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Abstract. Using a unique momentum microscope, we measured energy-
resolved momentum distributions of valence-band electrons photoemitted into
the whole half-space above the Cu(111) and Cu(001) surfaces. The experimental
results are compared to one-step photoemission calculations. Convincing
agreement between theoretical and experimental photoelectron momentum
patterns can only be achieved by orbital-dependent corrections which emulate
many-body self-energy effects in the electronic structure of Cu (Strocov et al
2002 Phys. Rev. B 66 195104). By the analysis of the Shockley surface state
of Cu(111), we show that these self-energy corrections also affect the surface
electronic structure in specific ways. We find that the Shockley surface state of
Cu(111) is shifted differently in energy than the bulk states. As a consequence,
the agreement between the theoretically calculated and the experimentally
measured binding energy of this surface state is improved. Energy-resolved two-
dimensional valence-band photoelectron mapping provides an alternative means
of determining self-energy values experimentally.

3 Author to whom any correspondence should be addressed.

New Journal of Physics 14 (2012) 043009
1367-2630/12/043009+18$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:winkelm@mpi-halle.mpg.de
http://www.njp.org/


2

Contents

1. Introduction 2
2. Experiment 3
3. Theory 3
4. Results 5

4.1. Cu(001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2. Cu(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5. Summary 15
References 16

1. Introduction

The crystal-momentum-resolved electronic structure is a central concept in solid-state physics.
A key aspect that needs to be treated by models of electronic structure is that electrons in a solid
form an interacting many-body system and thus cannot strictly be described as independent
particles. The premier tool for experimental access to these electronic states is angle-resolved
photoelectron spectroscopy (ARPES) [1–5].

Photoelectron spectroscopy measures the energy of removal of one electron from the
sample and is thus closely related to the spectral function which contains the excitation energies
of the many-body system. Compared to the bare energy of electrons in a non-interacting system,
the quasiparticle states of the interacting system are characterized by a shift of the energy and
by a finite lifetime. These two effects are described by the real and imaginary parts, respectively,
of the energy- and momentum-dependent self-energy (see e.g. [6–9]).

As investigations of important problems in current solid-state research are driven by
feedback between experimental ARPES investigations and theoretical calculations, it remains
important to test the ability of theoretical models to quantitatively describe photoelectron
spectroscopy measurements. For example, as the electrons near the Fermi level are decisive
for a considerable number of material properties, the possibility to map the Fermi surface
by photoemission represents an especially powerful tool [10–17]. In addition to the crystal-
momentum space iso-energy surfaces at the Fermi level, similar measurements in an extended
energy range from occupied and unoccupied states provide additional insights into the general
effects of interactions on the electronic structure. Moreover, complementary to the reciprocal-
space information, much interest is also being focused on the real-space distribution of
electronic states [18–20] and the orbital-resolved contributions in the electronic structure of
crystals [21, 22] and molecules [23].

In this paper, we present the results of a special experimental approach to valence-band
photoemission, with the Cu(001) and Cu(111) surfaces as well-known model systems. The
main idea of our experiment is the systematic parallel collection of energy-resolved two-
dimensional (2D) angular photoelectron distributions [21, 24–28]. Specifically, we are using
an exceptional momentum microscope [29] that can detect energy-resolved photoemission
intensities in the whole emission hemisphere above the sample surface with extreme efficiency,
including optional spin-polarization analysis [30]. The experimental photoelectron momentum
patterns in an extended valence-band energy range include the combined effects of bulk states
as well as surface states extending in low-symmetry directions over the full surface Brillouin
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zone, and thus represent a challenging benchmark for theoretical photoemission models. As
we will show, the parallel recording of constant-energy valence-band photoelectron momentum
distributions with the momentum microscope allows for a stringent test of theoretical one-step
photoemission models because of the sensitivity of the observed momentum-space fine structure
to the energy levels of surface and bulk electronic states.

