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Abstract
The phenomenology of a LiFeAs superconductor can be explained in the framework of
four-band s±-wave Eliashberg theory. We have examined the experimental data available in
the literature and we have found that it is possible to reproduce the experimental critical
temperature, the gap values and the upper critical magnetic field within an effective model in a
moderately strong coupling regime that must include both an intraband term λ11 ∼ 0.9 and an
interband spin-fluctuation (λsf

tot ∼ 1.5) coupling. The presence of a nonnegligible intraband
coupling can be a fictitious effect of the violation of Migdal’s theorem.

(Some figures may appear in colour only in the online journal)

The family of iron pnictide superconductors, discovered by
the Hosono group [1] in 2008, has been the focus of intense
research over the last four years. Many compounds with
different crystal structures and physical properties have been
discovered and characterized [2–4], among them LiFeAs [5]
has proved to be a peculiar one.

First of all, LiFeAs, unlike almost all other iron-
compounds, does not need either charge doping or pressure
to condense in the superconducting state [5]. This implies that
no disorder is present. Further, it does not seem to be magnetic
and angle-resolved photoemission spectroscopy (ARPES)
reports poor nesting [6]. At a glance these characteristics
could turn us away from the idea of an unconventional
pairing mechanism, however the phonon-mediated coupling
seems to be too weak [7] to explain the relatively high
critical temperature (Tc = 18 K). Moreover, recent neutron
inelastic scattering measurements show the evidence of strong
antiferromagnetic fluctuations [8], reconciling LiFeAs with
other Fe-based superconductors.

A multigap scenario is suggested by the presence of
five different sheets in the Fermi surface [9]: two electron
pockets are centered near the M-point of the Brillouin zone
and three hole pockets around the 0-point. Despite the
Fermi surface showing five different sheets, according to
our electronic structure calculations the fifth sheet can be
disregarded because of its low density of states (see table 1 and

figure 1) and size3 [10–13]. Consequently, as a starting point,
we can model the electronic structure of LiFeAs by using a
four-band model [14, 15] with two hole bands (1 and 2) and
two electron bands (3 and 4).

In this work we construct a theoretical model to describe
the phenomenology of LiFeAs, by using a minimal number
of phenomenological parameters in combination with density
functional theory (DFT) calculations and the Eliashberg
theory of superconductivity. The model is then tested by
simulating the temperature dependence of the critical field.

Recently, four different gaps have been observed by
ARPES measurements on LiFeAs [17]. Hence, in order to
describe the superconductive properties of this compound, a
four-band Eliashberg model [14, 15] with s± symmetry [16]
can be used.

The experimental gap values [17] have been used
to fix the free parameters of the model and, after this,

3 Electronic structure calculations are done within Kohn–Sham [10]
density functional theory in the PBE [11] approximation for the exchange
correlation functional and using the experimental lattice structure [5].
Ultrasoft pseudopotentials are used to describe core states, while valence
wavefunctions are expanded in planewaves with a 40 Ryd cutoff (400 Ryd for
charge expansion). We use the implementation provided by the ESPRESSO
package [12]. A coarse grid of 20 × 20 × 16 k-points is explicitly calculated
and then Fourier interpolated to compute accurate Fermi velocities and
plasma frequencies.
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Figure 1. Fermi surface of LiFeAs.

the critical temperature and the upper critical magnetic
field [18] have been calculated. The final result is a
moderately strong coupling regime λtot ∼ 1.6–2.0 where the
total electron–boson coupling must include two different
contributions: a purely interband coupling mediated by
spin-fluctuations (sf), with λsf

tot ∼ 1.5 and a purely intraband
coupling λ11, whose origin will be discussed hereafter. The
isotropic values of the gaps at T = 8 K are reported to be11 =

5.0 meV,12 = 2.6 meV,13 = 3.6 meV,14 = 2.9 meV.
As a first approximation, since just a small anisotropy is
observed, we consider only the isotropic part.

