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Chirality-dependent magnon lifetime in a compensated half-metallic ferrimagnet
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We report a first-principles investigation of magnetic excitations in a compensated half-metallic ferrimagnet
using both the adiabatic Heisenberg model and the dynamic spin susceptibility of the electronic system. The
combination of half-metallicity and spin compensation of inequivalent magnetic sublattices generates two acoustic
magnon modes characterized by linear dispersions with equal spin wave velocities and an asymmetric Landau
damping. The difference in the damping is the consequence of the half-metallicity leading to the gap in the energy
of the up-to-down electronic spin-flip excitations, whereas down-to-up excitations are gapless. The engineering
of the activation energy of the Stoner excitations opens an avenue for the chirality-selective manipulation of the
lifetime of magnons.
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I. INTRODUCTION

The spin of electron can be used to store,1 process,2

and transmit3 information on a nanoscale. While spintronics4

aims at controlling spins of single electrons, the emerging
field of magnonics5 relies on magnons, i.e., the coherent
precession of atomic magnetic moments. In both cases the
technological progress requires the development of novel
materials.

For atomic spin moments coupled via exchange interaction,
the magnon frequencies achieve the terahertz regime. At these
frequencies the spin waves can hybridize with the continuum
of single-particle spin-flip (Stoner) excitations that leads to
the damping of the moments’ precession. Such mechanism,
known as Landau damping,6 reduces the magnon lifetimes
and propagation length.7 New materials with reduced damping
are thus under huge demand in magnonics.8 In this context
we call attention to a class of candidates from spintronics,
the half-metals,9 which feature one metallic spin channel
while the other one is insulating. From the point of view
of the magnon spectrum, the ferromagnetic half-metals have
been shown to possess an important property: Despite the
conducting character of these materials, the Landau damp-
ing can be inoperative here due to the gap in the Stoner
spectrum.10

Until now, magnonics is mostly based on ferromagnets,
characterized by parallel alignment of atomic moments.
Recent experiments have shown that the use of materials
with antiparallel oriented magnetic sublattices, like antifer-
romagnets (AFM) and ferrimagnets, have great potential for
ultrafast spin wave control (optomagnonics).11 For instance,
the reversal of the polarity of AFM magnons via circularly
polarized light,12 and the optical directioning of the spin
wave emission in a ferrimagnet,13 were reported. By ex-
ploring different magnetic orderings one can enhance the
functionality of magnonic devices, enabling, e.g., optically
controlled switches. However, to switch the magnetization of
a nanostructure on the ultrafast time scale, the damping of the
terahertz magnons needs to be controlled.7

In this paper we present a study of the lifetimes of magnons
in a particular class of materials, known as half-metallic
antiferromagnets (HM-AFM). This concept was developed

by de Groot14 in his pioneer work on half-metallic magnets.
HM-AFMs are not conventional antiferromagnets, but a
special case of a ferrimagnet with compensated magnetization.
Recent reviews on theoretical candidates of HM-AFMs can be
found in Refs. 15 and 16. Despite strong research interest
from spintronics, the properties of the spin excitations in these
materials have not been addressed. The unique combination of
features, namely, the gap in only one spin channel, and the full
spin compensation of inequivalent magnetic sublattices, make
an expectation of unusual properties of the spin excitations
well founded. The aim of our work is to explore this gap,
taking de Groot’s prototype of a half-metallic antiferromagnet,
CrMnSb.14

Before going to the consideration of this complex material,
it is useful to recall the fundamentally different properties
of spin waves in well-studied cases of ferromagnets and
conventional antiferromagnets with two equivalent sublattices.
Focusing on the region of small wave vectors q, the energy
of the acoustic magnons in a ferromagnet is quadratic in q

and nondegenerate, whereas the energy of the two degenerate
AFM magnon modes behaves linearly. Additionally, all ferro-
magnetic magnons feature the same direction of precession,
which can be characterized as a definite chirality, while the
pairs of degenerate antiferromagnet magnon modes precess in
opposite directions. Also the damping properties are different:
A part of the ferromagnetic acoustic branch lies outside the
Stoner continuum and does not experience Landau damping,
whereas the antiferromagnetic magnons are damped starting
from the lowest energies.17

