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Alloying route to tailor giant magnetic anisotropy in transition-metal nanowires
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First-principles theoretical investigations of one-dimensional ordered 3d-5d alloys reveal magnetic anisotropy
energies �E, which are extraordinary high for transition-metal nanostructures. The results show that �E of Pt-X
and Ir-X wires with X ≡ Ti–Ni strongly oscillates as a function 3d-band filling showing both giant values (e.g.,
�E = 25, 58, and 57 meV/atom for Pt-Ni, Ir-Cr, and Ir-Ni) as well as modest enhancements (e.g., �E = 2.3
and 6.5 meV/atom for Pt-Cr and Pt-Fe). The robustness of the results with respect to strain and relaxation is
demonstrated. The microscopic mechanisms behind the trends in �E are analyzed from a local perspective.
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I. INTRODUCTION

The magnetism of one-dimensional (1D) systems is not
only fascinating from a fundamental perspective but also very
promising for technological applications such as recording
media, memory devices, and spintronics.1,2 Consequently,
the experimental and theoretical research activities in this
field have been most intense over the past years.2–4 One
of the properties of central importance in these materials is
the magnetic anisotropy energy (MAE) which defines the
low-energy orientation of the magnetization �M (easy axis)
as well as the stability of �M with respect to external fields,
electric currents, and temperature-induced fluctuations. Large
MAEs per atom are intensively sought, for example, in order to
achieve device miniaturization and enhanced storage density.
Symmetry and dimensionality are known to play a crucial role
in this context, particularly for itinerant-electron transition-
metal (TM) compounds. Indeed, 3d-TM wires develop large,
stable spin and orbital magnetic moments together with MAEs
that are orders of magnitude larger than in the corresponding
solids.5,6 Nevertheless, despite this remarkable enhancement,
the absolute values of the MAEs remain relatively small due
to the weak spin-orbit (SO) coupling in the 3d elements.
Stronger SO interactions, as found in the heavier 5d TMs,
should in principle lead to larger anisotropies.7–9 However, the
nanostructures consisting solely of 5d elements adopt either
nonmagnetic ground states or weakly magnetic states, which
depend critically on strain and relaxation.7,8 These comple-
mentary behaviors suggest that appropriate combinations of 3d

and 5d elements would allow us to merge the large moments
and magnetic stability of 3d TMs, the strong SO coupling
of 5d TMs, and the extremely low-dimensional environment
of 1D wires in order to achieve unprecedentedly large and
robust MAEs. The relevance of the problem is backed up
by the numerous experimental possibilities of synthesizing
1D materials, for example, by scanning-tunneling-microscope
(STM) atom manipulation,10 by exploiting auto-organization
on vicinal and flat surfaces,4,11 and in nearly freestanding
geometries between substrate and STM tips12 or at break
junctions.13–16 It is the main goal of this paper to report
theoretical investigations showing under which circumstances
and to what extent such exceptional enhancements of the MAE
are possible.

Although the potential advantages of alloying highly
polarizable 5d TMs with 3d elements in 1D systems can be
understood straightforwardly, the subject also raises a number
challenging open questions. In fact, all main alloy parameters,
such as composition, concentration, and chemical order, are
expected to affect the magnetic behavior in a nontrivial way.
One would like to understand, for example, the dependence
of the magnetic order as a function of composition and the
consequences of 3d-5d charge transfers on the local moments.
Equally intriguing is the role of structural relaxation and
strain on orbital magnetism and SO energies. Furthermore,
the magnetic proximity effects on the 5d atoms, which are
induced by the weakly magnetic or antiferromagnetic elements
at the beginning of the 3d series, should be very different
form those induced by the strongly ferromagnetic elements
at the series end. This opens plenty of new possibilities of
tuning the MAE as a function of the alloying element. It
is therefore quite remarkable that only very few theoretical
investigations of orbital magnetism and magnetic anisotropy
of one-dimensional alloys are available at present. Among
them, one should mention the density-functional study of
Wang et al.17 who reported very large MAEs in freestanding
Fe-5d monoatomic wires which are significantly reduced upon
encapsulation in carbon nanotubes. Progress in this mul-
tifaceted field certainly requires quantitative investigations
based on quantum theory. But in addition, it is also important
to analyze and correlate the different electronic and magnetic
properties (for example, the energy as a function of the magne-
tization direction, the spin and orbital magnetic moments, and
the underlying electronic structure) in order to shed light on
the mechanisms responsible for the magnetic anisotropy of 1D
alloys. In this way a lasting contribution to knowledge-based
material design can be achieved.

