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than the bcc counterparts. In addition, the spin-wave stiffness constants of bcc-Ni and bcc-permalloy are
predicted.
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I. INTRODUCTION

The magnetism of the artificially prepared body-centered-
cubic �bcc� phase of Ni has for long been an interesting topic
for experimentalists.1–4 Recently bcc-Ni was successfully
prepared as a thin film on a GaAs�001� substrate using mo-
lecular beam epitaxy at 170 K, and its magnetic properties
were analyzed in some detail.5 The magnetic moments of bcc
and fcc-Ni were determined to be 0.52�B and 0.6�B, respec-
tively. The Curie temperature of the former �456 K� was also
found to be significantly lower than the latter �627 K�. The
bcc phase of permalloy �Py� has also been prepared using the
same approach.6 The bcc phase again has a significant lower
Curie temperature �553 K� than its fcc counterpart �872 K�.
Here the magnetic moments are almost the same �1.03�B for
bcc and 1.07�B for fcc�. As yet no theoretical explanation for
the different Curie temperatures has been offered.

First-principles calculations of the magnetic moments
have yielded the same values as found in experiments �
0.53�B and 1.11�B for bcc-Ni �Ref. 7� and bcc-Py,6 respec-
tively�. However, so far no systematic study of the finite-
temperature magnetism of bcc-Ni �Ref. 8� and bcc-Py was
carried out. Investigations in this field should provide addi-
tional insights to the experimentally observed trend. In addi-
tion, due to the inadequacy of the adiabatic approximation,
fcc-Ni is a well known system for the existing first-principles
theories have difficulties in obtaining the correct Curie
temperature.9 One of us has proposed renormalized random-
phase approximation �RPA� in order to improve the quanti-
tative agreement with the experiment.10 The calculation of
the Curie temperature of the prepared bcc-Ni represents an
interesting test for this approach. Furthermore, there are few
first-principles calculations of the finite-temperature magne-
tism of disordered alloys because of the subtlety of correctly
treating the disordering effort. Given the great interest in

diluted magnetic semiconductors �DMSs� this is an impor-
tant problem.11 Here a developed theory is used to investi-
gate the disordered Ni-based magnetic alloys such as bcc-
and fcc-permalloy. Finally, the spin-wave stiffness constants
of both phases of Ni and permalloy are estimated from the
calculated exchange parameters. The experimental verifica-
tion of these predictions would lend weight to our approach.

II. THEORETICAL METHODS

First-principles calculations for the thermodynamical
properties of magnetic systems are usually carried out in a
two-step approach: �1� ab initio calculations of the total en-
ergies of the ground state and the low-lying excitations are
used to determine the exchange integrals; �2� this informa-
tion is used to construct the partition function from which the
finite-temperature properties of the system, such as the Curie
temperature, are obtained. The classical Heisenberg Hamil-
tonian is defined as

Heff = − �
i,j

Jijei · e j , �1�

where i is the site index, and ei is the unit vector pointing
along the direction of the local magnetic moment at the site
i. The exchange integral Jij is between magnetic atoms at
sites i and j. Positive �negative� values characterize ferro-
magnetic �antiferromagnetic� coupling. In the case of per-

malloy, there are three kinds of exchange integrals Ji,j
Q,Q�

�Q ,Q�=Ni,Fe� corresponding to the different combinations
of magnetic atoms in an alloy.

As a first step, two different first-principles methods are
adopted to determine the exchange parameters for bcc- and
fcc-Ni: �i� The supercell approach with full-potential linear
augmented plane wave method.12,13 In the framework of the
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fixed-spin moment approach13,14 the exchange parameters
are deduced by fitting total energies of frozen collinear mag-
netic states of suitably chosen supercells. Here we have em-
ployed various such spin configurations in different magnetic
supercells consisting of six atomic layers in one period along
high-symmetry directions such as �001�,�110�, and �111�. As
the fitting procedure is not unique, the exchange integrals
vary depending on the choice of the spin configurations, de-
spite the calculated Curie temperatures TC are very similar.
The best choice for the set of magnetic configurations for fcc
structure is discussed in Ref. 14. For the bcc case, we have
tested different sets of configurations and found that TC is
stable with an uncertainty of 30 K, therefore demonstrating
an acceptable stability of the method with respect to the
choice of the supercell and its size. �ii� The Green’s function
formalism using the tight-binding linear muffin-tin orbital
�TB-LMTO� method.15,16 The exchange integrals are deter-
mined from the energy changes corresponding to small rigid
rotations of spins on the lattice in the framework of the adia-
batic approximation.9