In particular, we will show that sufficiently good agreement between the theoretical and
experimental 2D valence-band photoelectron momentum patterns can only be obtained by the
application of orbital-dependent corrections for many-body self-energy effects in the electronic
structure of copper, which still serves as a standard system for photoemission investigations.
The electronic structure of copper has been thoroughly investigated in experiment [31–36]
and theory [37–41]. Recently, for the Cu bulk electronic structure, self-energy corrections to
the independent-particle density functional theory (DFT) calculations using the local density
approximation (LDA) have been established in experimental studies of [35]. These previous
results provide estimations of the size of self-energy corrections which we can test in our
DFT–LDA one-step photoemission calculations in comparison to the experimental results.
Momentum mapping of photoelectrons in the momentum microscope thus provides us with
extensive information for potential improvements of theoretical concepts underlying one-step
photoemission calculations.

The paper is organized as follows. We introduce the experimental details in section 2,
followed by a description of the theoretical model used for the photoemission simulations
in section 3. The results are presented in section 4. In section 5, we give a summary of this
investigation.

2. Experiment

The momentum microscope used in this investigation is an advanced combination of a
photoelectron emission microscope column with an aberration-corrected electrostatic electron
energy analyzer [29]. The instrument can detect energy-resolved and (kx , ky)-resolved
photoemission intensities of photoelectrons emitted into the whole emission hemisphere above
the sample surface. The energy resolution was estimated as 170 meV and the momentum
resolution as ±0.04 Å−1 by measurements of the Cu(111) Shockley surface state [29].

Clean surfaces of Cu(111) and Cu(001) were prepared by standard procedures. During the
measurements, the samples were kept at −100 ◦C by liquid nitrogen cooling.

The coordinate system of the present investigation is shown in figure 1. In this study, we
used unpolarized and non-monochromatized HeI radiation, which is incident along the angles
ϑ = 65◦ and ϕ = 30◦, as can be seen from figure 1. The electron-optical axis of the momentum
microscope is along the z-direction.

3. Theory

The calculations of both the electronic structure and photoemission intensities rely on the
LDA to DFT, using a relativistic multiple-scattering approach (layer-Korringa–Kohn–Rostoker
(LKKR)). Solving the Dirac equation, spin–orbit coupling is included. We use the
Perdew–Wang exchange-correlation functional [42].

The electronic-structure calculations were performed for semi-infinite systems which
comprise the bulk, the surface region and the vacuum. The lattice constant of Cu was 4.83 a0
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Figure 1. The experimental coordinate system. HeI radiation is incident along
the angles ϑ = 65◦ and ϕ = 30◦. The electron-optical axis of the momentum
microscope is along the z-direction. The photoelectron intensity is plotted as a
function of the in-plane momentum components kx and ky for a fixed kinetic
energy, with lighter color indicating higher intensity.

(Bohr radii). The electronic structure is analyzed by means of spectral densities

Nl(z, k‖) = −
1

π
Im TrGll(z, k‖).

Here, z is a complex energy and Gll is the layer-diagonal Green function (l is layer index) at
z and the surface-parallel reciprocal vector k‖ = (kx , ky). By taking partial traces, Nl can be
decomposed with respect to orbital momentum, spin projection or irreducible representation of
the ‘small group’ of k‖.

The photoemission spectra were computed within the one-step model, using the self-
consistent potentials as the input. Photoelectrons were gathered from the topmost 30 layers
of the Cu surface. The maximum angular momentum was lmax = 4.

Lifetime effects in the photoemission process were emulated by an imaginary part of
the energy, that is, the optical potential Voi. For the occupied states, we deliberately choose
Voi = 0.05 eV. This rather small value allowed us to discriminate the flat d bands in the photo-
emission spectra. For the unoccupied states, we took Voi = 1 eV.

As expected for LDA that has difficulties in describing localized states correctly, the d
bands were too high in energy as compared to experiment. Instead of the computationally
demanding GW calculations [6], LDA + U or dynamical mean-field calculations, we improved
the binding-energy mismatch by a simplified approach, shifting the LDA potentials of Cu by
6d = −0.8 eV for the d states and by 6sp = +0.3 eV for the sp states. These orbital-dependent
shifts, which are used to treat the real parts of the self-energy, have been deduced from
experiments by Strocov et al [35], who were using a band-mapping procedure combining
photoemission and very-low-energy electron diffraction. Because our approach acts already
on the potentials rather than being a ‘scissors operator’ on the energy bands, it influences not
only energy levels but also wavefunctions. In particular, the shifts of bulk and surface states
are different because surface states are subjected to the unmodified vacuum potentials while
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bulk states are not. Therefore, this simplified approach leads to improved quantitative agree-
ment between experimental and theoretical dispersion relations for surface and bulk states (see
section 4) but, undoubtedly, leaves room for improvement.

