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Abstract. We inspect the fundamental difference between the correlated band insulators (BI) and the Mott
insulators (MI) from the perspective of the dynamical pair excitations. To this end, we investigated the
physics of the two-plane Hubbard model by employing the well-tested dynamical mean field theory (DMFT)
together with the quantum Monte Carlo (QMC) method. At half-filling our results clearly indicate that
while the spectral weight of the pair excitation becomes minimal at MI which corresponds to a diminishing
of the double occupancy, the opposite occurs at BI. We then discuss the effect of doping and find that
the correlated band insulator and the Mott insulator robust at low doping concentration and the metallic
state emerges at larger doping. The pair spectral function demonstrates that the metallic state of doped
MI is strongly different from that of doped BI and it is readily reflected in the lineshape of the spectra.
We discuss the implication of our results in the context of the two-particle spectroscopy.

1 Introduction

The transition from metallic to insulating phase is a ubiq-
uitous phenomenon in solid state physics and has been
one of the central research themes for more than four
decades. A prototypical example is the Mott transition
where the itinerant state transforms to a localized state
whenever the magnitude of the local Coulomb interaction
becomes large relative to the bandwidth. Materials of this
class are referred to as strongly correlated electron sys-
tems. Well-studied cases are transition metal oxides such
as A1−xBxMO3: A=Sr, Ca, B=La,Y and M=Ti,V,Cr,
where the degree of electronic correlations is known to
be strongly dependent on the variation of the pressure
or on the substitution of a specific element. In the last
two decades, significant progress in the theoretical under-
standing of the Mott transition has been achieved thanks
to the development of the dynamical mean field theory
(DMFT) that connects the Brinkmann-Rice picture and
the strong coupling Hubbard theory [1]. It is now estab-
lished that the Mott metal insulator transition (MIT) is
an example where the dynamical local fluctuations play a
significant role and thus allows one to map the complex
lattice problems onto the single-site action supplemented
by the self-consistent equations.

For weakly correlated systems, the mechanism under-
lying MIT is different from that for strongly correlated
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electrons. The band insulating state can be described
reasonably well within a picture based on an effective
single-particle moving in the field of the ions. A promi-
nent representative of these theoretical approaches is the
density functional theory (DFT) within its local-density
approximation. Nonetheless, these materials may show a
variety of intriguing phenomena such as the quantum Hall
effect, the Kondo insulator, and also the topological insu-
lators see for e.g. references [2–6]. In the latter case, it
becomes clear recently that the band insulating character
of the bulk can coexist with a metallic states at the sur-
face provided that there is a sufficiently large spin-orbit
interaction. The question of whether such a property may
be encountered also for strongly correlated systems is cur-
rently under discussion [7].

In recent years, there has been an upsurge of interest
in studying the role of the electronic correlations in the
band insulator and its connection to the Mott insulator
(see e.g. Refs. [8,9]). In order to describe this novel prop-
erty, one of the most extensively employed description is
the ionic Hubbard model (IHM) that incorporates the lo-
cal Coulomb interaction U and the one-body potential Δ
[10–14]. The interplay of both parameters can lead to both
the Mott insulator when U > Δ and the band insulator
in the opposite case for U < Δ. The rigorous analyti-
cal treatment of the 1D IHM suggested that BI and MI
are separated by two continuous phase-transition; from BI
to spontaneous-dimerised insulating (SDI) and followed
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by another transition to MI when the local interaction
increases [15,16]. There have been many subsequent ef-
forts to verify this proposal by performing the finite size
numerical simulation. The results from the density ma-
trix renormalization group (DMRG), the QMC, the exact
diagonalization and the valence bonds technique have con-
firmed the existence of the intervening state at the mod-
erate local interaction [17–23]. Conflicting results however
exist particularly on the critical properties between BI and
SDI and whether the MI state arises at pronounced U . The
study of IHM at higher dimension has been also conducted
recently on various levels of approximation. Both DMFT
and quantum monte carlo clearly demonstrated the exis-
tence of the finite metallic region between the BI and the
MI [24–27]. The cluster-DMFT and the variational cluster
approximation on the other hand, predicted bond-ordered
phase as an intermediate state and it was shown that there
is a single metallic point at the phase boundary [28,29].
The precise phase diagram of IHM for one and for higher
dimension thus remains an open question.