The exchange interactions of bcc- and fcc-permalloy will
be estimated only with the Green’s function method.22 The
Green’s function approach has two important advantages for
the present study. First, the theory is a simple generalization
�an “inverse-susceptibility” approach10,17� which goes be-
yond the adiabatic approximation and significantly improves
the calculated Curie temperatures for systems with nonrigid
magnetic moments.17 The exchange interactions in Eq. �1� do
not contain contributions from constraining magnetic fields
which appear as Lagrange multipliers in the constrained
density-functional theory. It is perhaps justified to neglect
such effects for systems with large local magnetic moments
but not for the case for fcc- and bcc-Ni including Ni-rich
magnetic alloys. As a consequence of nonzero constraining
fields, the exchange integrals get renormalized and this is
reflected in the calculated Curie temperatures. Here we use
the method developed in Ref. 10 which can be conveniently
combined with the RPA statistical treatment of spin fluctua-
tions �the renormalized RPA approach�. The approach has
already been applied to fcc-Ni successfully.10 However, com-
pletely satisfactory theory of the Curie temperature of mag-
netic systems, which takes into account both transversal and
longitudinal spin fluctuations on equal footing, is still an out-
standing challenge. The second advantage of the Green’s
function approach is that it can be also generalized to disor-
dered alloys18 in the framework of the coherent potential
approximation �CPA�.19,20 The evaluation of the exchange

integrals Ji,j
Q,Q� for disordered alloys is significantly simplified

by using the vertex-cancellation theorem21 which allows us
to neglect disorder-induced vertex corrections. The validity
of this approximation has been tested for disordered mag-
netic transition metal alloys as well as diluted magnetic
semiconductors �see recent review16 for more details�.

The thermodynamical property study of disordered alloys
represents a complicated problem in the field of first-
principles calculations. The simplest approach is to use the
averaged lattice model or the virtual-crystal approximation
for DMS alloys.23 In the framework of the averaged lattice
model the disordered alloy A1−xBx is treated as a crystal with
nonrandom effective exchange interactions.

Jij
ef f = �1 − x�2Jij

AA + x�1 − x��Jij
AB + Jij

BA� + x2Jij
BB. �2�

Consequently, we can directly use the mean-field approxima-
tion �MFA� as well as the renormalized RPA to estimate the
Curie temperatures for crystals15 and alloys using this effec-
tive interaction. Since this neglects magnetic percolation ef-
fects, the validity of these approximations has been ques-
tioned in recent studies11 of DMSs. These effects are indeed
relevant for diluted alloys with low concentrations of mag-
netic atoms in nonmagnetic hosts which have spatially well-
localized exchange interactions. However, the effect of dilu-
tion is not important in permalloy with Ni concentrations
well above the percolation limit. In addition, contrary to the
DMSs, all sites of the alloys studied here are occupied by
magnetic atoms albeit with different local moments. Finally,
it was demonstrated recently that the averaged lattice model
is quite successful in nondiluted disordered Ni2−x MnSb Heu-
sler alloys.24This supports the use of the averaged lattice
model for the study of thermodynamic properties of fcc- and
bcc-permalloy.

In order to lead credibility to the results, we used several
different methods to determine the Curie temperatures for Ni
and permalloy in both phases: �1� Monte Carlo simulation,
�2� the MFA, �3� the RPA,15 and �4� the renormalized
random-phase approximation.10,17

The Curie temperature can be estimated from the peak in
the magnetic susceptibility obtained in the Monte Carlo
simulations of the classical Heisenberg model.25 This is a
conventional approach giving a reliable estimation of the Cu-
rie temperature of the systems described by the Heisenberg
model. It is known15,16 that the Curie temperatures obtained
by Monte Carlo calculations and the RPA approach are in
reasonable agreement for both pure and disordered systems.