The present approach can be regarded as the very first step towards a more complete
description of the effects of the electronic self-energy 6 in the photoemission calculations.
Being a non-local operator, 6 depends on energy, wavevector k‖, layer l and orbital momentum.
Here, we assumed that 6 is orbital dependent and constant otherwise, which yields satisfactory
agreement between experiment and theory. However, given the complete experimental mapping
of the valence electronic structure, a detailed comparison of the theoretical momentum patterns
with the extensive amount of our energy-dependent 2D experimental momentum data provides
a crucial test for advanced calculations of 6.

4. Results

4.1. Cu(001)

We first address the effects of theoretical self-energy corrections for the d and sp states
(6d and 6sp; see section 3) in photoelectron momentum patterns from Cu(001). Therefore,
in figure 2(a) we analyze photoemission intensities measured at two different energies: one
from the Cu(001) Fermi level (Ei = 0.00 eV) and the other from the d-band region at an
initial energy of Ei = −2.30 eV. The corresponding theoretical calculations are shown in
figure 2(b) neglecting any self-energy-related corrections and in figure 2(c) applying self-energy
corrections 6d = −0.8 eV, 6sp = +0.3 eV as obtained from [35]. The energy resolution assumed
in the calculations was 100meV.

We can already discriminate important effects from the results shown in figure 2. Firstly,
the theoretical Fermi-level intensity distribution already fits the experiment quite well when
no self-energy shifts are included. Secondly, in contrast to the Fermi level pattern, the
calculated photoelectron momentum pattern from the d-band region does not fit the experiment
at all when self-energy corrections are neglected. This clearly indicates that different self-
energy corrections are necessary for different binding energies and that a rigid shift of the
theoretical calculation (‘scissors operator’) cannot bring the calculation into full agreement with
the experiment. This is consistent with the established band-dependent and binding energy-
dependent self-energy effects which actually include shifts of opposite sign for the Cu d states
as compared to the Cu sp states near the Fermi level [35]. As we will show below, another
important condition that prohibits a rigid shift of the complete bulk band structure is the
necessity to describe the surface electronic structure correctly (see the results for Cu(111) in
section 4.2).

As we can see in figure 2(c), the inclusion of self-energy corrections leads to very good
agreement both for the Fermi level pattern and for the d-band pattern. A comparison of the
actual intensities in figure 2(a) also reveals the clear reproduction of deviations from the fourfold
symmetry of the Cu(001) substrate. The (001) surface by itself has fourfold symmetry (point
group 4mm) which, however, is broken in the complete photoemission setup by the off-normally
incident light away from an exact mirror plane of the crystal (see the experimental setup in
figure 1). As an effect of this symmetry breaking, we see for example that the triangular
structure on the bottom left of the d-band pattern in figure 2(c) has higher intensity than its
symmetry-correlated sibling on the top right, which is almost suppressed in theory as well as
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(a)

(b)

(c)

Figure 2. Sensitivity of experimental Cu(001) photoelectron momentum
distribution maps to self-energy corrections in one-step photoemission
calculations. The surface Brillouin zone is shown on the left in the top row,
with the axes of kx and ky pointing along the bulk directions [100] and [010],
respectively. The patterns are normalized to their respective mean intensities.
(a) Cu(001) experiment, Fermi level (left) and Ei = −2.3 eV (right). (b) Theory,
no self-energy corrections included. (c) Theory, using 6d = −0.8 eV, 6sp =

+0.3 eV.

in experiment. This demonstrates that the symmetry-breaking effects of the incident light are
consistently treated in the simulations. The agreement between theory and experiment is of
course not perfect. For instance, the nodal lines crossing the surface Brillouin zone center in the
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(a)

(b)

Figure 3. Specific effect of sp-band self-energy corrections on the Cu(001)
momentum distribution maps with constant d-state correction 6d = −0.8 eV. In
the maps of the relative changes Asp as defined in equation (1), red indicates
the additional intensity for 6sp = +0.3 eV and blue indicates less intensity as
compared to 6sp = 0.0 eV. The sp-state corrections have a weaker relative
effect in the d-band region, as is seen in the lower right pattern by the
correspondingly reduced modulation. (a) Theory, 6d = −0.8 eV, 6sp = 0.0 eV.
(b) Theory, relative change of corrected map for two parameters (6d = −0.8 eV,
6sp = +0.3 eV) with respect to the 6sp = 0.0 eV shown above.

theoretical d-band pattern become filled in experiment. This could be due to the background of
inelastically scattered electrons in experiment or by the use of an insufficient lifetime broadening
in theory. Nevertheless, we obtain very good overall agreement between experiment and the
self-energy corrected theory.

