P = 1, and PN = 8.

In Fig. 8 we show a high-resolution density plot of the PAD
P (E,θ ) defined in Eq. (6). The radial distance denotes the
photoelectron energy while the angle indicates the direction
of emission with respect to the laser polarization. The color
density is plotted in logarithmic scale and represents the values
of P (E,θ ).

The photoelectron energy-angular distribution displays
complex interference patterns. The pattern shape compares
favorably with similar calculations in the literature
[24,25,44,59]. It consists of a series of rings with fine
structures. Each ring represents the angular distribution of
the photoelectron ATI peaks. The spacing of adjacent rings
equals the photon energy ω = 0.057 a.u. Photoelectrons are
emitted mainly along the laser polarization, and the left-right
symmetry of the rings indicates that the photoelectrons do
not present any preferential ejection side with respect to the
polarization axis. The first ring corresponds to the angular
distribution of the first ATI peak. It presents a peculiar nodal
pattern that is induced by the long-range Coulomb potential
and is related to the fact that the ATI peak is determined by
one dominant partial wave in the final state [60]. The number
of the stripes equals the angular momentum quantum number
of the dominant partial wave in the final state plus one [60].
In Fig. 8, the first ring contains six stripes and the dominant
final state has angular momentum quantum number of 5.
The pattern of the energy-angular distribution and the stripe
number of the first ring are in good agreement with those in
the literature [24,44]. As for the fine structures, we observe
that while the main ring pattern is already formed in the first
half of the pulse, the fine structure builds up until the end of
the pulse. This supports the hypothesis that such structures
are induced by the coherence of the two contributions from
the leading and trailing edges of the pulse envelope [44].

B. N2 under a few-cycle infrared laser pulse

In this section we compare theoretical and experimental
angular resolved photoelectron probabilities for randomly
oriented N2 molecules. We choose the laser parameters
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FIG. 9. (Color online) Photoelectron angle- and energy-resolved
probability P̄ (E,θ ) (log scale) in the laboratory frame for randomly
oriented N2 molecules in a 6 cycles infrared laser pulse with
λ = 750 nm, with intensity I = 4.3 × 1013W/cm2. The angle θ

is measured from the laser polarization axis. The different panels
represent P̄ (E,θ ) (spanning 3.4 orders of magnitude), from (a)
experiment, (b) calculated with TDDFT and FMM, and (c) calculated
with modified molecular strong-field approximation. Panels (a) and
(c) are adapted from Ref. [28].

according to experiment [28], i.e., we employ a Nc = 6 cycle
pulse of wavelength λ = 750 nm (ω = 0.06 a.u.) and intensity
I = 4.3 × 1013 W/cm2. A laser shape

A(t) =
{

A0
2

(
1 − cos

(
ωt
Nc

))
sin(ωt) if 0 � t � 2πNc/ω,

0 if t > 2πNc/ω

(22)

for the vector potential should lead to an electric field similar to
the one employed in the experiment with zero carrier envelope
phase.

In Fig. 9(a) the experimental photoelectron probability
P̄ (E,θ ) is plotted in logarithmic scale as a function of the
energy and the angle with respect to the laser polarization in the
laboratory frame. Electrons are mainly emitted at small angles
and, due to the short nature of the pulse electron emission, are
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FIG. 10. (Color online) Photoelectron angle- and energy-resolved
probability PθL

(E,θ ) (log scale) for aligned N2 molecules and
different laser polarization directions θL: (a) θL = 90◦, (b) θL = 60◦,
(c) θL = 30◦, and (d) θL = 0◦. Here θL is the angle between the laser
polarization direction and the molecular axis. Laser parameters are
the same as in Fig. 9.

asymmetric along the laser polarization axis (at angles close
to 0◦ and 180◦).

We performed TDDFT calculations for different angles θL

between the molecular axis and the laser polarization. The
molecular geometry was set at the experimental equilibrium
interatomic distance R0 = 2.074 a.u. The Kohn-Sham wave
functions were expanded in real space with spacing �r =
0.38 a.u. in a simulation box of RA = 35 a.u. The photoelectron
spectra were calculated with FMM having RC = 25 a.u., and
padding factors P = 1 and PN = 4.