Besides IHM, another interesting system is the bilayer
Hubbard model. Results from the DMFT-based approach
have provided the evidence for the absence of any inter-
vening phase between MI and BI and the two phases are
suggested to be continuously connected [30–33]. The same,
however, is not true for the two dimensional system stud-
ied within CDMFT and the determinant QMC [34,35].
It is shown that the metallic state becomes evident be-
tween BI and MI at weakly coupled layer, while direct
crossover is observed when both layers are strongly cou-
pled. The entrance of the metallic character at weak inter-
plane hopping has been argued to be associated with the
pronounced spatial fluctuation at low dimensional system
which can not be captured in the traditional single-site
DMFT. Whether this is a generic feature of the 2D-bilayer
system, is presently not clear and remains to be eluci-
dated.

While the discussion of the nature of the transition
between BI and MI has been extensively performed in
the last years, the question on how to address this is-
sue experimentally has not been carefully considered. In
the theoretical works, the most frequently used quantity
to demonstrate the existence of BI/MI and the possible
intermediate states is the single-particle or the particle-
hole excitation (e.g. spin excitation, optical conductiv-
ity) which in general can be verified experimentally. In
the former case, the calculated single-particle spectral
function is known to be related directly to the spec-
tra of the angular-resolved photoemission spectroscopy
(ARPES) [36]. Definitive experimental evidence for the
evolution of MI to BI is, to our knowledge, not yet avail-
able on the basis of this approach. It is therefore of inter-
est to explore an alternative experimental technique that
is capable of assessing the underlying physics of corre-
lated BI and MI. One possible proposal in this connec-
tion, is to employ the two-particle spectroscopy which in
recent years have seen a rapid development in its energy
resolution allowing to inspect the electronic properties of
solids [37,38]. Experimentally, this method is known as

the (γ, 2e) spectroscopy where a pair of indistinguishable
particles is ejected upon the absorption of a VUV pho-
ton [39,40]. This approach is the extension of ARPES
and can be employed to produce the spectral properties
of the valence band. One of the most crucial aspect of
this technique is that both particles have to be detected
coincidentally to ensure that the excited particles come
from the same scattering event [37,39–41]. Theoretically,
it is shown that this condition can be fulfilled only if the
ejected particles are initially correlated [42]. In the past,
there are a number of studies in the literature that docu-
ment the application of this technique on the simple metal,
semiconductor and disorder system [43–46]. On the other
hand, the investigation of the properties of the strongly
correlated electrons within (γ, 2e) spectroscopy has not
received considerable attention and the research on this
issue has begun only recently in theoretical study of the
single- and the two-band Hubbard model [47]. On the ba-
sis of DMFT, it was argued that the pair of electrons is
useful to explore the physics of strongly correlated ma-
terial particularly in the vicinity of the Mott transition.
The application of this experimental technique to eluci-
date the physics of MI that is linked to the BI, therefore
constitutes a challenging task which is expected to provide
new insights beyond the single-particle level.

Our aim in the present work is to inspect the corre-
lated band insulator and the Mott insulator from the per-
spective of the particle-particle excitation/pair excitation
that is relevant to the (γ, 2e) spectroscopy. To this end, we
study the bilayer Hubbard model in the framework of the
DMFT and the quantum Monte Carlo (QMC) method.
The results are presented at both half-filling and upon
doping the BI and the MI. The organization of the paper
is as follows. We present in the next section the reference
model and the method of solution. This is then followed by
the presentation of the main results started at half-filling
and then doped insulating state. The last section contains
concluding remarks.

2 Model and theoretical methods

The Hamiltonian of the two-plane Hubbard model in the
second quantization reads

H = −t
∑

ijασ

c†iασcjασ − t′
∑

iασ

c†iασci,1−ασ + U
∑

iα

niα↑niα↓

(1)
where t, t′ denote the intra- and the inter-layer hopping
amplitudes while U is the on-site Coulomb interaction. In
the above notation, α and σ index the planes and spins
respectively. The DMFT can then be straightforwardly
applied to the Hamiltonian of equation (1), by noting that
each plane is mapped onto a single site while the rest of the
sites is subsumed into a Weiss field. The full-interacting
Green’s function in the Matsubara representation G(iωn)
can be expressed as follows

G(iωn) =
∑

k

1
(iωn + μ)I −H(k) − Σ(iωn)

. (2)
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Here, G is a 2×2 matrix of Green’s function defined on the
discrete set of Matsubara frequencies ωn = (2n + 1)πT,
and I denotes the corresponding identity matrix. The re-
lation between the interacting Green’s function and the
Weiss field Go(iωn) is provided by the Dyson equation us-
ing the self energy Σ(iωn), i.e.