In the calculations shown in figure 2(c), the self-energy correction effects for the d states
are much larger than those for the sp states at the Fermi level, which were already quite well
described by the uncorrected theory. In order to demonstrate the energy-dependent effects of
orbital-dependent self-energy corrections on the momentum patterns, we show in figure 3 the
theoretical distributions for the case when we only considered the corrections in 6d = −0.8 eV
but neglected the sp-state corrections by setting 6sp = 0.0 eV. At first sight, the patterns without
sp corrections seem to show very similar agreement to the experiment as the previous results
in figure 2 containing additional sp-specific corrections 6sp = +0.3 eV. A closer inspection,
however, reveals important differences, which are best recognized when calculating the relative
k-resolved intensity change Asp between the theoretical models with and without sp corrections
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as

Asp =
I (6sp = +0.3 eV) − I (6sp = 0 eV)

I (6sp = +0.3 eV) + I (6sp = 0 eV)
. (1)

The results are seen in the color plots in the lower part of figure 3, where red indicates additional
intensity in the pattern with 6sp = +0.3 eV and blue indicates reduced intensity with respect to
the pattern with 6sp = 0.0 eV. Due to the high density of d states, 6d shows a dominating
influence in the energy range reaching approximately from −4 to −2 eV. As expected, the
relative influence of 6sp is small in the d-band region, as becomes evident when comparing the
magnitudes of the asymmetry patterns for the Fermi level pattern on the left and the −2.3 eV
pattern on the left. For the d-band pattern the relative change introduced by 6sp = +0.3 eV
is moderate with values less than 10%. This observation is fully confirmed by the angular-
momentum-resolved band structure, where the contribution of the sp orbitals is small at the
d-band energies. In the sp-band region near the Fermi level, however, the sp corrections show
a more noticeable effect towards a closing of the intensity gaps near the X̄ point, which is seen
by the red color near the X̄ positions. This trend is in good agreement with the experimental
observations (left pattern in figure 2(a)) which show a smaller intensity gap as is produced in
the calculations neglecting 6sp (left pattern in figure 3(a)).

At this point, we can conclude that the introduction of a self-energy correction for the sp
bands that is of opposite sign compared to the d states undoubtedly improves the agreement of
the calculations with the experimental observations.

Strocov and coworkers [35] deduced slightly energy-dependent values for 6d and 6sp. In
the present study, we took the mean values of −0.8 and +0.3 eV. This approximation seems to
be justified in view of the resulting agreement between experimental and theoretical momentum
distributions in the entire valence-band range.

In our present approach, we cannot include the effects of a band-dependent imaginary
part of the self-energy. Instead, the optical potential is used to handle the energy-dependent
lifetime-broadening without specific k- or orbital dependence. In addition, this approach only
emulates the reduction of the number of elastically scattered electrons and disregards the
effects of inelastically scattered photoelectrons that might be present in the experimental energy
window. One main effect resulting from inelastic scattering in experiment is the increasing
background for lower kinetic energies. Another effect is thermal disorder or other disorders
which introduces the possibility for non-direct transitions and thus a loss of k-information from
the band structure [43, 44]. While these effects go beyond our current treatment, we point out
that we are clearly observing features showing different degrees of sharpness; for instance,
compare the sharp and more diffuse features in the top row of figure 4. These characteristically
different features are consistently reproduced by the theory, which means that the different
sharpness is probably not mainly due to varying k-dependent imaginary parts of the self-energy.
Instead, the specific k-space extension of direct optical transitions is mainly related to the degree
of dispersion of the relevant initial and final electronic bands [45].