In Fig. 10 the logarithmic ionization probability PθL
(E,θ )

is plotted as a function of energy E and angle θ measured
from the laser polarization axis for different values of θL. As
the molecular orientation decreases from 90◦ � θL � 30◦ we
observe an increasing suppression of the emission together
with a shift of the maximum that moves away from the
laser polarization axis. For θL = 0◦ the emission is highly
enhanced for all angles and peaked along the laser direction.
The signature of multicenter emission interference has been
predicted to be particularly marked when the laser polarization
is perpendicular to the molecular axis [61,62] (i.e., θL = 90◦).
However, the lowest point in energy of such a pattern is
predicted for θ = 90◦ and E = π2/2R2

0 ≈ 31 eV, way above
the energy window of observable photoelectrons produced by
our laser. A stronger and longer laser pulse would be required
to extend the rescattering plateau toward higher energies and
therefore to reveal the pattern [63].

In order to reproduce the experimental P̄ (E,θ ), an aver-
age over all the possible molecular orientations should be
performed. Due to the axial symmetry of the molecule we
can restrict the average to 0 � θL � 90◦ and integrate all the
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contributions with the proper probability weight [41]

P̄ (E,θ ) ∝
∫ 90◦

0
dθL sin θLPθL

(E,θ ). (23)

We evaluate Eq. (23) by discretizing the integral in a sum
for θL = 0◦,30◦,60◦,90◦, and display the result in Fig. 9(b).
Even in this crude approximation, and without taking into
account focal averaging, the agreement with the experiment
is satisfactory and compares favorably to the molecular
strong-field approximation shown in Fig. 9(c). The agreement
deteriorates for low energies where the importance of the
Coulomb tail is enhanced as it is not fully accounted for due to
limited dimensions of the simulation box. As a matter of fact,
the agreement greatly increases for higher energies.

C. He-(I) PADs for carbon monoxide and benzene

In this section we deal with UV (ω = 0.78 a.u.) angular
resolved photoemission triggered by weak lasers. When the
external field is weak, nonlinear effects can be discarded and
first-order perturbation theory can be applied. In this situation,
the momentum-resolved PES can be evaluated by Fermi’s
golden rule as

P (p) ∝
∑

i

|〈�f |A0 · p|�i〉|2δ(Ef − Ei − ω), (24)

where |�i〉 (|�f 〉) is the initial (final) many-body wave
function of the system and A0 is the laser polarization axis.
The difficulty in evaluating Eq. (24) lies in the proper treatment
of the final state, which in principle belongs to the continuum
of the same Hamiltonian of |�i〉. In the simplest approach, it
is approximated by a plane wave (PW). In this approximation
the square root of the momentum-resolved PES is proportional
to the sum of the Fourier transforms of the initial state wave
functions �̃i(p) corrected by a geometrical factor |A0 · p|,√

P (p) ∝
∑

i

|A0 · p||�̃i(p)|. (25)

If photoemission peaks are well resolved in momentum,
individual initial states can be selectively measured. In this
case a correspondence between momentum-resolved PES
and electronic states in reciprocal space can be established.
The range of applicability of the PW approximation has
been discussed in the literature [5]. It has been postulated
that Eq. (25) should be valid for (i) π -conjugated planar
molecules, (ii) constituted by light atoms (H, C, N, O), and for
(iii) photoelectrons emerging with momentum p almost paral-
lel to the polarization axis.

Here we restrict ourselves to photoemission from the
highest occupied molecular orbital (HOMO). In this case
Eq. (25) becomes√

PH (p) ∝ |A0 · p||�̃H (p)|, (26)

with the subscript H indicating HOMO-related quantities.
We compare ab initio TDDFT and PW PADs evaluated at
fixed momentum |pH | = √

2EH with EH = ω − EB being
the kinetic energy of photoelectrons emitted from the HOMO
and EB its binding energy.

TDDFT numerical calculations are carried out on a grid
with spacing �r = 0.28 a.u. for benzene and �r = 0.38 a.u.

(b)(a)

C O

FIG. 11. Photoemission geometries for oriented (a) benzene and
(b) CO molecules.

for CO, in a simulation box of RA = 30 a.u. Photoelectron
spectra are calculated using MM with RC = 20 a.u. and
padding factors P = 1, PN = 8. A 40 cycles pulse with 8
cycle ramp at the He-(I) frequency ω = 0.78 a.u. and intensity
I = 1 × 108 W/cm2 is employed.