G−1(iωn) = G−1
o (iωn) − Σ(iωn). (3)

In the DMFT, the information of the lattice enters
through H(k) that consists of diagonal elements for the in-
plane dynamics and off-diagonal for the inter-plane hop-
ping t′

H(k) =
(

ε(k) t′
t′ ε(k)

)
. (4)

This matrix can be easily diagonalized following the sym-
metry consideration such that the full interacting Green’s
function of equation (2) can be written in terms of bond-
ing and antibonding representation. The solution of the
local action of the Hamiltonian of equation (1) is then ob-
tained via Hirsch-Fye QMC by which the Green’s function
for the single- and the two-particle can be derived [48].
This approach is complemented by the maximum entropy
method (MEM) to obtain the real-frequency axis of the
single- and the two-particle spectral function [49].

For the purpose of deriving the particle-particle or dou-
blon spectral function, we consider in what follows the
two-particle Green’s function

χ(σ,σ′)
pp (q, iωm)=

∫
〈Tτ ck,σ′(τ)cq−k,σ(τ)c†q−p,σ(0)c†p,σ′(0)〉.

(5)
Here,

∫
is a short-hand notation for −∑

kp,σ

∫ β

0
dτeiωmτ

and ωm = 2mπ
β corresponds to the Matsubara frequency.

In addition, Tτ is an ordering operator for τ . The two-
particle propagator will be evaluated within two different
schemes namely within DMFT + QMC loop and with the
perturbation theory utilizing the ladder diagrams. In the
former case, DMFT + QMC provides the local version of
the particle-particle propagator reads

χpp(τ) =
〈
TτΔ†(τ)Δ(0)

〉
, (6)

with Δ = c↑c↓.
Within perturbation theory , the summation of ladder

diagrams leads to [47]

χpp(q, iωm) =
χ(q, iωm)

1 − Uχ(q, iωm)
(7)

where

χ(q, iωm) = − 1
β

∑

p,iνn

G(p, iνn)G(q − p, iωm − iνn) (8)

is the two-particle Green’s function expressed in terms of
the fully interacting single-particle Green’s function. Note
that in the above equation, νn (ωm) and β correspond to
the Matsubara frequencies of fermions (bosons) and the
inverse temperature, respectively.

The dynamical properties of two-particle propaga-
tor are then readily obtained from the imaginary part
of χpp(τ):

P (ω) = Im[χpp(q, ω + iδ)]. (9)

As mentioned above, within the DMFT + QMC scheme
this last step is performed via MEM by using the bosonic
kernel [49]. On the other hand, the evaluation of equa-
tion (7) can be done efficiently in terms of the single-
particle spectral function which will be provided by
DMFT results. In this respect, it is sufficient to express
equation (8) on the real axis representation as follows

χi(ω) = C0

∫ ∞

−∞
dν

∫ ∞

−∞
dεD(ε) [A(ε, ν)A(−ε, ω − ν)

× (1 − f(ν) − f(ω − ν)] (10)

where χi(ω) stands for the imaginary part of χ(iωm),
f(ω) is the Fermi distribution function and A(ε, ω) =
− 1

π Im
[

1
ω−ε−Σ(ω)

]
is the full interacting single-particle

spectral function. D(ε) is the free density of states while
C0 denotes the additional constant. The real part of equa-
tion (10) is readily obtained from the Kramers-Kronig re-
lation following the causality principle.

The dynamical properties of the two-particle excita-
tions are constrained by the sum rule

∫
P (ω)dω = d (11)

where d = 〈n↑n↓〉 corresponds to the double occupancy
evaluated directly within DMFT + QMC. A very useful
quantity to check the consistency of the spectra is the
dynamical counterpart of equation (11), Kp(Ω), reads

Kp(Ω) =
∫ Ω

0

P (ω)d(ω). (12)

In what follows, we present the results of the two-plane
Hubbard model in the paramagnetic phase by employing
the Bethe lattice density of states (DOS) which represents
the bare in-plane structure. Unless otherwise stated, the
bandwidth W = 1 is set as the unit energy and the tem-
perature is T/W = 0.0625.

3 Results and discussion

3.1 Half-filling

Before discussing the results of the two-particle excita-
tion, it is necessary to recall briefly the scenario for the
crossover from the Mott insulator to the correlated band
insulator from the perspective of the single-particle spec-
tral function as sketched in Figure 1. The presented results
corresponds to the imaginary part of the single-particle
Green’s function of both planes which are calculated at
half-filling, namely that the occupation of each plane is
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Fig. 1. (Color online) The single-particle spectral function
of the two-plane Hubbard model at half-filling as a function
of the Coulomb interaction but for fixed inter-plane hopping
t′/W = 0.25 (top panel). The results upon varying the inter-
plane hopping at constant Coulomb interaction are shown in
the middle (U/W = 2) and in the lower (U/W = 2.75) panel.
Here, the single-particle energy ω is measured relative to the
bandwidth W . The inset on each panel indicates the magnitude
of the double occupancy d as a function of the Coulomb inter-
action (top panel, 1 ≤ U/W ≤ 4) and as a function of the inter-
plane amplitude (middle and lower panels, 0.25 ≤ t′/W ≤ 1.5).