We show additional representative data for four additional energies in figure 4. There, only
the kinetic energy of the photoelectrons changes while all other parameters are kept constant in
the calculation. The photoelectron distributions vary strongly with initial energy Ei and show
clearly that both the experimental approach and the calculations capture the intricate details of
the flat d bands.
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Figure 4. Selected momentum distributions of photoelectrons excited from the
Cu(001) d-band region. Experiment on the left and theory on the right; energy
levels from the top: Ei = −1.95, −2.75, −3.10 and −3.60 eV.

4.2. Cu(111)

After establishing the necessary self-energy corrections for the Cu(001) sample, we applied our
approach to measurements at Cu(111) surfaces to test whether the same theoretical parameters
give similar agreement to experiments. Moreover, since the Cu(111) surface contains the
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(a)

(b)

Figure 5. Full-hemispherical photoemission from the Cu(111) Fermi level,
hν = 21.2 eV. (a) Left: experiment; middle: theory; right: spectral density
with the surface Brillouin zone and major bulk directions. (b) Layer-resolved
contributions to the spectral density (the k-region is the same as in part (a) of this
figure): left: surface layer(s); right: bulk layer. The Shockley surface state can be
seen in the vicinity of k‖ = 0 decaying into the bulk.

prominent L-gap Shockley surface state, we can analyze the implications of the self-energy
corrections for the surface electronic structure.

The Cu(111) sample is oriented such that [1̄10] is along the x-axis and [1̄1̄2] along the
y-axis (right panel in figure 5(a)). For measurements at the Cu(111) Fermi level, using the same
self-energy correction parameters as for Cu(001), we find that the experimental (left panel in
figure 5(a)) and theoretical (center) patterns agree very well. For comparison, we show in the
right panel of figure 5(a) the relevant surface-projected initial state spectral density of states,
which for the Fermi level corresponds to a combination of a 2D projection of the bulk 3D Fermi
surface and the 2D surface density of states.

The k‖-dependent spectral density of states Nl(E, k‖) in the right panel of figure 5(a) is a
sum over the first six surface layers and one bulk layer. Consequently, it consists of contributions
from the [111]-projected bulk density of states and an intrinsically surface-localized part which
show up in the photoemission intensities. As we can see by making a comparison to the spectral
density in the right panel of figure 5(a), the photoemitted signal from the sp bands is not directly
proportional to the sixfold symmetric k‖-projected spectral density. This is due to two main
effects. Firstly, apart from the Shockley surface state (discussed below) at small k‖, we observe
bulk transitions which have threefold symmetry around the [111] surface normal. Secondly,
a reduction of symmetry is caused by the excitation light, which is incident approximately
in the plane spanned by the [111] surface normal and the [2̄11] direction (see figure 1 and
the left part of figure 5(a)). Although the light is unpolarized, the transversal character of the
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unpolarized light with respect to the incidence direction causes a directional dependence of
the transition matrix elements. The sharp, rather line-like photoemission features at large k‖ in
figure 5(a) originate from transitions of the nearly free-electron-like sp bands at the Fermi level.
In contrast, the central circular contour is associated with the quasi-2D Shockley surface state,
as will become clear in the following.

Our theoretical LKKR approach allows us to distinguish the surface and the bulk
contributions by their layer dependence. Figure 5(b) shows a sequence of layer-resolved
spectral-density distributions for the Cu(111) Fermi level, starting at the surface (s) towards the
bulk. The central circular feature decays rapidly with increasing depth. Furthermore, the bulk
distribution (the outermost panel on the right side) is given by the 2D projection of the Cu Fermi
surface with the well-known L gap necks along the eight equivalent 0–L directions. Since no
signature of the circular feature is visible anymore in the bulk layer, this feature must indeed be
due to a surface state. An orbital-momentum decomposition yields that the Fermi level pattern
of figure 5 consists mainly of p-contributions (orbital momentum l = 1), as expected for this
type of surface states [46].

The Fermi level intensity presented in figure 5 is in principle well known from previous
angle-dependent investigations [13], using step-wise measurements of the photoelectron
spectrum in a large number of discrete directions with a correspondingly large measurement
time. For comparison, the data acquisition of figure 5 took a total of 10 min using the non-
monochromatized HeI laboratory light source.