The Eliashberg theory [19] generalized to multiband
systems has already been successfully used to describe the
properties of MgB2 [20–22] and iron-compounds [23, 24]. A
four-band Eliashberg model includes eight coupled equations
for the gaps 1i(iωn) and the renormalization functions
Zi(iωn), where i is the band index (that ranges between 1 and
4) and ωn are the Matsubara frequencies. The imaginary-axis
equations are:

ωnZi(iωn) = ωn + πT
∑
m,j

3Z
ij(iωn, iωm)N

Z
j (iωm)

+

∑
j

[
0ij + 0

M
ij

]
NZ

j (iωn) (1)

Zi(iωn)1i(iωn) = πT
∑
m,j

[
31ij (iωn, iωm)− µ

∗
ij(ωc)

]
× 2(ωc − |ωm|)N

1
j (iωm)+

∑
j

[0ij + 0
M
ij ]N

1
j (iωn) (2)

where 0ij and 0M
ij are the nonmagnetic and magnetic

impurity scattering rates, 3Z
ij(iωn, iωm) = 3

ph
ij (iωn, iωm) +

3sf
ij (iωn, iωm), 31ij (iωn, iωm) = 3

ph
ij (iωn, iωm) − 3sf

ij (iωn,
iωm), sf means antiferromagnetic spin-fluctuations and ph
phonons.

2(ωc − |ωm|) is the Heaviside function and ωc is a
cutoff energy. In particular, 3ph,sf

ij (iωn, iωm) = 2
∫
+∞

0 d��

Table 1. Fermi surface resolved Kohn–Sham properties (see
footnote 1): The Fermi density of states (N(0)) is given in
states/spin/eV, the Fermi velocities (vF) in 105 m s−1, and plasma
frequencies (ωp) in eV. ab is the in-plane and c is the out-of-plane
direction of the Fermi velocities and the diagonals of the plasma
tensor [13].

FS N(0) v‖ab
F v‖cF ω

‖ab
p ω

‖c
p

1 0.556 1.157 0.207 1.131 0.202
2 0.646 1.382 0.032 1.455 0.034
3 0.616 1.535 0.865 1.581 0.890
4 0.370 2.014 0.459 1.161 0.365
5 0.039 2.454 1.227 0.639 0.319

TOT 2.228 1.523 0.529 2.980 1.035

α2
ijF

ph,sf(�)

(ωn−ωm)2+�2 , µ∗ij(ωc) are the elements of the 4 × 4 Coulomb
pseudopotential matrix and, finally,

N1j (iωm) = 1j(iωm)

[√
ω2

m +1
2
j (iωm)

]−1

,

NZ
j (iωm) = ωm

[√
ω2

m +1
2
j (iωm)

]−1

.

The electron–boson coupling constants are defined as

λ
ph,sf
ij = 2

∫
+∞

0
d�

α2
ijF

ph,sf(�)

�
. (3)

The solution of equations (1) and (2) requires a huge
number of input parameters (32 functions and 16 constants);
nevertheless, some of these are interdependent, others may
be extracted from experiments and still others fixed by
appropriate approximations.

At the beginning we fixed the same conditions that have
been used for many other pnictides, as shown in [16], and we
assumed that: (i) the total electron–phonon coupling constant
is small and mostly intraband [25]; (ii) antiferromagnetic
spin-fluctuations mainly provide interband coupling [3, 23].
To account for these assumptions in the simplest way
(as has already been done for other iron-compounds with
good results) we should take: λph

ii = λ
ph
ij = 0, µ∗ii(ωc) =

µ∗ij(ωc) = 0 i.e. the electron–phonon coupling constant and
the Coulomb pseudopotential compensate each other, in first
approximation, and λsf

ii = 0, i.e. SF produce only interband
coupling [23]. However, within these assumptions, we were
not able to reproduce the gap values of LiFeAs, and in
particular the high value of 11, the best results obtained are
reported in the second row of table 2.

In order to solve this problem it is necessary to introduce
at least an intraband coupling in the first band, then λ11 6= 0.

The final matrix of the electron–boson coupling constants
becomes

λij =


λ11 0 λ13 λ14

0 0 λ23 λ24

λ31 = λ13ν13 λ32 = λ23ν23 0 0

λ41 = λ14ν14 λ42 = λ24ν24 0 0

 (4)

2



J. Phys.: Condens. Matter 25 (2013) 205701 G A Ummarino et al

Table 2. The first row shows the experimental data. The second row concerns the pure interband case (λii = 0) while the last three include
an intraband term (λ11 6= 0). A very large value appears in the first case (the third row), a smaller one if the phonon spectral function G(�)
(fourth row) or the electron–phonon spectral function α2F(�) (fifth row) are considered. The critical temperatures are given in K and the
gap values in meV.