equal ñ1 = ñ2 = 1 and the average occupation n sat-
isfies the condition n = 1

N

∑
α ñα = 1 (N denotes the

number of the plane). At constant inter-plane hopping
t′/W = 0.25 but for various values of the Coulomb interac-
tion (see top panel), the spectra of the two-plane Hubbard
model clearly suggest a Mott metal insulator transition.
The quasiparticle peak at a weak coupling, the hallmark
of the Fermi liquid character collapses as a function of the
on-site interaction and the gap is formed at the Fermi level
when U/W is pronounced. In addition, one observes that
the double occupancy d = 〈n↑n↓〉 (inset of the top panel
of Fig. 1) diminishes as a function of U/W and the self
energy (see Fig. 2 for t′/W = 0.25) diverges as the system
enters the Mott insulating phase [1].

The gap opening which marks the insulating state can
be also realized by varying the inter-plane coupling t′/W
as shown in the middle and the lower panel of Figure 1.
At U/W = 2, the destruction of the quasiparticle peak is
readily observed upon the increase of the inter-layer cou-
pling which is then followed by the formation of the gap
beyond t′/W = 0.75. The somewhat similar situation is
also noticeable at U/W = 2.75, the onset of the Mott insu-
lating state. The enhancement of the inter-plane coupling
leads to the broadening of the gap and implies an increase
of the insulating behavior. Having examined the charac-
ter of the double occupancy (middle and bottom panel of
Fig. 1) and the self energy (see Fig. 2 at t′/W = 1.5),
it becomes clear that the underlying mechanism behind
the gap opening in the present case is different from those
generated by U/W . This is hinted at by the positive slope

0 5 10 15
iω

n

-1.5

-1

-0.5

0

Im
Σ(

iω
n)

t’/W=0.25
t’/W=1.5

Fig. 2. (Color online) The imaginary part of the single-particle
self-energy ImΣ on the Matsubara axis iωn at U/W = 2.75
calculated under the same condition as in Figure 1. Here, the
inter-plane coupling t′/W = 0.25 corresponds to the Mott in-
sulator while t′/W = 1.5 denotes the band insulator.

Fig. 3. (Color online) The same as in Figure 1. In the
present case however, we show the evolution of the single-
particle spectra in the anti-bonding (solid lines) and the bond-
ing bands (dashed lines) representation for various t′/W and
at U/W = 2.

of d with maximum value at t′/W = 1.5. In the self-energy
data, it is shown that at pronounced inter-plane hopping
the low energy part extrapolates to zero with a consid-
erably large spectral weight; an opposite character to the
one observed in the Mott insulator.

In order to understand the origin of the gap at en-
hanced t′/W , it is important to note that the bonding
and the antibonding bands become evident upon the col-
lapse of the quasiparticle peak. Examples of this represen-
tation are shown in Figure 3 at U/W = 2 where the bond-
ing/antibonding character becomes more and more visible
at higher t′/W which is also accompanied by a large split-
ting. We can therefore deduce that the gap at pronounced
t′/W is a direct consequence of the complete separation
of the bonding and the antibonding bands and signal for
the emergence of the band insulating (BI) character. Now,
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Fig. 4. (Color online)The frequency dependence of the two-
particle spectral function at half-filling. Various curves on the
left panel correspond to different values of the on-site Coulomb
interaction U/W at fixed t′/W = 0.25, whereas the right
panel explore the effect of the inter-plane-hopping amplitude at
U/W = 2. Here ω corresponds to the shared energy between
the two electrons relative to W . Insets show the integrated
spectral function, calculated according to equation (12).

since the BI, upon varying the inter-plane hopping, occurs
not only in the regime of weakly interacting but also at
higher U/W (see e.g. U/W = 2.75), one can directly in-
fer that there is a direct crossover from MI to BI. Our
DMFT results for the dynamical single-particle proper-
ties presented above support the previous findings within
the DMFT scheme that also indicate the absence of the
intermediate states between BI and MI [30–32].