In analogy to the Fermi level photoemission, we recorded the k‖-resolved photoemission
intensities from electronic states in the full accessible valence-band energy region. Examples of
the d-band region, reaching from approximately −4 to −2 eV with respect to the Fermi level, are
shown in figure 6 (left column), side by side with their calculated counterparts (central column)
and the respective spectral densities of the initial states (right column). The overall very good
agreement of the Cu(111) momentum distributions seen in figure 6 indicates the transferability
of the self-energy corrections to different Cu surfaces.

Compared to the relatively simple structure near the Fermi level caused by sp-like states,
the intensity distributions in figure 6 contain a mixture of d, p and s states in the d-band region
and are much more complicated. The comparison of the spectral densities of the initial states
(right) with the experimental and theoretical intensities illustrates nicely the limited predictive
power of the spectral density by itself: the intensity distributions are strongly determined by
optical matrix element effects which emphasize certain features and structures in the spectral-
density maps.

In order to reveal the influence of the self-energy corrections in the case of Cu(111),
we show the energy- and ky-dependent intensity distributions for Cu(111) in figure 7(a).
This corresponds to cuts along kx = 0 of the complete valence-band region measured. The
experimental intensity distribution near the Fermi level in the upper part of figure 7 shows
the parabolic Shockley surface state band with a binding energy slightly less than −0.4 eV
with respect to the Fermi level and a Fermi vector of about 0.2 Å−1. This is in good agreement
with the values and trends published in the literature, considering our experimental conditions.
For near-ideal high-resolution measurements at 30 K, a binding energy of 0.435 eV and a
Fermi vector of kF = 0.215 Å−1 were found for the Shockley surface state on Cu(111) [33].
For energies below the Shockley surface state we see a faint intensity resembling the high-
intensity d-band about 2 eV below. This is due to the HeIβ satellite (hν = 23.09 eV) from the
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Figure 6. Photoelectron momentum patterns, Cu(111) d bands; left: experiment;
middle: theory; right: spectral density of initial states.
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(a)

(b)

(c)

Figure 7. Cu(111), (a) experimental (E, ky)-intensity plots for kx = 0; (b)
comparison to theory assuming self-energy corrections 6sp and 6d; and (c) no
self-energy corrections. The horizontal blue lines are for orientation to better
judge the energy shifts. (a) Experiment; (b) theory, 6d = −0.8 eV, 6s = +0.3 eV
self-energy corrections; and (c) theory, 6d = 0.0 eV, 6s = 0.0 eV (neglect self-
energy corrections).

non-monochromatized He light source. From the measurements, we estimate a contribution of
about 2% from HeIb.

For comparison with the experimental results, the theoretical calculation assuming the
self-energy corrections 6sp and 6d is plotted in figure 7(b), again showing good agreement
with the experimentally observed features. The additional HeIβ contribution is not included
in the theoretical results presented. The influence of the self-energy corrections for the d and
sp states is seen from a comparison to the third panel (figure 7(c)), where these corrections
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BB

(a) (b)

(c) (d)

Figure 8. Cu(111), (E, ky)-spectral density plots for kx = 0 showing the effect
of switching on the self-energy corrections (left: no corrections; right: with
corrections; the intensity scale is equivalent in all plots; blue lines are guides to
the eye). (a) Surface layer, 6d = 0.0 eV, 6s = 0.0 eV; the uppermost blue line
indicates the binding energy of the Shockley surface state seen near ky = 0.
(b) Surface layer, 6d = −0.8 eV, 6s = +0.3 eV. (c) Bulk layer, 6d = 0.0 eV,
6s = +0.3 eV; the bulk sp-band edge is denoted by ‘B’, 6s = 0.0 eV. (d) Bulk
layer, 6d = −0.8 eV, 6s = +0.3 eV.

have been switched off in the calculation. Among other effects, the result of the downward
shift of the d-bands and the upward shift of the sp states is most notably seen by the intensity
gap near ky = −1.5 Å−1 and at energies from about −0.8 to −1.8 eV in both experiment and
the calculation including self-energy corrections. In contrast, in the calculation neglecting these
corrections, this intensity gap is filled by d states as seen in figure 7(c).

Apart from the bulk-derived features, the self-energy corrections in the calculation
influence the surface electronic structure in a specific way. In the surface barrier region, the
self-energy corrections can be expected to be reduced when going from the bulk to the vacuum.
As noted in the section concerning the theoretical details, we model this in the calculation by
neglecting these corrections for the surface barrier.

