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Using a microscopic model and a Green’s function technique

we have studied the critical behavior of somemultiferroics such

as hexagonal RMnO3. The temperature dependence and the

external field dependence of the magnetization and suscepti-
bility are determined. The critical exponents b and g are

calculated. Applying the scaling laws a, d, and n are also

obtained. The critical exponents are in very good agreement

with the existing experimental data.
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1 Introduction Magnetoelectric multiferroics, which
show both magnetic and ferroelectric properties simul-
taneously, have been extensively investigated recently [1].
Around the phase transition temperatures in multiferroic
substances are observed different anomalies in many
experimental data. Despite extensive studies on bulk and
nanostructured BiFeO3 (BFO) and hexagonal RMnO3

multiferroics there are not so many investigations of the
critical behavior, of the critical exponents of multiferroic
materials. Twenty years ago Ishibashi and Hidaka [2] have
showed that systems with isosymmetric phase transitions at
TC¼ 1200K, such as BFO, exhibit a phase diagram with
tricritical points and critical end points and have the unusual
mean-field critical exponents a¼ 2/3, b¼ 1/3, and g ¼ 2/3
at the end points. Scott et al. [3] have extended that to show
the critical exponents for the isosymmetric phase transitions
in BFO d¼ 3, n¼ 1/3, and h¼ 0. Singh et al. [4] have found
that fluctuations along the uniaxial direction in BFO diverge
and exhibit critical slowing down (spectral narrowing)
approaching TC, with critical exponents n¼ 0.63 and g
(susceptibility)¼ 1.24 for the longitudinal fluctuations and
n¼ 0.63 and g ¼ 1.47 for the transverse fluctuations. The
exponent characterizing the magnetization as a function of
temperature b is known to be �0.43 from birefringence [5]
and 0.37 from Mossbauer hyperfine splittings [6].

Poirier et al. [7] have reported an ultrasonic investigation
of the elasticmoduli in hexagonal YMnO3. Strong anomalies
in the elastic moduli below TN are observed and described
within the Landau free energy model. The critical exponent
associated to the order parameter is calculated to b¼ 0.42
which is neither consistent with chiral XY (0.25) and chiral
Heisenberg (0.30) universality classes or with XY (0.35) and
Heisenberg (0.36) ones, but more in agreement with a
conventional AFM long range order [8]. For LaMnO3 Alves
et al. [9] have observed a similar value of b¼ 0.42, which
is remarkably close to the exponent of free percolation on a
3D cubic lattice (0.41). From heat capacity measurements
Tachibana et al. [10] have observed for the critical exponent
a¼� 0.16, whereas Katsufuji et al. [11] have obtained
a¼ 0.25 from dielectric susceptibility measurements. For n
Fabreges et al. [12] reported the value of 0.65.

2 Themodel The aimof the present paper is to calculate
on the basis of amicroscopicmodel the critical exponentsb and
g forM and xzz of hexagonal multiferroicRMnO3 compounds.
The Hamiltonian for multiferroic BFO and hexagonal RMnO3

with TC � TN can be presented as [13]:
H ¼ He þ Hm þ Hme: (1)
He denotes theHamiltonian for the ferroelectric subsystem
within the framework of the transverse Ising model:
He ¼ �V
X
i

Sxi �
1

2

X
ij

JijS
z
i S

z
j ; (2)
where Sxi , S
z
i are the spin-1/2 operators of the pseudo-spins,

Jij denotes the nearest-neighbor pseudo-spin interaction,
V is the tunneling frequency. The mean polarization is
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

offtheo
Schreibmaschinentext

offtheo
Schreibmaschinentext

offtheo
Schreibmaschinentext
TH-2012-56



2228 S. G. Bahoosh and J. M. Wesselinowa: Critical behavior of multiferroic hexagonal RMnO3
p

h
ys

ic
a ssp st

at
u

s

so
lid

i b
proportional to the z component of the pseudo-spins
introduced in the transverse Ising model. In the ordered
phase we have the mean values hSxi 6¼ 0 and hSzi 6¼ 0, and it
is appropriate to choose a new coordinate system rotating
the original one used in Equation (2) by the angle u in the xz
plane. The rotation angle u is determined by the requirement
hSx0 i ¼ 0 in the new coordinate system.

Hm is the Hamiltonian for the magnetic subsystem,
which is given by the Heisenberg Hamiltonian:
M ¼

� 20
Hm ¼ � 1

2

X
<ij>

A1 i; jð ÞBi � Bj

� 1

2

X
½ij�

A2 i; jð ÞBi � Bj

� gmBH
X
i

Bz
i ;

; (3)
where Bi is the Heisenberg spin operator at the site i, and
the exchange integrals A1 and A2 represent the coupling
between the nearest and next-nearest neighbors, respect-
ively. <ij> and [ij] denote the summation over the nearest
neighbors and the next nearest neighbors, respectively. H is
an external magnetic field.