We begin presenting the case of benzene since it con-
stitutes the smallest molecule meeting all the conditions
for Eq. (26) to be valid. Results for molecules oriented
according to Fig. 11(a), evaluated at EH = 0.363 a.u., and two
different laser polarizations A0 = â1, â2 with â1 = (1,0,0),
â2 = 1/

√
3 × (1,1,1), are shown in Fig. 12. In the case where

the laser is polarized along the x axis [see Fig. 12(b)], PAD
presents a four lobes symmetry separated by three horizontal
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FIG. 12. (Color online) He-(I) PADs for aligned benzene
molecules. We compare PADs from PW |A0 · p||�̃H (p)| (left column)
and TDDFT

√
PH (p) (right column) on a sphere at constant kinetic

energy EH = 0.363 a.u. for different laser polarizations A0 (see
text for details). Values on the sphere are normalized to unity. We
used a 40 cycles (8 cycles ramp) UV trapezoidal laser pulse with
λ = 58 nm (ω = 0.78 a.u.), and intensity I = 1 × 108 W/cm2. In
the top row A0 = â1 = (1,0,0), and in the bottom row A0 = â2 =
1/

√
3 × (1,1,1). White tics indicate the intersection of the laser

polarization axis with the sphere at constant kinetic energy EH . The
geometry of the photoemission process is indicated in Fig. 11(a).
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FIG. 13. (Color online) He-(I) PADs for aligned CO molecules.
Panel ordering and laser parameters are the same as in Fig. 12. The
molecule is oriented according to Fig. 11(b) and the photoelectron
spectra were evaluated on a sphere at Eh = 0.261 a.u.

and two vertical nodal lines. This structure is reminiscent
of the HOMO π symmetry with the nodal line at θ = 90◦
corresponding to the nodes of the orbital on the x-y plane.
Information on the orientation of the molecular plane could
then be inferred from the inspection of this nodal line in the
PAD. A similar feature can be observed also in the case of
an off-plane polarization as shown in Fig. 12(d). In this case,
however, the laser can also excite σ orbitals and the nodal
line at θ = 90◦ is partially washed out. The other nodal lines
can be understood in term of zeros of the polarization factor
|A0 · p| and are thus purely geometrical. A PW approximation
of the photoelectron distribution given by Eq. (26) qualitatively
reproduce the ab initio results as shown in Figs. 12(a) and
12(d). According to condition (iii) a quantitative agreement is
reached only for directions parallel to the polarization axis.

A different behavior is expected in the case of CO. Photo-
electrons with kinetic energy of EH = 0.261 a.u. are show in
Fig. 13. In this case, condition (i) (i.e., π -conjugated molecule)
is not fulfilled and a worse agreement between ab initio and PW
calculations is expected. The quality of the agreement can be
assessed by comparing the left and right columns of Fig. 13.
Here, the weak angular variation of |�̃H (p)| is completely
masked by the polarization factor |A0 · p| [cf. Figs. 13(a)
and 13(c)]. For this reason no information on the molecular
configuration can be recovered from a PW model.

The situation is qualitatively different for TDDFT as, in
this case, single atom electron emitters are fully accounted for.
Here the nodal pattern is mainly governed by the polarization
factor, but, however, fingerprints of the molecule electronic
configuration can be detected. For instance, when the laser
is polarized along the molecular axis, an asymmetry of the
photoemission maxima can be observed for directions parallel
to â1 [see Fig. 13(b)]. Here the global maximum is peaked

around (φ,θ ) = (180◦,90◦) corresponding to the side of the
carbon atom on the molecular axis [cf. Fig. 11(b)]. These
features can be again understood in terms of the shape of
the HOMO. For CO, in fact, the HOMO is a σ orbital with the
electronic charge unevenly accumulated around the carbon
atom. It is therefore natural to expect photoelectrons to be
ejected mainly around the molecular axis and with higher
probability form the side of the carbon atom. This asymmetry
is therefore a property of the electronic configuration of
the molecule and gives information about the molecular
orientation itself. This behavior appears to be stable upon
molecule rotation as can be observed in the case where
the polarization is tilted with respect to the molecular axis
[A0 = â1; see Fig. 13(d)]. Even here the nodal structure is
mainly dictated by the polarization factor.

IV. CONCLUSIONS

In this work we studied the problem of photoemission in
finite systems with TDDFT. We presented a formal derivation
of a photoelectron density functional from a phase-space
approach to photoemission. Such a functional can be directly
applied to other theories based on a single Slater determinant
and the derivation could serve as a base for extensions to more
refined models.

We proposed a mixed real- and momentum-space evolution
scheme based on geometrical splitting. In its complete form
it allows particles to seamlessly pass back and forth from a
real-space description to a momentum-space description. The
ordinary splitting scheme turns out to be a special case of this
more general method. Furthermore, we illustrated applications
of the method on four physical systems: hydrogen, molecular
nitrogen, carbon monoxide, and benzene.

