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a b s t r a c t

We study the energy spectrum and electronic properties of a two-dimensional (2D) spinless electron

gas in a periodic magnetic field which has the symmetry of a triangular lattice. We show that the energy

bands depend strongly on the value of the magnetic field. For large field the low-energy electrons are

localized on closed rings where the magnetic field vanishes. This results in the appearance of persistent

currents around these rings. We also calculate the intrinsic Hall conductivity, which is quantized when

the Fermi level is in a gap.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

We have studied the dynamics of free electrons in a periodic
magnetic field of zero average; such a periodic magnetic field
could be created by a regular array of ferromagnetic nanocylinders
[1]. In a previous paper [2], some of us have shown that anomalous
Hall Effect (AHE) induced by spin chirality can be observed in a
two-dimensional (2D) diluted magnetic semiconductor located on
the top of this lattice of nanocylinders. In this paper we study a
spinless electron gas submitted to the same periodic magnetic
field; semi-classical consideration shows that in inhomogeneous
magnetic field, electrons tend to localize near the lines of zero
magnetic field [3]. The same tendency is found in the case of
periodic magnetic field, leading to persistent currents as shown in
the following. We also show that there is an intrinsic AHE in this
system. This AHE is related to the non-trivial topology of the
electron bands and does not require any uniform magnetization.

The model considered in this paper is a 2D electron gas in the
x–y plane, while the periodic magnetic field is along the z-axis and
can be written as
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where the vectors bi are the reciprocal lattice vectors of the
triangular lattice.

The Hamiltonian is written as

H ¼
_2

2m
�ir �

e

_c
AðrÞ

� �2

, (2)

where A(r) is the vector potential related to B(r). In the
Coulomb gauge, defined by the condition r �A(r) ¼ 0, it is
possible to choose A(r) periodic in space; thus the electrons
are moving in a periodic potential created by A(r), and
Bloch theorem can be applied to find the eigenfunctions of
Hamiltonian (2).

Using Bloch theorem, the eigenfunctions of (1) can be written as

cnkðrÞ ¼ unkðrÞe
ik:r, (3)

where n is a band index and unk(r) is periodic in space. Then unk(r)
is an eigenfunction (associated with the energy enk) of the
Hamiltonian Hk:

Hk ¼
_2
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. (4)

More details on the calculation can be found in Ref. [4]. The
shape of the energy bands and the wave functions depend on the
dimensionless parameter a ¼ �eð

ffiffiffi
3
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Fig. 2. Probability distribution for the Bloch state of the 1st band at G point for

a ¼ 0.5 (a) and a ¼ 5 (b). The thick line is the line where the magnetic field B(r)

vanishes.
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2. Electronic spectrum and wave functions

Fig. 1 shows the energy spectrum for several values of
parameter a: for small a (Fig. 1a: a ¼ 0.05), electronic structure
is close to a free-electron band structure, but gaps appear at the
band crossing points. For large a (Fig. 1c: a ¼ 5), the bands are
almost flat and well separated from each other, indicating that
the electrons are localized in space. For intermediate values of a
band crossings can occur at high symmetry points of the Brillouin
Zone (Fig. 1b: a ¼ 0.5) and some gaps appear in the spectrum.

Fig. 2 shows the probability distribution of the Bloch states for
two values of a: for small a, i.e. for small magnetic field, the
electrons are rather delocalized over the unit cell (Fig. 2a,
a ¼ 0.05); for larger magnetic field (Fig. 2b: a ¼ 5), the electrons
are confined in the region where the magnetic field is close to
zero: the lines B(r) ¼ 0 are forming closed rings, as indicated on
Fig. 2. This behavior corresponds to the semi-classical picture of
electronic motion in a linear magnetic field [3]: the low-energy
electrons are localized in regions where the energy of Landau level
is minimum.
Fig. 1. Band structure for (a) a ¼ 0.05, (b) a ¼ 0.5, and (c) a ¼ 5.
3. Persistent currents

At large magnetic field, the electrons confined near the zero-
field rings are creating a regular array of persistent currents; the
local current density J(r) can be calculated from the wave
functions unk(r):

JnkðrÞ ¼
_

2m
Re un

nkðrÞð�ir þ k�
e

_c
AðrÞÞunkðrÞ

h i
. (5)

For the Bloch state corresponding to Fig. 2b (G point of the 1st
energy band), we found that the current density is non zero along
the rings where B(r) ¼ 0 [4]. Thus these Bloch states are forming a
regular lattice of current contours in the 2D electron gas. The
appearance of such persistent currents is due to the chirality of
the electron motion in the non-uniform field.