λ11 λtot λ13 λ23 λ14 λ24 11 12 13 14 Tc

Ex. — — — — — — 5.0 2.6 3.6 2.9 18.0
sf 0.00 1.80 1.78 0.66 0.45 0.52 3.7 2.6 3.6 2.9 15.9
sf, ? 2.10 2.00 1.15 0.80 0.45 0.30 5.0 2.6 3.6 2.9 18.6
sf, ph (1) 0.86 1.62 1.06 0.79 0.42 0.30 5.1 2.6 3.7 2.9 20.0
sf, ph (2) 0.90 1.63 1.15 0.80 0.45 0.30 5.0 2.6 3.6 2.9 20.1

where νij = Ni(0)/Nj(0) and Ni(0) is the normal density of
states at the Fermi level for the ith band (i = 1, 2, 3, 4). We
chose spectral functions with Lorentzian shape i.e:

α2
ijFij(�) = Cij

{
L(�+�ij,Yij)− L(�−�ij,Yij)

}
(5)

where L(�±�ij,Yij) =
1

(�±�ij)2+Y2
ij

and Cij are normalization

constants, necessary to obtain the proper values of λij
while �ij and Yij are the peak energies and half-widths
of the Lorentzian functions, respectively [23]. In all the
calculations we set �ij = �sf

ij = �sf
0 = 8 meV [8], and

Yij = Ysf
ij = �

sf
ij /2 [26]. The cutoff energy is ωc = 18�sf

0

and the maximum quasiparticle energy is ωmax = 21�sf
0 .

We put 0ij = 0
M
ij = 0 because the ARPES measurement are

on very good single crystals of LiFeAs [17]. Bandstructure
calculations (see table 1) provide information about the
factors νij that enter the definition of λij. The obtained values
are ν13 = 0.9019, ν14 = 1.5010, ν23 = 1.0483, ν24 = 1.7447.

After these considerations the free parameters are
reduced to the five coupling constants λ13, λ23, λ14, λ24 and
λ11. First of all we solved the imaginary-axis Eliashberg
equations (1) and (2) (actually we continued them analytically
on the real-axis by using the approximants Padè technique)
and we fixed the free parameters in order to reproduce the gap
values at low temperature.

The large number of free parameters (five) may suggest
that it is possible to find different sets that produce the same
results. It is not so; as a matter of fact the predominantly
interband character of the model drastically reduces the
number of possible choices.

At the beginning, in order to have the fewest number
of free parameters, we set �11 to be the same as the
antiferromagnetic SF (even if the intraband coupling cannot
be mediated by SF). In this case (see the third row of table 2)
the value of λ11 is very large. We add only λ11 because only
band 1 has a low Fermi energy and only in this band does
the Migdal’s theorem break down. The effect of the vertex
corrections [27, 28] can be simulated by an effective coupling
that is bigger than real coupling [29, 30]. Certainly in bands 2,
3 and 4, the phonon couplings are very small and therefore we
have not considered the possibility to have λ22, λ33, λ44 6= 0
and also, in a previous paper, we have demonstrated that,
in these systems, the effect of a small phononic intraband
coupling is negligible [23].

Then we considered for �11 the typical phonon
energies [7]. In this case (as reported in the fourth and fifth

Figure 2. The calculated phononic density of states G(�) (red
dashed line) and the calculated total electron–phonon spectral
function α2Ftot(�) (black solid line).

rows of table 2) the value of λ11 is 0.86–0.9, while the
antiferromagnetic spin-fluctuations contribution corresponds
to a moderately strong coupling regime (λsf

tot ∼ 1.5).
In fact, we have solved the Eliashberg equations in two

other cases: in the first case we used as α2
11F(�) the calculated

phonon density of states G(�) and in the second case
we considered the calculated total electron–phonon spectral
function α2Ftot(�), both appropriately scaled. The proper
choice is the second one, but this spectral function should, in
principle, be different for each band; since the first band shows
peculiar characteristics the evaluation of the electron–phonon
coupling could be not so reliable. Then we decided to use the
phonon spectra and let the coupling be a free parameter. These
spectral functions are shown in figure 2.

At this point there are no more free parameters. The
critical temperature can be evaluated and it turns out to be
very close to the experimental one, Tcalc

c = 18.6–20.1 K.
By solving the real-axis Eliashberg equations we

obtained the temperature dependence of the gaps (see figure 3)
for the parameter sets reported in the third and fourth rows of
table 2.