The coupling term is taken to be biquadratic:
Hme ¼ �g
X
<ij>

X
kl

SzkS
z
lBi � Bj: (4)
Here g is the coupling constant between themagnetic and
the ferroelectric order parameters.

3 Green’s function and critical exponents The
retarded Green’s function to be calculated is defined by:
Gij tð Þ ¼ Bþ
i tð Þ; B�

j 0ð Þ
D ED E

: (5)
For the approximate calculation of the Green’s function
we use a method proposed by Tserkovnikov [14]. After a
formal integration of the equation of motion, one obtains
Gij tð Þ ¼ �iu tð Þ Bi;B
þ
j

h iD E
exp �iEij tð Þt

� �
; (6)
where
Eij tð Þ ¼ Eij �
i

t

Z t

0

dt0t0
ji tð Þ; jþj t0ð Þ
h iD E
Bi tð Þ;Bþ

j t0ð Þ
h iD E

0
@

�
ji tð Þ;Bþ

j t0ð Þ
h iD E

Bi tð Þ; jþj t0ð Þ
h iD E

Bi tð Þ;Bþ
j t0ð Þ

h iD E2

1
CA;

(7)
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with the notation ji tð Þ ¼ Bi; Hinteraction½ �. The time-indepen-
dent term
Eij ¼
Bi; H½ �;Bþ

j

h iD E
Bi; B

þ
j

h iD E (8)
is the energy in the generalized Hartree–Fock approxi-
mation (GHFA), called so by the author [14] probably
because it includes all correlation functions and so goes
beyond the Hartree–Fock approximation. The time-depen-
dent term in Equation (7) includes damping effects.

The relativemagnetizationM for arbitrary spin value S in
the direction of the magnetic field is equal to:
hBzi ¼ 1

N

X
k

"
ðSþ 0:5Þcoth ðSþ 0:5ÞEmðkÞ

kBT

� �

� 0:5coth 0:5
EmðkÞ
kBT

� �#
:

(9)
Em is the spin-wave energy in the generalized Hartree–Fock
approximation:
EmðkÞ ¼
1

2hBzi
1

N

X
q

Aeff
1 ðqÞ � Aeff

1 ðk� qÞ
� �

� 2hBz
qB

z
�qi � hB�

k�qB
þ
k�qi

� �
þ 1

2hBzi
1

N

X
q

A2ðqÞ � A2ðk� qÞð Þ

� 2hBz
qB

z
�qi � hB�

k�qB
þ
k�qi

� �
þ gmBH

(10)
with the renormalized exchange interaction constant A1:
Aeff
1 ¼ A1 þ 2gP2 cos2 u: (11)
The quantity PðTÞ ¼ 2hSzi is the relative polarization in
the direction of themean field. It is calculated in our previous
paper [13] where we have investigated different static and
dynamic electric and magnetic properties of multiferroic
RMnO3 compounds.

The temperature dependence of MðTÞ ¼ hBzi was
calculated numerically using parameters appropriate to
the multiferroic YMnO3 [13]: A1¼ 85K, A2¼�60K,
V¼ 20K, J¼ 3600K, TN¼ 80K, TC¼ 900K, S¼ 2 for
the magnetic subsystem and s¼ 0.5 for the pseudospins.
The exchange interaction constants are calculated from their
relation to the critical temperatures, i.e., they are obtained
from the expressions in the mean-field theory
Aeff
1 ¼ 3kBTN=zSðSþ 1Þ
and
Jeff ¼ 3kBTC=zSðSþ 1Þ;

where z is the number of nearest neighbors, S is the spin
value, and kB is the Boltzmann constant.
www.pss-b.com
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The critical exponent b describing the order parameter
hBzi is defined as [15]:
www
hBzi ¼ A
TC � T

TC

� �b

; for T ! T�
C : (12)
b is independent of the magnitude of the spin, but
dependent on the dimensionality of the lattice. It is calculated
numerically for a three-dimensional lattice in the tempera-
ture range 5� 10�4 < jðTC � TÞ=TCj < 5� 10�3 from
lnhBzi ¼ lnAþ blnð1� T=TCÞ. The following value is
observed:
b ¼ 0:421� 0:006; (13)
which is in very good agreement with the experimental
data of Poirier et al. [7] for YMnO3 (b¼ 0.42) and of
Alves et al. [9] for LaMnO3 (b¼ 0.42). It is close to the
critical exponent theoretically predicted for the three-
dimensional Heisenberg model. Chatterji et al. [16] have
determined the spin wave dispersions in YMnO3 by
inelastic neutron scattering and obtained the temperature
variation of the integrated intensity of the (100) reflection
near to TN (T> TN) as: I ¼ In þ I0ððTN � TÞ=TNÞ2b with
b¼ 0.295� 0.008. The obtained value of b is close to that
expected for a 3D XY or Ising system [17]. It must be noted,
that b determined by this investigation cannot really be
identified with the critical exponent. In order to determine
the critical exponent b one should not refine TN from
the temperature dependence of the intensity of the magnetic
Bragg peak but should be independently determined from
the divergence of the diffuse intensity at the ordering
temperature [17, 18]. Also a possible temperature variation
of the extinction parameters may hinder the determination
of the critical exponent [18]. Chatterji et al. [16] have
not attempted such rigorous investigation of the critical
exponent b. The exponent b of YMnO3 determined by
Roessli et al. [19] is b¼ 0.187� 0.002 and is much lower
than the value obtained in [16]. However, Roessli et al. [19]
have fitted the intensity data belonging to non-critical
range of temperatures and hence cannot be identified with
the critical exponent. Gibbs et al. [20] reported a high-
resolution powder neutron diffraction investigation of the
structural behavior of the multiferroic hexagonal YMnO3