However, the simplest way to obtain the Curie tempera-
ture for the Heisenberg model is to use the MFA,15,16 i.e.,
from

kBTc
MFA =

2

3 �
i�0

J0i. �3�

An improved description of the finite-temperature proper-
ties is provided by the RPA and TC is given by the following
expression:

�kBTc
RPA�−1 =

3

2

1

N
�
q

�J�0� − J�q��−1. �4�

Here N denotes the number of q vectors used in the sum over
the corresponding Brillouin zone, while J�q� are the Fourier
transformed real-space exchange integrals Jij. It can be
shown that Tc

RPA is smaller than Tc
MFA.15,16 Finally, the Curie

temperature estimated in the framework of the renormalized
RPA approach is10

�kBT̃c
RPA�−1 = �kBTc

RPA�−1 −
6

M�
, �5�

which implies that the renormalized Curie temperature is
higher compared to the bare value. Here M is the calculated
local magnetic moment of the Ni atoms and � is the ex-
change splitting estimated from the difference Cd

↑−Cd
↓ of the
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potential parameters Cd
�. In the case of disordered permalloy

we used the same estimate �5�, but the exchange interaction
�2� has to be used. For the magnetic moment M and the
effective exchange splitting � it is important to note that in
Eq. �5� we used virtual-crystal averages, namely, X= �1
−x�XA+xXB �X=M, or ��, for the case of random alloy. Such
a choice seems to be obvious for the averaged lattice model,
consistent with Eq. �2�, although to date we are not able to
give a better justification. The corresponding theory of renor-
malized RPA for random alloys is still to be developed.

In the statistical study we have used 231 and 246 shells
for fcc-, bcc-Ni, and permalloy which we have tested for
convergence with respect to the number of shells. The esti-
mated computational error corresponding to the limited num-
ber of shells used in calculations is below �5 K.

The spin-wave stiffness constant D is given by the curva-
ture of the spin-wave dispersion at q=0. In terms of ex-
change integrals it can be defined directly in real space
as9,15,16

D =
2

3M
�
i�0

J0iR0i
2 , �6�

where R0i is the distance between lattice sites i and j. Al-
though the calculation of D is straightforward, serious diffi-
culties arise due to the fact that the lattice sum is not abso-
lutely convergent and exhibits undamped oscillations with
respect to the number of shells included in the summation.15

These oscillations are suppressed by the introduction of ex-
ponentially damped terms in Eq. �6�. The lattice sum is ab-
solutely convergent and the spin-wave stiffness constant D
can be estimated by a quadratic least-square interpolation
method from the set of calculated values. For technical de-
tails concerning this method we refer the reader to Ref. 15.
We also used the averaged lattice model for the evaluation of
the spin-wave stiffness constants of fcc- and bcc-permalloy.

III. RESULTS AND DISCUSSION

For fcc-Ni and fcc-permalloy the lattice constants were
chosen to be 3.52 and 3.55 Å, while for bcc systems the
lattice constant corresponds to the experimental values �a
=2.825 Å�. In the present work the composition of the per-
malloy is Ni0.75Fe0.25. Calculated local magnetic moments of
fcc- and bcc-Ni �Mfcc=0.63�B and Mbcc=0.53�B� agree well
with experimental values �Mfcc=0.60�B and Mfcc=0.52�B�
and also fit well with other recent theoretical studies.7,8

Exchange integrals of bcc- and fcc-Ni, for the supercell
and Green’s function method, are summarized in Figs. 1 and
2. It should be kept in mind that the supercell method only
allows us to extract a limited set of exchange integrals in
contrast with the Green’s function approach. From this point
of view there is a reasonable agreement of calculated ex-
change integrals for both approaches. The exchange integrals
JNi,Ni dominate the first nearest-neighbor interactions in both
phases. These are more localized in real space for fcc-Ni
than bcc-Ni �see Fig. 2�. This can be understood qualitatively
with the help of the corresponding density of states in Fig. 3.
The Fermi level in the gap of majority or minority states

leads to exponentially damped exchange integrals.15,24 The
density of states in fcc-Ni, at the Fermi level, for majority
spins is not zero but very low �sp states�, while in the bcc
phase the Fermi level is located in the d band for both spin
orientations. This is related to the fact that fcc-Ni is a strong
ferromagnet while bcc-Ni is a weak ferromagnet similar to
bcc-Fe. Despite the fact that the values of exchange integrals
seem to be comparable for both bcc- and fcc-Ni, a higher TC
for fcc-Ni can be expected since the coordination number is
larger than that of the bcc lattice. This is obvious from a
simple mean-field estimation of the Curie temperature and it
has been confirmed by calculations going beyond the MFA
�see Table I�.