For hydrogen we presented a comparison of the different
methods. We studied ATI peak formation in a one-dimensional
model and ATI angular distributions for a three-dimensional
case. The results turned out to be in good agreement with the
literature. From the comparison, we derived a prescription to
choose the best method based on a classification of the electron
dynamics induced by the external field.

We investigated angular-resolved photoemission for ran-
domly oriented N2 molecules in a short intense IR laser
pulse. We illustrated the results for four different molecular
orientations with respect to the laser polarization. Owing to
the symmetry of the problem we were able to combine the
results to account for the random orientation. The spectrum
for randomly oriented molecules is in good agreement with
experimental measurements and is much better than the widely
used strong-field approximations (with one active electron)
[28].

We also studied UV angular-resolved photoelectron spectra
for oriented carbon monoxide and benzene molecules. We
presented numerical calculations for two different directions
of the laser polarization and compared with the plane-wave
approximation. We found that the plane-wave approximation
provides a good description for benzene while failing for CO.
Furthermore, we found evidence that the photoelectron an-
gular distribution carries important information on molecular
orientation.
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The successful implementation of photoelectron density
functional presented in this paper paves the road for interesting
applications to many different systems for a wide range of
laser parameters. To name a few, TDDFT PAD could provide a
theoretical tool superior to the plane wave and the independent
atomic center approximations to retrieve molecular adsorption
orientation information from experiments. Attosecond pump
probe experiments could be simulated ab initio accounting
for many-body effects but with great computational advantage
with respect to full many-body methods and better physical
description than SAE pictures.
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APPENDIX A: OVERLAP INTEGRALS

In this section we describe the details of the inclusion of
the Kohn-Sham one-body density matrix (9) into Eq. (4). The
momentum-resolved photoelectron probability is the sum over
all the occupied orbitals of four overlap integrals γ ,

P (p) =
occ∑
i=1

γA,A,i(p) + γA,B,i(p) + γB,A,i(p) + γB,B,i(p) .

(A1)

In order to simplify the notation we drop the orbital index i in
the overlap integrals and indicate with v = vv̂ the vector v of
modulus v and direction v̂. In addition, we will consider the
simple case where the boundary surface between region A and
B is a d-dimensional sphere of radius RA.

We start by considering the mixed overlap,

γAB(p) =
∫

B

dR
∫

ds

(2π )
d
2

eip·sψA

(
R + s

2

)
ψ∗

B

(
R − s

2

)
,

(A2)

where the integration in B is for R > RA [cf. Fig. 1(a)]. It is
convenient to work in the coordinates v = 2R and r = R +
s/2, where the integral takes the form∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψA(r)ψ∗
B(v − r). (A3)

We substitute ψ∗
B with its Fourier integral representation,

ψ∗
B(u − r) =

∫
dk

(2π )
d
2

eik·(u−r)ψ̃∗
B(k), (A4)

and after a few simple steps we obtain∫
dk

(2π )
d
2

ψ̃A(−2p − k)ψ̃∗
B(k)

∫
v>2RA

dv e−i(k+p)·v, (A5)

where we successfully disentangled the integration over v
in the second integral. The integral on v > 2RA can be
rewritten as an integral over the whole space, which yields
a d-dimensional Dirac delta, minus an integral on v � 2RA:∫

v>2RA

dv e−i(k+p)·v

= (2π )dδ(k + p) − (4πRA)
d
2
Jd/2(2RA|k + p|)

|k + p| d
2

, (A6)

where Jn(k) is a Bessel function of the first kind. The second
term in Eq. (A6) is a function centered in −p and strongly
peaked in the region w = Cd/RA with C1 = π , C2 ≈ 3.83, and
C3 ≈ 4.49 being the first zeros of the Bessel function Jd/2(k). If
the region w is small enough we can consider the integrand in k
of Eq. (A5) constant and factor out of the integrand ψ̃A(−2p −
k)ψ̃∗

B(k) evaluated at k = −p. It is easy to see that∫
dk

(2π )
d
2

(2RA)
d
2
Jd/2(2RA|k + p|)

|k + p| d
2

= 1 (A7)

and, by plugging Eq. (A6) in Eq. (A5), we have that γA,B(p) ≈
0. By the same reasoning we should expect γB,A(p) ≈ 0.

We now turn to the terms containing the wave function on
the same region. In (v,r) coordinates,

γA,A(p) =
∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψA(r)ψ∗
A(v − r).

(A8)

The product of functions localized in A is not negligible
only for r < RA and |v − r| < RA. Since the integral is
carried out for v > 2RA we can bound |v − r| from below
with RA|2v̂ − r/RA| � RA. This leads to RA � |v − r| < RA,
which is satisfied only on the boundary of A. Being a set of
negligible measure we have γA,A(p) = 0.