This can be understood in a semi-classical picture: the
electronic motion around the ring is 1D-like; the effective
potential along these lines can be deduced from Eq. (4): it is not
the same for electrons moving clockwise and anticlockwise as in
the 1D case [3] (potential is different for k and �k); it results that
the energy spectrum is asymmetric with respect to k- �k, k

being the electron momentum along the zero-field ring. Since the
trajectories are closed lines, the spectrum is not only asymmetric,
but also quantized: in the semi-classical picture, the quantized
values of k are given by: kn�Al ¼ 2pn/L, where Al is the vector
potential along the contour and L the length of the contour; this
can also be written as kn ¼ 2p(n+f/f0)/L, where f0 is the flux
quantum and f the flux of the field B0 over the unit cell.

Thus in this case there are two mechanisms leading to a
persistent current: besides the usual Aharonov–Bohm effect
(quantization of k), the chirality of the energy spectrum gives
rise to a current even if f/f0 is an integer.
4. Quantized Hall effect

In our model, the average magnetic field is zero, thus there is
no ordinary Hall effect. The mechanism leading to AHE is similar
to the intrinsic mechanism [5], i.e. it is related to the non-trivial
topology of electron energy bands in the momentum space. Since
there is no magnetization in this system it is different from the
topological Hall effect proposed in Ref. [2].

Quantized Hall effect in a 2D tight-binding honeycomb lattice
with periodic magnetic field has been studied by Haldane in
Ref. [6]. In this model the AHE is related to the topology of the
bands and the phase diagram has two phases corresponding to
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Fig. 3. Chern numbers of the 1st and 2nd energy bands, as function of a.
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Chern numbers 71. In the present model the origin of AHE is
similar, but it is more complex because the band structure is more
complex.

Starting from the Kubo formula of conductivity, we can
write [5]

sxy ¼
e2

_

X
n

Z
d2k

ð2pÞ2
f ð�n;kÞOn;k, (6)

where On,k is the Berry curvature of the Bloch state with wave
vector k in the nth band, and f(e) the Fermi function. At zero
temperature, and if the Fermi level is in a gap, expression (6) can
be written as the sum of some integer, called Chern numbers Chn,
of all fully occupied bands. Each band is characterized by a
different Chern number, positive or negative; consequently, if the
Fermi level is in a gap, the Hall conductivity sxy is quantized. The
value of the Chern numbers and of sxy changes when the gap
between 2 occupied bands is closing.
We have calculated these Chern numbers for the 5 lowest
energy bands. The results for the 1st and 2nd bands are shown on
Fig. 3 as a function of the field: these numbers exhibit jumps
when the value of the magnetic field is such that two bands cross.
The mechanism is similar to the Haldane model [6], but here the
behavior is more complex.

Hall conductivity can be deduced from these Chern numbers, if
the Fermi level is in a gap. For example, if the total number of
electrons is such that bands 1 and 2 are filled, sxy is equal to
Ch1+Ch2 (in units of e2/h); it is equal to �1 for small a, then jumps
to +1 when increasing field. For large magnetic field all the Chern
numbers tend to zero. For intermediate values of band filling, one
has to sum the contribution of all filled bands and the non-integer
contribution of the partially filled band.

5. Conclusions

We have shown that the band structure is controlled by the
value of magnetic field. If this magnetic field is created by a
regular array of ferromagnetic nanocylinders, the magnitude of
the field was estimated in Ref. [2] to be of the order of 5 kG, close
to the surface of the nanolattice and it can be varied by changing
the distance between the 2D electron gas and the surface of the
nanolattice. For a concrete realization of this system, the 2D
electron gas can be a semiconductor layer with a lattice parameter
a0 much smaller than the lattice constant a of the periodic field.
Impurity effects have been neglected in the calculation: this is
justified if the electron mean free path is large compared to the
characteristic sizes of the structure.
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