Calculated Curie temperatures for fcc- and bcc-Ni are
summarized in Table I. As we have already mentioned Ni
represents a difficult case in both phases due to its small and
soft magnetic moment which violates the adiabatic
approximation.10,17 Furthermore, correlation effects and
Stoner excitations have been neglected. As it was demon-

FIG. 1. Exchange interactions for fcc- and bcc-Ni as a function
of the distance between two spins obtained by fitting to the frozen
collinear spin configurations.
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FIG. 2. Exchange interactions of fcc- and bcc-Ni as a function
of the distance between two spins calculated in the framework of
the TB-LMTO method.
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strated by Bruno10 for fcc-Ni, the violation of the adiabatic
approximation seems to be of central importance. We have
therefore used the renormalized RPA theory, in addition to
the conventional MFA, RPA, and Monte Carlo �MC� esti-
mates of TC, to bring the calculated Curie temperatures into a
better quantitative agreement with the experimental data26

�see Table I�. For both phases the MFA, conventional RPA,
as well as MC approaches all underestimate TC. Among
these three methods, the MFA provides a seemingly better
agreement with the experiment despite the fact that the MFA
is a better theory for high Curie temperatures.

While the agreement between calculated TC for fcc-Ni
and the experimental value is quite good in the framework of
the renormalized RPA, the calculated TC for bcc-Ni is still
underestimated by about 50%. Ni is a narrow band transition
metal that implies correlation effects are important. We have
addressed this question by applying the LDA+U method27 in
the framework of the Green’s function approach. We used
the Hubbard parameters U=0.16 Ry and J=0.06 Ry. The
calculated magnetic moment of bcc-Ni is only slightly en-
hanced from 0.53�B to 0.59�B. The Curie temperature TC
increases substantially from 286 to about 380 K. While this
is still smaller than the experimental TC, the agreement is
now reasonable. On the other hand, the fcc-Ni seems to be
less sensitive to correlation effects. For the same U and J
parameters as for bcc-Ni, the magnetic moment of fcc-Ni

only increases from 0.631�B to 0.688�B. The Curie tempera-
ture of 686 K increases weakly to 690 K in the remormal-
ized RPA approach. The present calculations can only be
taken as indication of the influence of electron correlations
on TC. However, more systematic studies are needed. Also
Stoner excitations have been neglected and these could play
a different role in fcc- and bcc-Ni crystals and therefore need
to be investigated in more detail. Finally, we have also ne-
glected possible tetragonal deformations of the lattice in the
growth direction of Ni films on GaAs substrate. This only
slightly modifies the calculated values of the Curie
temperature.8

A. fcc- and bcc-permalloy

The calculated averaged magnetic moments of fcc- and
bcc-Py �Mfcc=1.12�B and Mbcc=1.09�B� agree well with the
experimental values �Mfcc

expt=1.07�0.09�B and Mbcc
expt

=1.03�0.09�B�.6 Theoretical values obtained by CPA calcu-
lation also agree well with the values obtained by the super-
cell approach �Mfcc=1.14�B and Mbcc=1.1�B�.6 The Calcu-
lated local moments of Ni atoms in fcc-Py and bcc-Py are
almost the same as in corresponding pure crystals �Mfcc

Ni

=0.63�B and Mbcc
Ni =0.57�B�. The local moments on “impu-

rity” Fe atoms in bcc-Py are enhanced compared with the
bulk bcc-Fe �Mbcc

Fe =2.67�B and Mbulk
Fe =2.15�B� despite the

fact that the Py-lattice constant is slightly compressed com-
pared with bulk Fe. This reflects the filling of the partially
occupied majority Fe bands by Ni electrons in the permalloy
composition. The Fe-majority states are already filled �see
Fig. 4�b��. This leads to an enhanced Fe moment.