In the following we consider ordered alloy wires having
equal concentrations, which maximize the 3d-5d magnetic
proximity effects. Furthermore, we focus on the freestanding
geometry, where the most extreme low-dimensional phenom-
ena are expected. The effects of strain and relaxations resulting
from interactions at substrates and break junction are explored
by varying the interatomic distances and the shape of the wire.
The role of 3d-band filling and the possibility of tuning the
MAE that it offers are investigated in Pt-X and Ir-X wires by
varying X ≡ Ti–Ni systematically across the 3d series. Pt and
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Ir are particularly relevant examples of 5d metals due to their
high spin polarizability and strong SO coupling.

II. COMPUTATIONAL METHOD

The calculations have been performed by using the
Vienna ab initio simulation package (VASP) which imple-
ments Hohenberg-Kohn-Sham’s density-functional theory on
a periodic supercell and allows fully-self-consistent structural
relaxations.18 The VASP solves the spin-polarized Kohn-Sham
equations in an augmented plane-wave basis set, taking into
account the core electrons within the projector augmented
wave (PAW) method.19 This is an efficient frozen-core all-
electron approach that allows one to incorporate the proper
nodes of the Kohn-Sham orbitals in the core region and the
resulting effects on the electronic structure, total energy, and
interatomic forces. Exchange and correlation (XC) effects
are treated within Perdew and Wang’s generalized-gradient
approximation (GGA).20 Both ferromagnetic (FM) and an-
tiferromagnetic (AF) alignments of the magnetic moments
in neighboring two-atom unit cells are considered. This,
together with the freedom of the 3d and 5d moment alignment
within each cell, allows us to take into account FM and AF
super-exchange-like couplings of the 3d moments mediated
by the intermediate 5d atom and vice versa [see the inset
of Fig. 1(a)]. Notice that other magnetic states such as
spin-density waves or noncollinear arrangements may occur
by manipulating the interatomic distances or by depositing
chains on polarizable substrates.21–24 The robustness of our
results has been explicitly checked by performing comparative
calculations using the Ceperly-Alder XC functional25 and the
full-potential WIEN2K method.26 Furthermore, a number of
tests have been performed in order to assess the numerical ac-
curacy of the calculations. We have increased our standard cal-
culation parameters—namely, cutoff energy Emax = 268 eV,
supercell size perpendicular to the wire a = 12 Å, and
k-point mesh nk = 1 × 1 × 61—to Emax = 500 eV, a = 14 Å
and nk = 1 × 1 × 91. Although this increases the computation
time by a factor 20, the results do not change significantly.
For example, the equilibrium bond length of a pure Pt wire
changes from 2.383 to 2.381 Å and the total-energy differences
involved in the MAE per atom change by 0.1 meV or less.
These small changes in the numerical results have no influence
on our physical conclusions. We have also verified that the total
energy is nearly independent of the energy level smearing
σ , provided that it is not too large (1 � σ � 50 meV).
One concludes that our choice of computational parameters
provides the necessary accuracy at a reasonable computational
cost.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the ab initio calculated MAE �E =
Ex − Ez of FM and AF Pt-3d linear wires at their corre-
sponding equilibrium distance r0, where Eδ stands for the
total energy per atom when the magnetization �M points along
the axis δ. The coordinate system and the magnetic orders are
illustrated in the insets of Fig. 1. Both FM and AF chains show
strong even-odd-like oscillations of �E as a function of the
3d element. A similar behavior has been previously observed
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FIG. 1. (Color online) (a) Ab initio MAE per atom �E =
Ex − Ez of linear Pt-3d wires having FM (circles, full lines) or AF
(triangles, broken lines) orders at their equilibrium NN distances r0.
The solid symbols indicate the ground-state magnetic order. Positive
(negative) values of �E correspond to an in-line (perpendicular)
easy axis as illustrated in the inset. (b) Comparison between the
ground-state ab initio �E, the model spin-orbit anisotropy energy
�ESO, and the element-specific local MAEs �E3d and �EPt.