between room temperature and 1403K. They observed a
transition at 1258� 14K driven primarily by the anti-
ferrodistortive K3 mode. A weighted power-law fit of the
form K3 ¼ AðTC � TÞb was performed on the K3 data
as a function of temperature in the range 913–1243K.
The critical exponent obtained is b¼ 0.271� 0.003 with
TC¼ 1271.5� 0.1K and A¼ 0.135� 0.002. But surpris-
ingly, the authors [20] obtained an increasing of the
polarization with raising temperature what is opposite to
the results of other authors [13, 21]. It must be mentioned
that Kim et al. [21] have done also distortion-mode analysis
of synchrotron X-ray data in the range from 300 to 1000K
of YMnO3. They obtained the behavior of the K3 modes
and a phase transition at TC� 920K.
.pss-b.com
We have observed the critical exponent g from the
longitudinal susceptibility xzz which is determined in the
ordered phase by the relation dhBzi=dHjH¼0. It is calculated
numerically in the same temperature range as for hBzi to
g ¼ 1:280� 0:012: (14)
Unfortunately, we don not know experimental data
about this critical exponent inmultiferroicRMnO3materials.
The critical exponent g for a 3D Heisenberg model is
calculated from field theoretical estimates to g ¼ 1.386(4)
(resummed perturbation series [22]) and to g ¼ 1.390(10)
(resummed e-expansion [23]).

Applying the scaling laws [15] we can obtain also other
critical exponents, for example a, d, and n:
a ¼ 2� 2b� g ¼ �0:122; (15)
d ¼ ðg þ bÞ=b ¼ 3:945; (16)
n ¼ ð2� aÞ=d ¼ 0:707: (17)
Tachibana et al. [10] reported from heat capacity
measurements in YMnO3 a¼�0.16, whereas Gamzatov
et al. [24] obtained for LaMnO3a¼�0.127which is close to
the estimated exponent a¼�0.120 theoretically predicted
for the three-dimensional Heisenberg model, rather than
a XY model (a¼�0.01) or a chiral university class [chiral
XY model – a¼ 0.34(6) and chiral Heisenberg model –
a¼ 0.24(8)] [5]. Our results confirm this statement.

Fabreges et al. [12] have calculated the temperature
dependence of the correlation length and fit the critical
exponent n to 0.65(8). Singh et al. [4] data from Raman
spectra in BFO are compatible (in respect of both peak
intensity divergence and linewidth narrowing) with the
original study of spin fluctuations in uniaxial antiferro-
magnets by Schulhof et al. [25]. They found that fluctuations
along the uniaxial direction diverge and exhibit critical
slowing down (spectral narrowing) approaching TC, with
critical exponents n¼ 0.63 and g (susceptibility)¼ 1.24
for the longitudinal fluctuations and n¼ 0.63 and g ¼ 1.47
for the transverse fluctuations. The correlation length
exponent is n¼ 0.64–0.70 for 3D-Ising or Heisenberg
models [26]. Holm and Janke [27] reported for the 3D
Heisenberg model using a single-cluster Monte Carlo study
n¼ 0.704� 0.006. For comparison, the field theoretical
estimates are n¼ 0.705(3) (resummed perturbation series
[22]), n¼ 0.710(7) (resummed e-expansion [23]). Recently,
Griffin et al. [28] have studied the scaling behavior in the
hexagonal multiferroic RMnO3, R¼ Sc, Y, Dy–Lu, which
are proposed as a model system for testing the Kibble–Zurek
mechanism, and observed n¼ 0.6717.

4 Conclusions Basing on Eqs. (13)–(17) it may be
concluded that the proposed model for investigation of the
static and dynamic properties of the hexagonal multiferroics
RMnO3 [13] describes also very well the critical behavior of
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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these substances and that the method and the approximation
applied here give values for the critical exponents, which
are in very good agreement with the experimental data
for RMnO3 compounds. Finally, the critical behavior of
the multiferroic hexagonal manganites RMnO3 is close to a
3D-Heisenberg universality class, rather than to a XYmodel
or a chiral university class (chiral XY model and chiral
Heisenberg model).
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