The total and local densities of states �DOSs� in fcc and
bcc phases of Py are shown in Figs. 4�a� and 4�b�. The be-
havior of corresponding Ni- and Fe-resolved local DOSs can
be understood from the alloy level data shown in Table II.
We identify atomic levels with values of the corresponding
potential parameters Cd

Q,�, where Q=Ni, Fe, and �= ↑ ,↓.19

In addition, values for the nonmagnetic alloys are given for
comparison. Three relevant facts have to be mentioned: �i�
Nonmagnetic Fe d levels are higher than corresponding Ni
levels; �ii� because of larger local moments, Fe d-atomic lev-
els split more than Ni levels and �iii� Fe bandwidths are
larger than Ni bandwidths. The above mentioned features are
common for both fcc- and bcc-Py. An immediate conse-
quence of these facts is a significantly smaller difference
between majority atomic levels and minority ones. As a re-
sult, there is a strong level disorder for minority spin elec-
trons but only a weak disorder for majority ones, in particu-
lar, for fcc-permalloy. We note that the local DOS is
dominated by d bands of canonical shape which differ only
in their widths and hybridization with sp electrons. As a
consequence, for majority bands the component local DOSs
are very similar with negligible disorder and they resemble
the DOS of the corresponding host Ni metal �compare Fig.
3�. Although Fe bands are a little broader, the widths of Fe
and Ni local DOSs are quite similar especially for fcc-Py.
This is due to the fact that Fe atoms are impurities in random
alloy and therefore have a reduced bandwidths.19 The situa-
tion is completely different for minority spin states which
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FIG. 3. Spin-polarized density of states for fcc- and bcc-Ni cal-
culated in the framework of the TB-LMTO method.

TABLE I. Curie temperatures TC �in K� of fcc- and bcc-Ni ob-
tained by different methods: supercell-Monte Carlo method �TC

MC�
and the Green’s function approach in the framework of the mean-
field approximation �TC

MFA�, the random-phase approximation
�TC

RPA�, and in the renormalized random-phase approximation

�T̃C
RPA� �see text for definitions�. The experimental values �TC

expt� are
also shown.

System TC
MC TC

MFA TC
RPA T̃C

RPA TC
expt

bcc-Ni 115 250 190 286 456

fcc-Ni 300 413 369 686 627
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have a strong level disorder. In this case Fe and Ni states are
clearly separated in energy and their shapes are also modified
by disorder, especially for the impurity �Fe� constituent. The
minority spin levels are also higher in energy than majority
ones, which are bound by alloy potential more weakly. As a
result, minority bandwidths are larger than majority ones.
Such a different behavior of majority and minority spin
states in magnetic transition metal alloys was also found in
the other systems �see, e.g., Ref. 28�.

The effect of disorder can be very different in different
energy regions. To illustrate this more quantitatively, we
have evaluated the residual resistivity using the Kubo-
Greenwood formula implemented in the framework of the

TB-LMTO method29 which can serve as a simple probe of
the strength of impurity scattering at the Fermi energy. The
Fermi energy also plays an important role in the determina-
tion of exchange integrals. The calculated residual resistivi-
ties of fcc- and bcc-Py �0.69 and 0.05 �� cm� clearly illus-
trate the weaker impurity scattering in bcc-Py at the Fermi
energy. We estimate the absence of the disorder-induced ver-
tex corrections lowers the calculated resistivities by about
10% in both cases. However, the calculated resistivities
solely illustrate the different scattering strengths of Fe impu-
rities in fcc- and bcc-Py at the Fermi energy. The spin-orbit
coupling, neglected here, couples weak-scattering majority
channels with the strong-scattering minority channels and
leads to a significantly larger resistivity.30

Calculated exchange interactions in fcc- and bcc-Py are
shown in Figs. 5�a� and 5�b�. Exchange interactions between
pairs of Ni atoms in fcc-Py are almost the same as in the pure
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FIG. 4. Spin-polarized density of states calculated in the frame-
work of the TB-LMTO method: �a� fcc-permalloy for which both
total and species-resolved �Ni and Fe� local densities of states are
shown; �b� the same as in �a� but for bcc-permalloy.