in pure 3d and 4d wires as a function of d-band filling.5,8

Moreover, one observes that �E is in general larger for FM
order than for AF order. As we shall see, this is related to the
full quenching of the Pt moments in the AF configuration in
which the Pt atoms are framed by antiparallel NN 3d moments.
For some alloy wires, for example Pt-V and Pt-Ni, remarkably
large values of the MAE are found (�E � 20 meV) which
contrast with the nearly vanishing MAE of pure Pt wires at
their equilibrium distance.7 In other cases, �E is quite small,
of the same order as the MAE of pure 3d wires.6 For instance,
|�E| � 2 meV for Pt-Cr and Pt-Mn. Therefore, achieving
giant MAEs is far from obvious. The nontrivial dependence
of MAE on 3d doping element defies easy generalizations.
It is interesting to notice that the calculated MAE of Pt-Co
wires is quantitatively comparable to previous experimental
results of Co monoatomic chains deposited on a Pt substrate.4

This indicates that the MAE obtained for freestanding alloy
wires can also provide useful insights on more complex
situations, provided that the local environments are alike,
for instance, similar low coordination numbers and type of
neighbors.

In order to obtain a qualitative microscopic understanding
of the trends in the MAE of 3d-5d wires it is useful to
focus on the changes in the z component of the intra-atomic
SO energy

ESO = 1

N

∑

α

ξα(Lα↑ − Lα↓)/2, (1)

where ξα refers to SO coupling constant at atom α, Lασ to
the z component of the spin-resolved local orbital moment,
and N to the number of atoms. Equation (1) neglects the
transversal or spin-flip off-diagonal terms of the SO coupling,
which are proportional to (L̂+

α Ŝ−
α + L̂−

α Ŝ+
α ), as well as the

contributions to �E due to the anisotropy of the kinetic and
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Coulomb energies. The former terms dominate in the limit
of large exchange splitting and saturated moments, where
the SO energy is mainly given by the coupling between
electrons having the same spin (minority electrons above
half-band filling).27,28 However, the later terms can be crucial
if important redistributions of the spin-polarized density occur
upon rotating �M . This is manifested by an anisotropy of the
spin moments. Numerical stability often precludes computing
these contributions self-consistently within first-principles
theories.29–31 Fully self-consistent studies of MAE have been
performed in the framework of tight-binding theory.5

Assuming for simplicity that the anisotropy of the orbital
moments �L = Lx − Lz is dominated by the majority-spin
(minority-spin) electrons below (above) half d-band filling,
the anisotropy of ESO can be written as

�ESO = 1

N

∑

α

�Eα � 1

N

∑

α

(±ξα/2)�Lα, (2)

where the positive (negative) sign applies to Ti–Mn (Fe–Ni and
Pt). This simple approximation is an alloy extension of the pro-
portionality relation between �E and �L derived by Bruno for
homogeneous systems with saturated spin moments.32 �ESO

is calculated by using the local orbital moments within the
Wigner-Seitz spheres and the atomic values for ξ3d and ξ5d .32

A local perspective to the MAE is provided by the element-
resolved anisotropy energies �E3d and �E5d at the 3d and 5d

atoms. It should be however noted that the perspective adopted
in Eqs. (1) and (2) neglects the off-site transitions due to the
SO interactions. Although these contributions are generally
expected to be much weaker than the usual intra-atomic terms,
they need not be completely negligible, particularly in strongly
hybridized itinerant electrons systems.33

In Fig. 1(b) �E, �ESO, �E3d , and �EPt of Pt-3d wires
are compared by taking their corresponding values of the local
orbital moments shown in Table I. One observes that the
model �ESO reproduces qualitatively well the variations of
�E as a function of 3d element. Except for Pt-Cr wires, even
the quantitative values are quite accurate. This validates the
assumed dominant role of the diagonal part of the spin-orbit
interactions, as compared to the transversal terms and the
kinetic plus Coulomb anisotropy energies. Concerning the
local components, one observes that the Pt contribution is

responsible for the even-odd-like oscillations, while the 3d

contribution, besides being quantitatively weaker in general,
depends more smoothly on the 3d element. In most cases,
the �E3d and �EPt have the same sign and thus favor the
same easy axis. However, in Pt-Cr and Pt-Co wires the 3d

and Pt contributions are competing. In the case of Pt-Co
wires, these competing contributions result in a rather small
value of �ESO. In fact, 1