Armed with the knowledge of the nature of crossover
from BI to MI in the bilayer Hubbard model, let us now
discuss the same issue via the lineshape of the pair ex-
citation. As is already pointed out earlier, we performed
two different formalisms in this respect on the basis of the
self-consistent DMFT loop and the combination of the
DMFT and the ladder approximation. We first consider
in what follows the results obtained in the former case as
depicted in Figure 4. Here ω corresponds to the shared
energy of the pair of electrons. The evolution of the pair
spectral function upon varying the Coulomb interaction
is displayed on the left panel of Figure 4 obtained with a
constant inter-plane hopping t′/W = 0.25. For weakly in-
teracting systems, the spectral function is characterized by
an intense peak and finite low-energy. Upon the increase
of electronic interaction, the spectral weight decays and
the peak shifts to higher energies (away from ω = 0). The
same trend is evident when U/W further increases in such
a way that there is a formation of gap with only small spec-
tral weight in the Mott insulating regime, U/W ≥ 2.75.
The meaning of this results is more readily apparent from
the integrated spectra, Kp(Ω), which is plotted in the in-
set of the left panel of Figure 4. Here, the spectral weight
of Kp(Ω) also diminishes as a function of U/W and resem-
bles the behavior of P (ω). By using the relation expressed
in equation (11) that links the integrated spectra and the

double occupancy, the suppression of Kp(Ω) amounts to
saying that the double occupancy becomes less probable
as the electronic correlation increases which is indeed ex-
pected in the Mott transition. The reduction of the spec-
tral weight together with the formation of the low energy
gap both at P (ω) and at Kp(ω) is an unequivocal signal
for the transition from a metallic Fermi-liquid onto a Mott
insulating phase and is considered as a remarkable feature
of the pair spectral function [47]. The essential ingredient
that drives the emergence of the Mott insulator is directly
embodied in the lineshape of the spectra and the whole
trends mimic that observed in the double occupancy data
depicted in the inset of the top panel of Figure 1.

Next, we vary the inter-plane hopping while maintain-
ing the magnitude of the Coulomb interaction. The results
for U/W = 2 are depicted in the right panel of Figure 4. At
weakly coupled plane t′/W = 0.25, the spectral function
is characterized by broad response with finite low energy
that signifies the metallic character. As inter-plane hop-
ping becomes stronger, the resonance shifts to upper ener-
gies which is also accompanied by the increase of the spec-
tral weight. The same trend is evident when the coupling
between the planes is enhanced up to t′/W=1.5 where one
observes sharp-peaked spectra with the largest low energy
gap. The weight of the integrated spectra Kp(Ω) as a func-
tion of the inter-plane hopping (inset of the right panel of
Fig. 4) also indicates the same trend. On the basis of the
sum-rule relation of equation (12), we can conclude that
for strongly coupled plane there is an increase of the prob-
ability of the double occupancy. We have seen above using
the static double occupancy that this behavior is under-
stood as a signal for the emergence of the band insulator.

In order to understand the reason why the pair spec-
tra as a function t′/W exhibit such a behavior, one re-
calls the fact that BI is characterized by either empty
or fully occupied bands. In the present context, this is
manifested in the formation of a more double occupan-
cies and/or empty states. Since this quantity is closely re-
lated to the spectral weight of the particle-particle spectra
(see Eq. (12)), the increase of double occupancy amounts
to enhancing the weight of the pair spectral function. It
is interesting to note that the rise of double occupancy
also explains the reason for the formation of a low energy
gap in the local spin susceptibility or equivalently for the
diminishing of the local moment in the BI regime. The
enhancement of the onsite pairs at the strongly coupled
plane suppresses the onsite fluctuations which in turn in-
hibits the formation of the paramagnon peak at the spin
susceptibility [30,32] .

In order to observe the continuous transition from MI
to BI in the pair spectral function we plot the calculated
spectra at U/W = 2.75 (left panel of Fig. 5). It can be
directly deduced that the MI state at t′/W = 0.25 can
evolve smoothly to the BI state at t′/W = 1.5. The spec-
tral weight of P (ω) as well as the integrated spectra in-
creases gradually as a function of t′/W and becomes max-
imum at strong inter-plane coupling. The pair spectral
function therefore provides support for the notion of direct
crossover from MI to BI which is in a good agreement with
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Fig. 5. (Color online) The same as in Figure 4 for various
values of the inter-plane coupling. The left panel corresponds
to U/W = 2.75 at T/W = 0.0625 (as in the previous fig-
ures) while the results in the right panel are obtained at lower
temperature T/W = 0.03125 and by setting the Coulomb in-
teraction at U/W = 2.
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Fig. 6. (Color online) P(ω) obtained within the same condition
as in Figure 4 for U/W = 2 and t′/W = 0.5. The x-points
correspond to the integrated spectral function within 12 non-
overlapping regions of width indicated by the horizontal error-
bar. The uncertainty of the integrated weight is denoted by the
vertical error-bar. Inset shows the full scale.

the single-particle spectral function. We note in passing
that the character of BI and MI persists at lower temper-
ature. As an example, we show the two-particle spectral
function at lower temperature T/W = 0.03125 for various
values of inter-plane hopping, at U/W = 2 (right panel of
Fig. 5). The evolution of the lineshape of P (ω) from weak
to stronger t′/W is relatively comparable to that in the
right panel of Figure 4 and BI at large inter-plane cou-
pling is evidenced by the wide gap and the pronounced
spectral weight.