TABLE II. Alloy level data of the ferromagnetic bcc- and fcc-permalloy. Atomic levels �Q=Ni,Fe� are
indentified with potential parameters Cd

Q,� ��= ↑ , ↓ � of the LMTO theory. Corresponding values for non-
magnetic case, Cd

Q,�, are also shown. All values are in Ry.

System Cd
Ni Cd

Fe Cd
Ni,↑ Cd

Fe,↑ Cd
Ni,↓ Cd

Fe,↓

fcc Py −0.185 −0.143 −0.192 −0.212 −0.145 −0.034

bcc Py −0.180 −0.142 −0.194 −0.236 −0.149 −0.050
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FIG. 5. Exchange interactions JQQ� �Q ,Q�=Ni,Fe� as a func-
tion of the distance between two spins calculated in the framework
of the TB-LMTO method: �a� fcc-permalloy for which the effective
interactions Jef f, Eq. �2�, are also shown; �b� the same as in �a� but
for bcc-permalloy. Note that the JFe,Fe interactions are reduced by a
factor of 2.
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fcc-Ni �compare Fig. 2�. The effective interactions in fcc-Py
are enhanced in comparison with the interactions in pure
fcc-Ni due to Fe-Ni interactions. The Fe-Fe exchange inter-
actions are larger, as expected, but their weight in the effec-
tive interaction is rather small in the Ni-rich Fe0.25Ni0.75 dis-
ordered alloy. The enhancement is particularly large for the
first nearest-neighbor interactions which dominate the MFA
Curie temperature. The dependence of the effective exchange
interactions on the distance has almost the same behavior as
in the pure fcc-Ni. The increase of the effective exchange
interactions is caused by the alloying with Fe atoms and is a
direct reason for the higher Curie temperature of fcc-Py. The
larger spatial extent of the Fe-Fe pair interactions compared
with the Fe-Ni and Ni-Ni and their oscillatory character both
relate to the partially filled minority states �see Fig. 4�a��.

The character of effective exchange interactions in bcc-Py
is similar to those in the pure bcc-Ni. Again the exchange
interactions are also enhanced by the presence of Fe atoms.
The Fe-Fe pair interaction in bcc-Py dominates and is similar
in character to that of pure bcc-Fe.15 The value is actually
larger than in pure bcc-Fe due to enhanced local magnetic
moments �larger exchange splitting� of Fe atoms in bcc-Py.
Despite the fact that the effective exchange interactions in
bcc-Py are comparable to those in fcc-Py, bcc-Py has a lower
Curie temperature because of its fewer first nearest neigh-
bors.

The calculated Curie temperatures of fcc- and bcc-Py in
the framework of the averaged lattice model under different
approximations are summarized in Table III. It is obvious
that only the renormalized RPA method provides values in
fair agreement with experiment. It seems that the averaged
lattice model represents an acceptable approximation for Ni-
rich permalloy. While absolute values of Ni and permalloy
Curie temperatures match with the experiment, their relative
differences are less satisfactorily. The reason is that the
bcc-Ni Curie temperature is underestimated in the present
calculations while Curie temperature for bcc-Py is overesti-
mated. For fcc-Ni and fcc-Py the situation is similar but re-
versed. Although there is no clear explanation at the moment,
it is possible that the averaged lattice model for disordered
alloys underestimates the effect of large exchange interac-
tions between Fe atoms in bcc-Py. In addition, the renormal-
ized RPA can influence the calculated TC in fcc and bcc
phases differently.

One can also speculate about the concentration depen-
dence of the Curie temperature for bcc-Ni1−xFex alloys. A

relatively high Curie temperature close to that of the pure
bcc-Fe �1040 K� and it can be expected to increase mono-
tonically with the Fe concentration. The case studied here
�x=0.25� confirms this trend. For the fcc counterpart, the
situation is known: There is a well-pronounced maximum of
the Curie temperature at about x=0.25. For the Fe-rich end
the situation is quite complicated since the ferromagnetic fcc
phase exists only up to about x�0.8.

B. Spin-wave stiffness constants

The calculated spin-wave stiffness constants together with
available experimental data are summarized in Table IV. The
estimated error bars correspond to various sets of damping
parameters � used for the least-square fit as described above.
Experimental results are known only for fcc-Ni �Refs. 31 and
32� and fcc-permalloy.32 In general, the values of the spin-
wave stiffness constant are strongly reduced with the
temperature31 and we therefore compare theoretical estimates
with available low-temperature measurements.