The multiband Eliashberg model developed above can
also be used to explain the experimental data of the
temperature dependence of the upper critical magnetic
field [18]. For the sake of completeness, we give here the
linearized gap equations in the presence of the magnetic field,
for a superconductor in the clean limit. In the following, vFj is
the Fermi velocity of the jth band, and Hc2 is the upper critical
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Figure 3. Temperature dependence of the absolute gap values
(lines) and experimental data (symbols) at 8 K. The dark cyan solid
(dashed) line represents the first gap, the orange solid (dashed) line
the second one, the violet solid (dashed) line the third and the red
solid (dashed) line the fourth, calculated with the parameters of the
fourth (third) row of table 2.

field:

ωnZi(iωn) = ωn + πT
∑
m,j

3Z
ij(iωn − iωm)sign(ωm) (6)

Zi(iωn)1i(iωn) = πT
∑
m,j

[
31ij (iωn − iωm)− µ

∗
ij(ωc)

]
× θ(|ωc| − ωm)χj(iωm)Zj(iωm)1j(iωm) (7)

χj(iωm) =
2√
βj

∫
+∞

0
dq exp(−q2)

× tan−1

[
q
√
βj

|ωmZj(iωm)| + iµBHc2sign(ωm)

]
.

Here βj = πHc2v2
Fj/(280) and80 is the unit of magnetic flux.

In these equations the four bare Fermi velocities vFj [31] are
the input parameters. As the first band shows that peculiar
characteristics even in the calculation of the Fermi velocity
can be present in some corrections, we decided to let the first
Fermi velocities be free parameters and we chose them to find
the best fit of the experimental data [18] while the other values
have been fixed to the values reported in table 1. Then vF1,
in each case, is the only free parameter. The obtained values
are: v‖cF1 = 2.28 × 105 m s−1 and v‖ab

F1 = 1.74 × 105 m s−1,

in the phonon case and v‖cF1 = 2.79 × 105 m s−1 and v‖ab
F1 =

2.14 × 105 m s−1, if the spin-fluctuation spectral function is
considered. Figure 4 shows the experimental data and the best
theoretical curves (solid and dashed lines) obtained by solving
the Eliashberg equations within the model discussed above.
As can be seen, the results obtained in the two considered
cases are almost indistinguishable and in very good agreement
with the experimental data. In figure 4 we also show the
curves calculated with vF1 taken from table 1 when λ11 6= 0
(the fourth case in table 2, dotted line olive and navy) and
when λ11 = 0 (the first case in table 2, dashed–dotted line
magenta and pink). In both situations there is no agreement
with the experimental data. The curves calculated in absence

Figure 4. Experimental temperature dependence of the upper
critical field (symbols), and the relevant fitting curves (lines)
obtained by solving the Eliashberg equations in the magnetic field.
Red circles and a solid red (dashed dark blue) line stand for H‖c,
black square symbols and a solid black (dashed orange) line stand
for H‖ab calculated with the parameters of the fourth (third) row of
table 2. The dotted olive (H‖c), navy (H‖ab), dashed–dotted magenta
(H‖c) and pink (H‖ab) lines are, respectively, the fourth and first
cases of table 2 but where vF1 is not a free parameter but is taken
from table 1.

of the term λ11 do not agree with the experimental data so
we deduce that the higher value of v‖ab,c

F1 is not produced by
the presence of an intraband term (λ11 6= 0) but, probably,
by the peculiar characteristics of band 1. However one must
consider the fact that the Eliashberg equations are derived
by assuming Migdal’s theorem. In presence of an anomalous
band dispersion as for band 1, the theory may partially break
down. Allowing v‖ab,c

F1 as a free parameter implicitly implies
that we are ‘phenomenologically’ going beyond the first order
contributions (i.e. now we cannot neglect the effects of the
vertex corrections in band 1). The break down of Migdal’s
theorem leads to the use of effective values of λ11 and vF1

different from the real value because the framework of the
theory is partially inadequate.

To summarize we have constructed a phenomenological
model of superconductivity for LiFeAs able to describe
its critical temperature, the multigap structure measured by
Umezawa and coworkers in [17] and other experimental
observations. However this process was not straightforward.
To be able to conjugate a spin-fluctuation dominated pairing
with the experimental gap structure we have been forced
to introduce an intraband coupling that acts only on the
first band. The presence of a phononic, purely intraband
term seems to indicate an intrinsic incompatibility between
the structure of the superconducting gaps as measured by
Umezawa and coworkers in [17] and a purely spin-fluctuation
mediated pairing. A possible explanation may be linked to
the very low Fermi energy of the band for which vertex
corrections [27, 28] to the usual Migdal–Eliashberg theory
may be relevant, and are expected to increase the strength of
the phononic pairing [29, 30].

In conclusion, our calculations show that LiFeAs presents
peculiar features with respect to other iron-compounds and it
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cannot be explained within the framework of a pure interband
spin-fluctuation mediated superconductivity.
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