Once again, in (v,r) coordinates,

γB,B(p) =
∫

v>2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψB(r)ψ∗
B(v − r)

(A9)

can be written as

γB,B(p)

= |ψB(p)|2 −
∫

v<2RA

dv
∫

dr

(2π )
d
2

eip·(2r−v)ψB(r)ψ∗
B(v−r),

(A10)

where the first integration is in region A. Using the localization
of ψB we see that the integral is nonzero only for r > RA

and |v − r| > RA. As the integration is for v < 2RA we have
that RA � |v − r| > RA and therefore the double integral in
Eq. (A10) is zero.
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APPENDIX B: NUMERICAL STABILITY AND FOURIER
INTEGRALS

A real-space implementation of Eq. (15) involves the evalu-
ation of several Fourier integrals. Such integrals are necessarily
substituted by their discrete equivalent, and therefore discrete
Fourier transforms (FT) and fast Fourier transforms (FFTs)
are called into play. However, evolution methods based on the
discrete FT naturally impose periodic boundary conditions.
While this is not presenting any particular issue for MM
where FT are only used to map real-space wave functions
to momentum space, it is a source of numerical instability
for FMM where the wave functions are reintroduced in the
simulation box.

The problem is well illustrated by the following one-
dimensional example. Imagine a wave packet freely prop-
agating to an edge of the simulation box with a certain
velocity. In MM, when passing trough the buffer region,
the packet is converted by discrete FT in momentum space
and then analytically evolved as a free particle through the
edge of the box. In FMM as the wave function evolves in
momentum spaces it is also transformed back to real space
to account for possible charge returns. In this case, instead
of just disappearing from one edge, by virtue of the discrete
FT periodic boundary conditions, the same wave packet will
appear from the opposite side. It can be easily understood how
such an undesirable event can create a feedback leading to an
uncontrolled and unphysical buildup of the density.

This behavior can be controlled by the use of zero padding.
As we know, the Fourier integrals in Eq. (15) involve functions
that are, by construction, zero outside the buffer region C. We
can therefore enlarge the integration domain (having radius
RA) by a padding factor P , set the integrand to zero in the
extended points, obtaining the same result. As a consequence,
a wave packet propagating toward a boundary edge will have
to run an enlarged virtual box of radius R̃A = RA(2P − 1)
before emerging from the other side. In addition, the small-
est momentum represented �p̃ = 2π/PRA = �p/P in the

discretized ψ̃B,i(p,t ′) is reduced by a factor 1/P , while the
highest momentum pmax = π/�r remains unchanged. The
price to pay here is an increased memory requirement by a
factor P d (where d is the dimension of the simulation box)
and is too high for three-dimensional calculations.

A possible way to find a better scaling is offered by the
use of nonuniform discrete Fourier transform and companion
fast algorithm (NFFT) [64,65]. NFFT allow for the possibility
to perform Fourier integrals on unstructured sampling points
with, for fixed accuracy, the same arithmetical complexity as
FFT. For a detailed description of the algorithm we refer to
the literature [65]. The idea is to use the flexibility of NFFT to
perform zero padding in a convenient way. Instead of allocating
an enlarged box filled with zeros at equally spaced sample
positions, we set only one point at RAPN (here PN is the
NFFT padding factor) and evaluate the Fourier integral with
NFFT. In this way we gain numerical stability for FMM as
long as the wave functions are contained in a virtual box of
R̃A = RA(2PN − 1) at the price of adding a number of points
that scales as d − 1 with the dimension of the box. If Nd is
the number of grid points in the simulation box, in order to
perform zero padding with NFFT one needs to add only 2Nd−1

points.
With this procedure, however, not only the smallest mo-

mentum �p̃ is reduced by a factor 1/PN , but also the highest
momentum p̃max = (N/2 + 1)�p̃ is decreased by the same
amount. This turns out to be the limiting factor in the use
of NFFT to preserve numerical stability with FMM as the
enlargement factor PN has an upper bound that depends on
the escaping electron dynamics. In fact, when we evaluate
the back-action term Eq. (16b), we assume ψ̃B,i(p,t ′) to be
localized in momentum and, in order to preserve numerical
consistency, PN must be limited by the highest momentum
contained in ψ̃B,i . A combination of ordinary padding and
NFFT padding helps to balance the tradeoff between memory
occupancy and numerical stability.

Finally, in MM zero padding can be used to increase
resolution in momentum.
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