Our study shows that, similar to a usual AFM, the HM-AFM
exhibit two magnon branches with linear dispersion for small
q and zero magnon energy in the q = 0 limit (Goldstone
mode). Despite inequivalence of the sublattices the spin
wave velocities of both branches are equal. Interestingly, the
magnon damping is asymmetric, depending on the chirality
of the magnons. We also show that the disturbance of the
spin compensation by electron doping opens a gap at q = 0,
and changes the initial linear dispersion to quadratic. At the
same time, the change of the position of the Fermi level
within the half-metallic gap influences the activation energy
of the Stoner excitations, and therefore the lifetimes of the
magnons.
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II. METHODOLOGY

A. Transverse dynamic spin susceptibility

A powerful tool for the first-principles study of the
energies and lifetimes of magnons is the calculation of the
dynamic transverse spin susceptibility within linear response
time-dependent density functional theory.18 The electronic
structure calculations are based on density-functional theory
and the Korringa-Kohn-Rostoker multiple scattering method.
The numerical implementation has been recently developed
by us and applied to the study of various systems.19

The susceptibility χ (r,r′,q,ω) relates the external magnetic
field B and the induced magnetization m,

m(r,q,ω) =
∫

�

dr′χ (r,r′,q,ω)B(r′,q,ω), (1)

where ω and q are the frequency and the wave vector of the
magnetic field. The vectors r, r′ belong to the Wigner-Seitz
cell �. For magnets with a collinear magnetic ground state,
the response to the infinitesimal transverse magnetic field
(i.e., field parallel to the xy plane) is also transverse.20

The calculational procedure consists of two steps. First, the
dynamic transversal Kohn-Sham (KS) susceptibility

χKS(r,r′,q,ω) =
∑

k∈�BZ

∑
nn′

(f ↑
nk−q − f

↓
n′k)

× ψ
↑
nk−q(r′)ψ↑

nk−q(r)∗ψ↓
n′k(r)ψ↓

n′k(r′)∗

ω − (ε↓
n′k − ε

↑
nk−q) + i0+ (2)

is evaluated. Here k, k′ denote crystal momenta belonging to
the first Brillouin zone (�BZ); ψσ

nk stands for the electronic
Bloch state of band n, and εσ

nk and f are its corresponding
energy and occupation. The 0+ symbol denotes the use of the
retarded quantities.

The imaginary part of the KS susceptibility gives the
spectral density of the Stoner excitations, i.e., single-electron
spin flips. For positive frequencies, only electronic transi-
tions between occupied (f = 1) spin-up states with crystal
momentum k − q and empty (f = 0) spin-down states with
momentum k contribute to the imaginary part of the KS sus-
ceptibility. For negative frequencies, the contribution comes
from the Stoner transitions of opposite direction. However,
the KS susceptibility does not give the actual magnetic
response of the system since the induced spin magnetization
alters the exchange-correlation (xc) potential experienced by
electrons, and this additional field is not taken into account
in χKS.

To obtain the actual physical response one needs to solve the
Dyson equation giving the enhanced (interacting) transverse
magnetic susceptibility χ :

χ (r,r′,q,ω) = χKS(r,r′,q,ω)

+
∫

dr1χKS(r,r1,q,ω)Kxc(r1)χ (r,r′,q,ω).

(3)

The exchange-correlation kernel Kxc accounts for the change
of the effective KS potential, and is based on our work
on the adiabatic (i.e., frequency-independent) local density
approximation.10,18 The imaginary part of the enhanced sus-

ceptibility provides information on their energies and lifetimes.
In the matrix form, the solution of the Dyson equation can be
written as

χ = (I − χKSKxc)−1χKS. (4)

The singularities of the enhanced susceptibility can have
two sources: the χKS Stoner transitions and the zeros of
the I − χKSKxc term. The step from the noninteracting to
the enhanced susceptibility results in a remarkable property
where energy absorption can now take place for frequencies
outside the Stoner continuum. This manifests in the presence
of collective spin wave excitations or magnons.

B. Mapping onto the Heisenberg Hamiltonian

The study of spin waves in itinerant-electron magnets is
traditionally based on the adiabatic treatment of magnetic
degrees of freedom, which maps the system onto an effective
Heisenberg Hamiltonian of atomic moments:

H = −1

2

∑
RR′

JRR′eR · eR′ , (5)

where eR is the unit vector in the direction of the atomic spin
moment at site R, and JRR′ are the pair exchange interactions
parameters.