2 (−ξCo/2�LCo) = 7.2 meV while
1
2 (−ξPt/2�LPt) = −3.4 meV yielding �ESO = 3.8 meV.
In contrast, in Pt-Ni wire 1

2 (−ξNi/2�LNi) = 10 meV and
1
2 (−ξPt/2�LPt) = 26.4 meV, which add up resulting in a
remarkably large value of �ESO. Moreover, in AF Pt-Mn and
Pt-Fe wires �EPt vanishes so that the 3d term dominates. One
concludes that none of the local �Eα alone is able to account
for the trends in �E. It is therefore inaccurate to assume that
the anisotropy of 3d-5d alloy wires originates essentially at the
heavier 5d atoms. Instead, we find important mutual proximity
effects: The 3d atoms polarize Pt and thus trigger large values
of �EPt, and the Pt atoms enhance �E3d beyond the levels
typically found in pure 3d wires.5,6

Table I shows results for the local spin and orbital moments
μz and Lz, corresponding to the in-line magnetization direc-
tion, and μx and Lx for the radial magnetization direction. The
different magnetic orders are illustrated in the inset of Fig. 1(a).
Concerning the ground-state configuration, we find that the Pt
and 3d moments are antiparallel to each other at the beginning
of the series (Ti, V, and Cr) while they are parallel at the series
end (Co and Ni). In all these cases the magnetic moments are
the same in all the unit cells, despite the antiparallel coupling
between NNs. These configurations are thus FM from the
perspective of the Pt-3d unit cells. Remarkably, Pt-Mn and
Pt-Fe wires show an AF coupling between neighboring Pt-3d

cells [see inset of Fig. 1(a) and Table I]. In these cases the
Pt atoms are framed by two 3d NNs carrying antiparallel
moments. As a result, the Pt moments vanish. These trends
in the magnetic order are not affected by reasonable variations
of the interatomic distances r around the equilibrium value
r0. In connection with the magnetic order it is interesting to
point out that there is a significant charge transfer from the
3d to the 5d orbitals (typically 0.5 electrons). This brings in
particular Fe closer to half d-band filling and probably favors
the observed AF order in Pt-Fe wires.

TABLE I. Spin and orbital moments in Pt-3d wires at their equilibrium interatomic distances: μz and Lz correspond to the in-line
magnetization direction, while μx and Lx correspond to a perpendicular radial direction. The results are given in μB (μα = 2Sα) for the
ferromagnetic (FM) and antiferromagnetic (AF) configurations (see Fig. 1). The corresponding MAEs �E = Ex − Ez are given in meV/atom.

Ti V Cr Mn Fe Co Ni

μz/μx (Pt, FM) −0.15/−0.14 −0.24/−0.22 −0.18/ −0.20 0.32/0.23 0.66/0.64 0.64/0.66 0.60/0.47
Lz/Lx (Pt, FM) −0.11/−0.08 −0.21/−0.12 −0.06/ −0.20 0.01/ −0.12 0.28/0.23 0.25/0.28 0.38/0.16
μz/μx (3d , FM) 1.51/1.51 2.62/2.61 3.63/3.63 4.27/4.26 3.45/3.45 2.27/2.32 1.00/0.96
Lz/Lx(3d , FM) −0.30/0.06 −0.63/0.08 −0.04/0.14 −0.10/0.16 −0.16/0.21 0.47/0.15 0.44/0.04

μz/μx (Pt, AF) 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Lz/Lx (Pt, AF) 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
μz/μx (3d , AF) 0.95/0.94 2.06/2.05 3.36/3.38 4.02/4.02 3.26/3.26 2.10/2.09 0.47/0.00
Lz/Lx (3d , AF) −0.20/0.04 −0.49/0.17 −0.23/0.50 −0.07/0.13 0.12/0.20 0.74/−0.16 0.30/ −0.00