Before discussing the results of the ladder approxima-
tion, a few remarks should be made on the quality of the
two-particle spectra presented above. Figure 6 depicts the
results of the pair spectral function at U/W = 2 and
t′/W = 0.5 together with the error estimates. We note
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Fig. 7. (Color online) The spectral function of the two-particle
excitations from the ladder approximation. The results are ob-
tained by using the same parameters set for Figure 4.

that errors on each point can not be evaluated due to the
fact that they are strongly correlated between different
points and also since the spectral function corresponds
to the probability on certain region [49]. What is shown
here is therefore the integrated spectral density on 12 non-
overlapping regions with its error bar. From the figure, it
can be concluded that MEM delivers precise spectral func-
tion for two-particle as indicated by the small uncertainty
of the integrated spectra.

In the next paragraphs, we discuss the pair spectral
function derived from the ladder approximation. The re-
sults are plotted in Figure 7. In the left panel, we show the
pair spectra upon the variation of the Coulomb interaction
under the same condition applied in Figure 4. At weakly
coupled plane, the spectral function lies close to ω/W = 0
which signifies the metallic character. The increase of in-
teraction amounts to shifting the spectral function onto
upper energies which eventually leads to the opening of
the gap. The emergence of the gap can be seen as direct
consequence of the convolution in equation (10) and is as-
sociated with those observed in the single-particle spectral
function. The ladder approximation, however, does not de-
liver a reasonable spectral weight dependency which even-
tually violates the two-particle sum rule. The increase of
Kp(Ω) (inset of Fig. 7) which implies the enhancement of
double occupancy, is in contrast to the fact expected for
the Mott transition.

The same is apparently true for the results upon vary-
ing t′/W at U/W = 2 as sketched in the right panel
of Figure 7. The ladder approximation delivers accurate
description only on the gap opening while it misses the
change of the spectral weight when the inter-layer cou-
pling increases. In order to understand the origin of this
inconsistency, one recalls the fact that the single and the
doublon are not calculated on an equal level of approxi-
mation and the self consistency is performed only on the
single-particle level. Both aspects are however necessary to
ensure that the correlation on the single-particle level will
be also recorded in the two-particle, and vice-versa [47].
We argue that this is fulfilled by the first scheme in which
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Fig. 8. (Color online) Double occupancy d as a function of the
occupation number n for various values of t′/W and U/W . In
the main panel, the effect of doping for MI and BI are shown
in the range of 1 ≤ n ≤ 1.25 where the former is indicated by
the solid lines while the latter by the dashed lines. The same
is also shown in the inset. Here, the results are obtained for all
possible ranges of doping at U/W = 2.75. Note that the lines
are the guide to the eyes.

the two-particle correlation function is obtained directly
within DMFT loop.

3.2 Effect of doping

Let us now consider the effect of doping on the bilayer
Hubbard model by adding the hole/particle on the Mott
and the band insulator. As before, both layers are set to
have an equal occupation number meaning that the dop-
ing is considered to be distributed uniformly. We note also
that, albeit away from half-filling our DMFT + QMC cal-
culations did not indicate any sign problems for all ranges
of doping. In what follows, we first examine the double
occupancy d as a function of the average occupation num-
ber n for various strengths of the Coulomb interaction
and the inter-plane hopping as depicted in Figure 8. Here,
the Mott and the band insulator at half filling are distin-
guished by the inter-layer hopping at t′/W = 0.25 and
at t′/W = 1.5 respectively. At low doping concentration,
for n ≤ 1.05, one readily sees that the double occupancy
remains pinned to the same value of the insulating state
which reflects the persistence of MI and BI. The doped
MI is shown to be quantitatively smaller than that of BI
owing to the fact that there is a pronounced correlation at
MI regime that hinders the formation of the double occu-
pancy. Beyond n ≈ 1.05, the double occupancy gradually
shows linear dependency on n with positive slope which
becomes more tangible as n goes away from half-filling.
This can be taken as a signal for the emergence of the
metallic behavior following the facts that the additional
particles have occupied the sites of the lattice and conse-
quently suppress the correlation. The fact that the doped
MI quantitatively smaller than that of doped BI is a signal
that the correlation of the former remains stronger than
that the latter. The emergence of this behavior can be un-
derstood by recalling that there is a continuous transition

0
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Fig. 9. (Color online) The single-particle spectral function of
the doped Mott insulator (left panel) and the doped correlated
band insulator (right panel) for a different number of the oc-
cupation n. The results are obtained at U/W = 2.75 where
the inter-plane coupling of doped MI and doped BI are set to
t′/W = 0.25 and t′/W = 1.5 respectively.

from the insulating to the metallic state in such a way
that the nature of correlation of BI or MI persists over
a wide range of doping. As the occupation number in-
creases n > 1.5, the effect of correlation diminishes which
is reflected in the overlapping of the doped BI and the
doped MI (see inset of Fig. 8).