The overall effect of the bulk self-energy corrections is a reduced binding energy of
the Shockley surface state, which is directly visible by the upward shift of the parabolic
dispersion when going from figures 7(c) to 7(b). In order to make the surface-related changes
more visible, we show in figure 8 the energy-dependent and layer-resolved spectral density of
states for the same region as seen in figure 7. The surface layer spectral density is shown in
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figures 8(a) and (b), and the bulk layer spectral density in figures 8(c) and (d). As we know
from the layer-resolved analysis in figure 5(b), the Shockley surface state is not confined to
the uppermost surface layer but penetrates into the bulk considerably. The bulk penetration
leads to hybridization effects with the bulk states and a resulting non-parabolic dispersion
in the unoccupied states which we have analyzed previously [47]. By the same argument,
the self-energy corrections of the bulk should influence the binding energy of the Shockley
surface state. In accordance with these expectations, we clearly see from the calculations in
figures 8(a) and (b) that the binding energy of the Shockley state changes from EB = 0.5 eV
to EB < 0.4 eV with the application of the bulk self-energy corrections. The magnitude of the
change is obviously not simply the change in 6sp = 0.3 eV, as we would expect for the bulk sp
bands from which the surface state is derived. Instead, this observation illustrates that the bulk
self-energy corrections can have non-trivial effects on the surface states, a fact that in our case
leads to improved agreement with the experimental observations. Compared to the established
low-temperature values of the binding energy EB = 0.435 eV [33], however, our calculation
slightly overestimates the induced shift. Nevertheless, our observations clearly suggest that
accounting for bulk and surface-barrier self-energy effects can lead to a better description of
angle-resolved photoemission intensities in the presence of bulk and of surface contributions.

The Shockley surface state on Cu(111) is rather stable against slight surface degradations.
We emphasize that the experiments reported here were not specially optimized for the
observation of other, particularly sensitive surface states which exist on Cu(111) and Cu(001) in
several energy regions [48, 49]. A closer look at the experimental and theoretical Cu(001) and
Cu(111) data reveals indications of the presence of several such previously reported surface
states. In this respect, the momentum microscope is an ideal instrument to analyze surface
state effects as we have access to the full surface Brillouin zone in an extended energy range.
In future investigations, this should allow us e.g. to distinguish surface states experimentally
according to the symmetry and size of the surface Brillouin zone on clean surfaces, adsorbates
and overlayers. Because of its inherent depth dependence, our theoretical model is also ideally
fitted to an analysis of surface effects in the experiment.

Finally, comparing the conventionally represented, band-structure-like energy- and ky-
dependent data in figures 7 and 8 with the energy-resolved momentum distribution patterns of
the other figures, we recognize the complementary information content that is conveyed by the
symmetry of (kx , ky)-dependent patterns. This should be especially important for photoemission
investigations of the orbital components in the electronic states using polarized light.

5. Summary

We have shown that measurements of photoelectron momentum distribution patterns in an
extended valence-band energy range can provide essential checks for the effect of many-body
corrections in the single-particle band structure of copper. In comparison to the extensive
experimental data provided by the momentum microscope, the calculation of photoelectron
momentum patterns in the complete accessible valence band represents a tour de force in one-
step photoemission calculations.

As the energetic positions and wave functions of surface states are closely connected to the
underlying bulk band structure, we also demonstrated how the many-body corrections of the
bulk also influence the surface electronic structure in a specific way. For the Cu(111) Shockley
surface state, we found improved agreement of the calculated binding energy with experiment
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if the bulk many-body corrections are included. This points to the importance of many-body
corrections for the bulk bands as well as the surface electronic structure.

With the additional option of electron spin-polarization analysis in the momentum
microscope [30], the study of spin-dependent many-body effects will be possible.
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[30] Tusche C, Ellguth M, Ünal A A, Chiang C-T, Winkelmann A, Krasyuk A, Hahn M, Schönhense G and
Kirschner J 2011 Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron
mirror Appl. Phys. Lett. 99 032505

[31] Courths R 1984 Photoemission experiments on copper Phys. Rep. 112 53–171
[32] Matzdorf R 1998 Investigation of line shapes and line intensities by high-resolution UV-photoemission

spectroscopy: some case studies on noble-metal surfaces Surf. Sci. Rep. 30 153–206
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