�E (FM) 3.1 16.1 −2.3 4.8 −6.5 6.2 26.4
�E (AF) 0.8 5.7 0.5 −0.2 −4.8 7.9 3.1
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The local 3d spin moments increase first from 2STi =
1.51μB to 2SMn = 4.27μB, by approximately 1μB per addi-
tional 3d electron, and then decrease from 2SFe = 3.45μB

to 2SNi = 1.0μB. On the other side, the Pt spin moments
are systematically larger at the end of the 3d series (e.g.,
2SPt = 0.60–0.66 in Pt-Co and Pt-Ni wires) than for small
d-band filling [e.g., 2SPt = −(0.15–0.24) for Pt-Ti, Pt-V,
and Pt-Cr wires]. In addition, one observes that the orbital
moments LPt � (0.2–0.4)μB and L3d � (0.4–0.6)μB are quite
important, yielding large total moments 2Sα + Lα . Notice
in particular the large orbital moment LNi � 0.4μB in Pt-Ni
wires, which correlates with its large MAE (see Table I).

In the ground state the coupling between spin and orbital
local moments follows Hund’s third rule for all considered
Pt-3d wires, if the direction of the magnetization is along
the wire, regardless of the actual magnetic order. In fact,
only in one case, namely, the Pt-Cr wire whose easy axis
is perpendicular to the wire, we find a quantitatively small
violation of the third Hund rule (see Table I). For 3d elements
below half-band filling (Ti, V, and Cr) the spin and orbital
moments are antiparallel, while in Mn, Fe, Co, and Ni
atoms S and L are parallel. Pt atoms always shows parallel
S and L. Only in some energetically unfavorable magnetic
configurations (for example, in AF Co-Pt wires) one finds a
violation of Hund’s third rule. Moreover, one observes that the
easy-magnetization axis corresponds in general to the direction
yielding the maximum total orbital moment LPt + L3d . This
simple trend holds for both FM and AF wires, provided that the
local orbital moments are not too small (LPt,L3d > 0.1μB).

The orbital moments of the different Pt-3d wires can
be qualitatively correlated with the corresponding electronic
structures. In Fig. 2 the spin-polarized local densities of
states (LDOS) of Pt-Ti, Pt-Cr, and Pt-Ni wires are shown
as representative examples. The d states may be classified, ac-
cording to their spatial symmetry, in the subspaces �0 = {dz2},
�1 = {dxz,dyz}, and �2 = {dxy,dx2−y2}, which are invariant
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FIG. 2. (Color online) Local density of states (LDOS) of FM Pt-
Ti, Pt-Cr, and Pt-Ni wires at their equilibrium NN distances. Results
are given for the projections on the d-electron irreducible subspaces
�0, �1, and �2 of the Pt (left) and 3d (right) atoms.

in the absence of SOC.6,8 Figure 2 shows how these bands
are split by the SO interactions. The degree of occupation of
the �2 states explains the formation of the orbital moment
Lz along the in-line direction z.8 If the �2 band is fully
occupied, Lz is very small. This holds for Pt in the Pt-Ti
wire (Lz,Pt = 0.12μB) and for Pt and Cr in the Pt-Cr wire
(Lz,Pt = 0.07μB and Lz,Cr = 0.04μB; see Fig. 2). On the other
hand, if the �2 LDOS is not fully occupied—particularly when
it exhibits peaks at the Fermi energy EF —one obtains large
values of Lz.6 This is for example the case of Ti in the Pt-Ti
wire (|Lz,Ti| = 0.3μB) and most notably at the Ni and Pt atoms
in the Pt-Ni wire (Lz,Ni = 0.44μB and Lz,Pt = 0.38μB). For
the off-line magnetization direction one generally observes
smaller values of Lx , due to the partial occupation of mixed
�1-�2 states.8 Moreover, we find that Lx is not completely
quenched only if there are �1 states at EF . Otherwise it is
zero. Finally, it is interesting to mention that the electronic
structure and orbital moments LPt in the Pt-Cr wire are very
similar to those found in Pd monoatomic wires. The �2 states,
which lie well below EF , yield Lz � 0, while the larger values
of Lx are developed by the �1 states at EF .34 The present
analysis of the LDOS is not only relevant for Pt-3d wires in
the ultimate low-dimensional limit of weak wire-environment
interactions. It also shows that the magnetoanisotropic effects
found in freestanding wires should be preserved in the presence
of weak interactions with the environment or support, provided
that the nature of the electronic states close to EF is preserved.