The enhancement of metallic character upon doping
of MI and BI is also detectable in the lineshape of the
single-particle spectral function. The results are shown in
Figure 9 as a function of the occupation number n. It can
be immediately recognized that at low doping concentra-
tion n = 1.02, the spectral function of both doped MI and
doped BI consists of gap which signals the persistence of
the insulating character. When n increases, the metallic
behavior becomes more and more noticeable as demon-
strated by the emergence of the quasiparticle peak and
simultaneously by the degradation of the pseudo-gapped
feature. We note here that the doped BI and the doped
MI remain distinguishable for all calculated doping which
reflects the different nature of the correlation. In order
to address precisely the underlying physics behind these
metallic behavior, it is instructive to examine the imagi-
nary part of the self energy which is plotted in Figure 10.

The low energy part of the doped BI obviously differs
from that of the doped MI. In the former case, one di-
rectly observes a linear behavior at low frequencies which
can be extrapolated to zero. The metallic state upon dop-
ing BI therefore corresponds to a good metallic behavior
with well-defined quasiparticle. In contrast, the self-energy
of the doped Mott insulator at t′/W = 0.25 indicates fi-
nite value at iω → 0. This is clearly a signal for a metal-
lic system that violates the Fermi liquid character. The
emergence of two metallic character at high doping con-
centration is thus evident which is related to the strength
of the electronic correlation.

To further substantiate our arguments, we supplement
the above results with the dynamical properties of the
two-particle excitation. We first examine the imaginary
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Fig. 10. (Color online) The imaginary part of the self energy
on the Matsubara axis iω for n = 1.10 at fixed U/W = 2.75.
The same as in Figure 9, the Mott and the band insulator
upon doping are identified from the magnitude of the inter-
plane hopping t′/W at 0.25 and at 1.5 respectively.
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Fig. 11. (Color online) The dynamical spin susceptibility
χ′′(ω) of the two-plane Hubbard model away from half-filling.
The doped MI corresponds to t′/W = 0.25 (left panel) while
the doped BI is obtained at t′/W = 1.5 (right panel). The
Coulomb interaction is maintained at U/W = 2.75.

part of the dynamical spin susceptibility χ
′′
(ω) of doped

MI and doped BI in the left and in the right panels of
Figure 11 respectively. We note that the results are cal-
culated under the same parameter range as in Figure 9
and they are derived from the spin-spin correlation func-
tion χ(τ) = 〈TτSz(τ)Sz(0)〉. The different nature of the
doped BI and the doped MI is readily observed at low dop-
ing and even more so for the overdoped case. One of the
most conspicuous feature is the resonance peak which is
found to occur dominantly at low energy (near ω → 0) for
doped MI and at high energy for doped BI (note also the
gap at low energy). The former is a well-known low-energy
excitations that reflect the pronounced correlation at the
verge of the Mott insulator regime while the latter is the
signature of the suppression of local moment in the band

-20
ω/W

0

0.2

0.4

P(
ω

)

-20
ω/W

-4-20
Ω

0

0.05

K
p(Ω

)

n=1.02
n=1.06
n=1.10
n=1.15
n=1.20

-4-20
Ω

0

0.05

K
p(Ω

)

Fig. 12. (Color online) The pair spectral function P (ω) as
a function of the total occupation number n at fixed U/W =
2.75. While the left panel indicates the evolution of the spectral
function upon doping the Mott insulating state at t′/W =
0.25, the right panel displays the results of the correlated band
insulating state at t′/W = 1.5. Insets depict the integrated
spectral function Kp(Ω).

insulating phase as we already pointed out above. The
spectral weight of the spin susceptibility then decreases
as the doping is further enhanced. For doped BI, it can
be seen that in addition to this, the spin gap becomes less
pronounced and completely disappears at large doping.
It is remarkable to note that the low-energy resonance of
doped MI remains substantial up to n = 1.20, while the
resonance of doped BI for n ≥ 1.10 always lies at higher
energies. The emergence of this character is strongly re-
lated to the nature of correlation in the doped BI and
the doped MI which also explains the reason behind the
separation of metallic state up to n ≈ 1.50.