Calculated spin-wave stiffness constant for fcc-Ni agree
well with a related approach in which it is determined by the
second derivative of the calculated spin-wave spectrum.33

However, the theoretical value is overestimated compared
with the experiment. On the other hand, the reduction of the
spin-wave stiffness constant due to alloying Ni with Fe at-
oms is reproduced quite well. Although the spin-stiffness
constant of fcc-Py is also overestimated compared with the
experiment, the ratio D�Ni� :D�Py� is calculated correctly.

There are no experimental data for the spin-wave stiffness
D of bcc-Ni and bcc-permalloy. The calculated spin-wave
stiffness of bcc-Ni is comparable in its size to that of bcc-Fe
�250–280 meV Å2�. but significantly smaller than that of
fcc-Ni which is due to its reduced number of exchange inte-
grals at a given distance.15,33 The same qualitative explana-
tion is also valid for TC but here the effect is stronger due to
a factor Rij

2 in Eq. �6�. The evaluation of the spin-stiffness
constant is a more delicate problem than that of the Curie
temperature and the results are also more sensitive with re-
garding to the details of the calculations. The spin-wave stiff-
ness constant of bcc-Py is larger than that of bcc-Ni. We have
shown that the effect of electron correlations can be impor-
tant for bcc-Ni, so D was also evaluated in the framework of
the LDA+U approach. While the spin-wave stiffness con-
stant of fcc-Ni is influenced by correlations weakly
�690�20 meV Å2�. the corresponding change for bcc-Ni is
large �350�15 meV Å2�. It would be interesting to obtain
the values of D from experiment for the bcc phases and
compare them with the theoretically present predictions.

TABLE III. Curie temperatures TC �in K� of fcc- and bcc-
permalloy in the averaged lattice approximation obtained by differ-
ent methods in the framework of the Green’s function approach: the
mean-field approximation �TC

MFA�, the random-phase approximation

�TC
RPA�, and the renormalized random-phase approximation �T̃C

RPA�
�see text for their definitions�. The experimental values �TC

expt� are
also shown, two different ones for fcc-permalloy.

System TC
MFA TC

RPA T̃C
RPA TC

expt

bcc-Py 605 466 586 553

fcc-Py 723 608 812 871�858�

TABLE IV. Calculated spin-wave stiffness constants Dth �in
meV Å2� and estimated error bars �in parentheses�. The experimen-
tal values Dexpt for fcc phases of Ni and Py are also shown.

fcc-Ni bcc-Ni fcc-Py bcc-Py

Dth 755�25� 170�15� 515�10� 295�10�
Dexpt 555,530�20� 370�10�
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We can conclude that the state-of-the-art first-principles
calculations give correct qualitative explanation of observed
magnetic properties of artificially prepared bcc phases of Ni
and permalloy samples. Results have been compared with
conventional fcc phases of both materials and can be sum-
marized as follows: �i� Calculated magnetic moments agree
very well with experimental data for both phases and mate-
rials; �ii� the parameter-free theory explains observed higher
Curie temperatures of fcc phases of Ni and permalloy in
comparison with their bcc counterparts, and even a satisfying
quantitative agreement between all calculated Curie tempera-
tures and experimental values. Except for bcc-Ni, the agree-
ment of calculated and measured Curie temperatures is better
than 10% which is the present accuracy of parameter-free
approaches. �iii� We have also clearly demonstrated that the
renormalized RPA approach, which goes beyond the adia-
batic approximation, is needed for a good quantitative agree-
ment with experiment. �iv� These results suggest that the
averaged lattice model is a reasonable approximation for the
calculation of the Curie temperatures of concentrated mag-

netic alloys. Lastly, �v� the calculated ratio of spin-wave
stiffness constants of fcc-Ni and fcc-permalloy are in good
agreement with experiments although their absolute values
are too large.

Ni and Ni-rich magnetic alloys still represent a challenge
for theory, in particular, for ab initio studies. The effect of
Stoner excitations as well as electron correlations should be
investigated in more detail in the future to improve quantita-
tive agreement between the theory and experiments.
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