In Fig. 3 results for the MAE of Ir-3d wires are shown,
while the local spin and orbital moments are given in Table II.
The effects of 3d-5d alloying are even stronger than in
Pt-based wires, particularly concerning the spin and orbital
polarization of Ir and the resulting exceptionally large MAEs
(e.g., �E � 60 meV for Ir-Cr and Ir-Ni wires). The main
trends in the magnetoanisotropic behavior may be summarized
as follows: (i) The MAE of both FM and AF wires oscillates
as a function of the 3d element, being maximal for Ir-Cr,
minimal for Ir-Fe, and increasing again in Ir-Ni. As in Pt-3d

wires, the MAE is in general larger for FM than for AF order.
(ii) The calculated �E � 60 meV of Ir-Cr and Ir-Ni wires at
or near the NN equilibrium distances is quite remarkable for
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FIG. 3. (Color online) (a) Ab initio MAE per atom �E =
Ex − Ez of linear Ir-3d wires having FM (circles, full lines) or AF
(triangles, broken lines) orders at their equilibrium NN distances
r0. The solid symbols indicate the ground-state magnetic order (see
the inset). Positive (negative) values of �E correspond to an in-line
(perpendicular) easy axis.

054425-4



ALLOYING ROUTE TO TAILOR GIANT MAGNETIC . . . PHYSICAL REVIEW B 87, 054425 (2013)

TABLE II. Spin and orbital moments in Ir-3d wires at their equilibrium interatomic distances: μz and Lz correspond to the in-line
magnetization direction, while μx and Lx correspond to a perpendicular radial direction. The results are given in μB (μα = 2Sα) for the
ferromagnetic (FM) and antiferromagnetic (AF) configurations (see Fig. 3). The corresponding MAEs �E = Ex − Ez are given in meV/atom.

Ti V Cr Mn Fe Co Ni

μz/μx (Ir, FM) 0.00/0.00 −0.65/ −0.59 −0.80/ −0.64 1.18/0.32 1.01/0.66 1.11/0.86 1.39/0.81
Lz/Lx (Ir, FM) 0.00/0.00 −0.52/ −0.14 −0.99/ −0.25 1.44/−0.10 0.80/ −0.06 0.81/0.04 1.22/0.18
μz/μx (3d , FM) 0.00/0.00 2.20/2.20 3.35/3.31 4.15/4.06 2.92/2.82 1.69/1.66 0.87/0.54
Lz/Lx (3d , FM) 0.00/0.00 −0.19/0.06 −0.19/0.11 −0.03/0.17 −0.32/0.33 −0.11/0.23 0.23/0.11

μz/μx (Ir, AF) 0.00/0.00 0.00/0.00 0.00/0.00 0.98/0.07 0.00/0.00 0.86/0.00 1.16/0.69
Lz/Lx (Ir, AF) 0.00/0.00 0.00/0.00 0.00/0.00 1.60/0.03 0.00/0.00 0.78/0.00 1.45/0.44
μz/μx (3d , AF) 0.00/0.00 1.33/1.20 2.46/2.47 3.80/3.80 2.95/2.93 1.75/1.76 0.00/0.00
Lz/Lx (3d , AF) 0.00/0.00 −0.75/0.05 −0.35/0.15 −0.06/0.19 −0.43/0.25 0.38/0.18 0.00/0.00