In our first-principles calculations, the exchange interac-
tions JRR′ are obtained via magnetic force theorem, i.e., by the
estimation of the energies of small spin rotations as described
in Refs. 21 and 22. We also evaluate effective sublattice
exchange parameters, given by the sum of the exchange
interactions of a given atom at site Ri of sublattice i with
all other atoms of this sublattice:

Ji =
∑

R′
i(Ri−R′

i �=0)

JRiR′
i

(intrasublattice), (6)

or with all atoms of another sublattice j ,

Jij =
∑
Rj

JRiRj (intersublattice). (7)

In the following section we derive the spin wave dis-
persion relation in the Heisenberg framework for a general
two-sublattice ferrimagnet, and consider the special case of
the compensated ferrimagnet. Next, we perform ab initio
adiabatic calculations in the half-metallic compensated fer-
rimagnet CrMnSb. We remark that the adiabatic treatment
neglects Stoner excitations and gives no information about
lifetimes.

III. RESULTS

A. Density of states of a half-metallic compensated
ferrimagnet: CrMnSb

In Fig. 1 we show the density of states of half-Heusler
CrMnSb. The half-metallic gap is associated with the strong
hybridization23 between 3d states of Cr and Mn sublattices,
while Sb stabilizes the C1b structure.24 From the viewpoint
of the electronic structure, there is an important difference
between an antiferromagnet with two equivalent sublattices
and a ferrimagnet with inequivalent magnetic sublattices. In
the former the electronic states are spin degenerate,17 and
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FIG. 1. (Color online) Electronic density of states of the half-
metallic CrMnSb, a half-Heusler alloy. Details around the Fermi
level are depicted in the inset. A vertical thick dotted line in the
inset illustrates a shift of the Fermi level with simulated doping
resulting in the change of the activation energy of Stoner excitations
(see discussion in the last section of the paper).

the half-metallic gap cannot form. On the other hand, in a
ferrimagnet the electronic structures of up and down electrons
are different (Fig. 1). The calculated values of the atomic spin
moments are mCr = 2.71 μB and mMn = −2.75 μB, with a
small positive moment of the Sb atom and interstitial region.
We have chosen the direction of the Cr moment as the reference
of the spin-quantization axis. Note that the Fermi level lies
at the lower edge of the half-metallic gap in the spin-up
channel. This feature is important for the understanding of
the lifetime properties of the spin wave excitations obtained in
the calculation of dynamic susceptibility.

B. Adiabatic spin waves within the Heisenberg model

For deeper understanding of the results of first-principles
calculations, it is instructive to first study analytically the spin
waves in a compensated ferrimagnet within the framework of
the Heisenberg model [Eq. (5)]. We consider a crystal with
two inequivalent magnetic atoms in the unit cell, forming two
sublattices with the antiparallel atomic moments: S1 (up) and
−S2 (down). Using the Landau-Lifshitz equation to describe
the spin dynamics,25 the frequencies ω±(q) of the magnon
excitations can be found as the eigenvalues of the following
matrix: (

�1(q) − 2
S1

J12(0) − 2
S1

J12(q)
2
S2

J12(q)∗ −�2(q) + 2
S2

J12(0)

)
, (8)

where �n(q) = (2/Sn)[Jnn(0) − Jnn(q)], n = 1, 2, is the dis-
persion of the ferromagnetic magnons that would propagate
in each of the sublattices in the absence of the intersublattice
coupling J12(q). We cast Jnm(q) as

Jnm(q) =
∑

R

Jnm(R)e−iq · R, (9)

where the summation proceeds over lattice vectors R. Jnm(R)
stands for the Heisenberg exchange interaction between
moments on sublattices n and m in the primitive cells separated
by vector R. The dispersions ω±(q) of two branches of magnon

excitations read

ω±(q) = �− + D−(q) ±
√

[�+ − D+(q)2] − C(q), (10)

where �± = J12(0)(S1 ± S2)/(S1S2), D±(q) = �1(q)±�2(q)
2 ,

and C(q) = 4|J12(q)|2/(S1S2). In the compensated case (S1 =
S2 = S) the frequencies of both branches vanish for q = 0 and
assume in the region of small q the form

ω±(q) = ±cq + d−q2 + O(q3), (11)

where d−q2 is the quadratic term in the Taylor expansion of
D−(q), and c is a complex function of the intra- and intersub-
lattice exchange interactions. The signs of the frequencies in
Eq. (10) determine the chirality of the magnons and correspond
to different directions of the precession.