In order to elaborate on the above results, we discuss
in what follows the pair spectral function upon doping
the insulating state under the same condition as in Fig-
ure 11. The results are depicted in Figure 12 where the
left and the right panels denote the results for the doped
MI and the doped BI respectively. The persistence of the
insulating character is directly noticed upon examining
the weight and the existence of the gap in the spectral
function for n = 1.02. Here, the doped MI is charac-
terized by the smallest spectral weight with considerably
wide gap while doped BI is noted by an enhanced peak
at higher energies. As doping increases, the adjustment
of the lineshape of the pair spectra is evident where for
doped MI, one observes the gradual enhancement of the
weight and eventually reaches maximum in the overdoped
regime at n = 1.20. The result of the integrated spectral
weight Kp(Ω) resembles this behavior (see the inset of
Fig. 12). The enhancement of Kp(Ω) clearly implies for
the increase of double occupancy which is induced by the
addition of particles/holes. The results of integrated spec-
tra are therefore corroborate with the static properties of
Figure 8. It is interesting that the spectral weight of BI

http://www.epj.org


Eur. Phys. J. B (2012) 85: 50 Page 9 of 10

for all doping concentration is quantitatively larger than
that of MI which implies that the formation of double oc-
cupancy in the latter case is less probable. This can be
understood by recalling the fact that the local correla-
tions remain pronounced at doped MI and the formation
of double occupancy requires larger energy to overcome
the local Coulomb barrier. The two-particle spectral func-
tion therefore provides another evidence for the different
nature of the metallic character upon doping BI and MI
below n = 1.50 which can be directly deduced from its
spectral weight.

Before closing this section, let us now comment on
whether or not the pair spectral function offers a reason-
able route to assess the crossover from BI to MI. As is
already seen, the effects induced by the local correlation,
the inter-plane hopping and the doping are well-captured
in the pair spectral function. At half-filling, the transition
from metallic to BI, metallic to MI and from BI to MI
are also realized in the spectral function of the doublon.
Beyond this, it has been shown above that the pair ex-
citation offers a straightforward way for identifying the
emergence of the MI and the correlated BI as compared
to the single-particle spectra. MI is characterized by a re-
duction of the spectral weight while the opposite is true
for BI. In addition, the pair spectral function also provides
direct information behind the underlying mechanism of BI
and MI which is based on the probability of double occu-
pancy. The inherent properties of the two-particle excita-
tion are therefore, in general, useful to determine whether
the transition belongs to the Mott type or to the other
one.

We argue that the results presented above can be ver-
ified experimentally by means of the two-particle spec-
troscopy under the condition that the angles of the ejected
particles and their energies are kept constant while the
photon energy is varied [47]. This is necessary in order
to obtain direct relation between the pair excitation P (ω)
and the measured intensity in (γ, 2e) spectroscopy. On
the basis of the above observation, one can expect that
the probability to eject a pair of particles will be higher in
the correlated band insulator phase than that in the Mott
insulator.

4 Conclusion

In summary, we have described theoretically the physics of
BI and MI from the perspective of the two-particle spec-
tral function that is related to the (γ, 2e) spectroscopy. We
solved the dynamical mean field theory equations for the
two-plane Hubbard model at finite temperature by means
of the quantum monte carlo method. At half-filling, we
first explored the single-particle spectral function that ex-
hibits a continuous crossover from the Mott insulating to
the correlated band insulating phase, in line with previous
studies. We then calculated the main quantity of interest,
the pair spectral function that provides not only the ev-
idence for the absence of the intervening states between
BI and MI but also the underlying mechanism behind the
emergence of both phases. At the vicinity of MI, the weight

of the pair spectral function is strongly decreased as a
function of local interaction which reflects the diminishing
of the double occupancy or equivalently the suppression of
the local charge fluctuation. The opposite is true for the
correlated band insulating phase.

Away from half-filling, the correlated BI and the MI
phases are found to persist at low doping concentration.
The metallic behavior then gradually emerges as doping
increases. It is shown that, while the doped MI and the
doped BI remain distinguishable up to n ≈ 1.5 they be-
come comparable at considerably large doping. The na-
ture of the metallic state for doped MI and for doped BI
is discussed in detail on the basis of the results of the
self-energy, the spin susceptibility and the pair spectral
function. The dynamical spin susceptibility shows that
the discrepancy between doped MI and doped BI is re-
lated to the behavior of the low-energy spin fluctuations
which reflects the different strength of the correlation. In
the pair spectral function, it is further shown that it is the
probability of the formation of the double occupancy that
strongly influences the metallic behavior of doped MI and
doped BI.

This work is supported by the DFG through SFB 762. We
thank Prof. Kirschner and F. Schumann for discussions on the
(γ, 2e) spectroscopy.
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