�E (FM) 0.0 8.0 57.5 20.2 2.6 −1.1 56.5
�E (AF) 0.0 13.0 27.0 12.2 −14.6 12.9 33.8

the MAE in TM nanostructures. In contrast, the MAE of Ir-Fe
and Ir-Co wires is very modest or vanishing. (iii) Ir-Ti wires
are found to be paramagnetic at their equilibrium distance r0.
Wires having 3d TMs below half-band filling (V and Cr) show
an antiparallel alignment of the Ir magnetic moments relative
to the 3d moments (see Table II). In these cases all Ir-3d unit
cells are magnetically equivalent (FM intercell correlations).
In contrast, the 3d elements in the middle of the series, at
and above half-band filling (Mn, Fe, and Co) yield a parallel
alignment of the moments within the Ir-3d unit cells and an AF
order between neighboring Ir-3d pairs. The energy differences
between the FM and AF configurations is typically 60–
160 meV/atom. At the end of the 3d series, Ir-Ni wires show
FM order both within and between Ir-Ni cells (see Table II).
Similarly strong dependence of the MAE on the d-band filling
have already been observed in thin-film studies.35,36 (iv) The
model SO anisotropy energy �ESO yields the correct sign of
�E and thus reproduces the ab initio easy axis, since the
latter is the direction yielding the largest orbital moments
per atom. (v) The local anisotropy energy �EIr dominates
over �E3d thus controlling the dependence of the MAE on
the 3d element. As in Pt-based wires, �E3d depends rather
smoothly on the 3d element. (vi) It is interesting to observe
that the MAE of Ir-Fe freestanding chains is quantitatively
comparable to the results of previous calculations for Fe chains
deposited on an Ir substrate.37,38 This suggests, as already
observed for Pt-Co chains, that similar coordination numbers
and alloy environments often lead to similar enhancements
of the MAE. (vii) In contrast to Pt-3d wires, the simple SO
anisotropy model is not applicable quantitatively, since in
Ir-3d wires very important redistributions of the spin- and
orbital-polarized density occur upon rotating �M . As a result,
strong anisotropies of the spin moments take place, which
are related to the strong hybridizations between the 3d and
5d elements.27,28,39 For example, in Ir-Mn, 2SMn = 0.98μB

and LMn = 1.60μB when �M is in-line, while 2SMn = 0.07μB

and LMn = 0.03μB when �M is perpendicular to the wire (see
Table II). Under such circumstances it is important to take
into account the spin-flip terms of the SO coupling and the
changes in the kinetic and Coulomb energies upon rotating
�M . These contributions tend to compensate �ESO and thus

reduce the actual MAE. Consequently, the simple model for

�ESO given by Eq. (2) often yields a large overestimation of
�E, by an order of magnitude in Ir-Mn. Despite this limitation,
the phenomenological model has been very useful in order to
reveal the importance of this subtle many-body effect on the
MAE of 1D alloy wires.

The robustness of our results with respect to changes in
the local environment and wire-substrate interactions can be
explored by varying the NN distance r and the shape of the
wires. In Fig. 4 the MAE of Pt-Ni and Ir-Cr wires is given as a
function of r . Results for pure Pt and Ir wires are included for
the sake of comparison. In agreement with previous studies,7

we find an extremely weak or vanishing �E in pure Pt
wires having r smaller or equal to their equilibrium distance
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FIG. 4. (Color online) MAE per atom �E = Ex − Ez of (a) Pt-Ni
and (b) Ir-Cr wires as a function of the NN distance r . Results are
given for linear (dots) and zigzag (crosses) alloy wires, as well as for
pure linear 5d wires (open circles). The magnetization directions x

and z are illustrated in the inset. The dotted (dashed) vertical lines
indicate the equilibrium NN distance r0 in pure 5d (alloy 3d-5d)
linear wires.
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TABLE III. Stability and equilibrium bond lengths of Pt-3d and Ir-3d wires: Segregation energy ES = (E3d5d − E3d − E5d )/2, equilibrium
bond length r0 in the ferromagnetic (FM) and antiferromagnetic (AF) configurations, and exchange energy EAF − EFM. The radii of the atomic
3d shells r3d are reproduced from Ref. 40. Energies are given in meV/atom and distances in Å.

Ti V Cr Mn Fe Co Ni

Pt-3d

ES −940 −550 −490 −660 −420 −170 −100
r0(FM) 2.34 2.32 2.33 2.38 2.32 2.30 2.28
r0(AF) 2.34 2.30 2.33 2.34 2.30 2.28 2.27
EAF − EFM 62 216 188 −62 −46 18 42

Ir-3d

ES −990 −700 −240 −190 −170 70 140
r0(FM) 2.20 2.22 2.27 2.38 2.25 2.21 2.26
r0(AF) 2.20 2.18 2.20 2.33 2.21 2.20 2.23
EAF − EFM 0 146 231 −48 −158 −52 20

r3d 1.64 1.42 1.30 1.21 1.15 1.09 1.03

r0 = 2.38 Å. Only for r > r0 one finds a rapid increase of �E

as the Pt moments set in, reaching a maximal �E = 25 meV
for about 8% bond-length expansion. The situation changes
drastically upon doping. For example, in Pt-Ni wires one
obtains �E � 25 meV at and even below the already smaller
equilibrium distance r0 = 2.28 Å. Very large values of �E are
found within the relatively wide range 2.2 Å � r � 2.8 Å. The
consequences of 3d doping are even more dramatic in Ir-based
wires. Pure Ir wires are paramagnetic for r � 2.53 Å, i.e.,
unless they are expanded more than 10% beyond equilibrium
(r0 = 2.28 Å). Alloying with Cr atoms induces very important
spin and orbital moments (2SIr = 0.8μB and LIr = 1.0μB)
and, consequently, a colossal enhancement of �E � 50 meV
at the equilibrium distance r0 = 2.28 Å. The effect is so
withstanding that it persists even for r as small as 2 Å [see
Fig. 4(b)]. Finally, we have also investigated zigzag Pt-Ni and
Ir-Cr wires in order to assess the effects of geometry changes
on the MAE. In fact, for any monoatomic wire there is a
critical unit cell length 2rc along the wire below which, in the
absence of lateral constraints, the linear chain becomes less
stable than the zigzag configuration.6,9 For example, for Pt-Ni
one obtains rc = 2.45 Å, and for Ir-Cr rc = 2.41 Å. As shown
in Fig. 4, the MAE of zigzag wires decreases linearly with
decreasing wire length. However, a remarkable enhancement
of �E remains, provided that r is not too far from r0. For
example, �E � 15 meV for zigzag Pt-Ni and �E � 30 meV
for zigzag Cr-Ir with r � r0 (see Fig. 4). These results quantify
the robustness of the alloying route to giant MAE.

In view of artificially made wires, it is interesting to explore
whether the 3d species favor the formation of alloys with the
5d atoms, or whether strong tendencies to segregation should
be expected. For a given interatomic distance r , a measure
of the alloy stability in free chains is given by the energy
difference ES = (E3d5d − E3d − E5d )/2, where E3d , E5d , and
E3d5d are the total ground-state energies per atom of pure 3d,
5d, and mixed 3d-5d wires at their corresponding equilibrium
distances. Results for ES are shown in Table III. One observes
that Pt-3d wires and most of the Ir-3d wires tend to form
alloys, since ES < 0 at the equilibrium distance r = r0 (see
the second and third rows of Table III). Only in Ir-Co and
Ir-Ni wires segregation is more stable (ES > 0). The absolute

value of ES generally decreases as one follows the 3d series
from Ti to Ni. This can be explained in terms of the radius
r3d of the 3d shell, which monotonically decreases from Ti to
Ni (see the first row in Table III). Taking into account40 that
r3d (Pt) � r3d (Ir) � r3d (Ti) one concludes that the smaller the
value of r3d is, the larger is the mismatch between 3d and 5d

atoms. Consequently, at the end of the 3d series segregation is
energetically more favorable.

IV. CONCLUSION

In conclusion, a first-principles investigation of 3d-5d 1D
alloys revealed exceptionally large values of the MAE �E,
particularly in Pt-Ni, Ir-Cr, and Ir-Ni wires. The development
of very high �E is found to be far more elusive than a
priori expected. The changes in �E as a function of the
3d element have been qualitatively correlated to the details
of the electronic structure close to the Fermi energy. The
theoretical discussion has been complemented with an analysis
from a local perspective by identifying the element-specific
SO contributions to �E. While in Pt-3d wires the MAE
can be traced back to a SO coupling mechanism, in Ir-3d

wires one observes more complex many-body effects, which
involve strong redistributions of the spin- and orbital-polarized
density as a function of the direction of the magnetization �M .
This indicates that the anisotropy of the kinetic and Coulomb
energies is quantitatively very important. The robustness of the
results with respect to strain and bond-length relaxations has
been quantified. TM alloy wires thus emerge as an extremely
promising field of fundamental and technological research
from both experimental and theoretical viewpoints.
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