As mentioned earlier, similar to AFMs26 we obtain two spin
wave branches with linear q dependence and energy tending
to zero in the q → 0 limit. The spin wave velocities (±c) of
both branches are of equal magnitude. However, unlike the
AFM case, the branches are not equivalent (ω+ �= −ω−), and
there is no symmetry operation that transforms one magnon
mode into the other. In the small-q region [Eq. (11)], the
symmetry of the branches is broken by the quadratic term
proportional to d−. In an AFM, D−(q) = 0 and therefore
d− vanishes. For a compensated ferrimagnet, despite equal
magnetic moments of the two sublattices, the intrasublattice
exchange interactions are different (�1 �= �2), resulting in
nonzero d−. Interestingly, the coefficient d− simply amounts to
the difference of the spin wave stiffness constants of decoupled
ferromagnetic sublattices, and is entirely determined by the
intrasublattice exchange parameters.

In the calculations discussed below we also simulate
electron doping, which destroys the spin compensation. In
the case of uncompensated moments the small-q dispersion of
Heisenberg magnons given by Eq. (10) changes qualitatively
in two respects. First, for both branches the leading q term
becomes quadratic. Second, one of the branches develops an
energy gap equal to 2�−, depending on the intersublattice
coupling, whereas the other branch remains gapless giving rise
to the Goldstone mode. In Fig. 2 we present the first-principles
results for the Heisenberg’s magnons in CrMnSb, clearly
showing all the above features.

C. Spin wave dispersion and lifetimes
from dynamic spin susceptibility

Next, we turn to the discussion of first-principles calcu-
lations of the spin excitations in CrMnSb. The solid lines
in Figs. 2(a) and 2(b) correspond to the frequencies of
adiabatic magnons calculated with the use of the Heisenberg
model. The inequivalence of the two magnetic sublattices is
reflected in the difference of effective sublattice exchange
parameters [Eq. (6)]: JCr = 69 meV and JMn = 12 meV. The
leading intrasublattice exchange interactions are ferromag-
netic for both Cr and Mn, while the effective intersublattice
exchange interaction [Eq. (7)] is antiferromagnetic (JCr-Mn =
−225 meV), with a much larger magnitude due to the shorter
interatomic distance.

Points in Figs. 2(a) and 2(b) correspond to spin waves
obtained from dynamic susceptibility calculations. In the insets
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FIG. 2. (Color online) (a) Magnon spectra obtained through
Heisenberg adiabatic dynamics (solid curves), and from the dynamic
magnetic susceptibility (points) for CrMnSb. The error bars corre-
spond to the inverse lifetimes. The inset presents the spectral densities
of spin wave (solid line) and Stoner (broken line) excitations for wave
vector q = (0.25,0.25,0.25) corresponding to the center of the 	L

interval. (b) The same as (a) but for electronically doped CrMnSb.
(c) The components of the normalized magnon eigenvectors for both
magnon branches of the compensated ferrimagnet [(a)]. The upper
line shows the deviation from the ground-state direction of the Cr
moment in the positive-chirality branch and of the Mn moment in the
negative-chirality branch. For the lower line, the atomic assignment
to the magnon branches is opposite.

we show spectral densities of the enhanced and unenhanced
susceptibilities for one value of the wave vector. The peaks
of the enhanced susceptibility correspond to the spin wave
excitations: Their position determines the energy of the
magnon and their width the inverse lifetime. The spectral
density of the Stoner excitations, given by χKS, is shown as
broken lines in the insets. At the frequencies where it is zero,
the magnon peaks have the form of a δ function and feature
infinite lifetime (filled narrow peaks in the insets). On the
other hand, nonzero density of the Stoner transitions at the
energy of the magnon leads to Landau damping, reflected in
the increased width of the peak [see inset of Fig. 2(a)]. The
error bars in Fig. 2(a) denote full widths at the half maximum
(FWHM) of the peaks.

A remarkable result is the strong difference in the damping
properties of the two modes. While the negative-frequency
branch remains undamped up to the Brillouin zone boundary,
the magnons of the other branch are substantially damped past
the middle of the 	L interval. For instance, the FWHM at
the edge of the BZ zone is 100 meV. This asymmetry is a
consequence of the half-metallic character of the electronic
structure. Since the system has a gap in the spin-up channel
(cf. Fig. 1), there are no low-energy Stoner transitions from
spin-down states to spin-up states, while the up-to-down
transitions remain practically gapless due to the position of
the Fermi level just at the bottom of the half-metallic gap. This
property is the origin of the dependence of the magnon lifetime
on its chirality: The magnons of negative chirality (ω−) cannot
decay via Landau mechanism and those of positive chirality
(ω+) are damped.

The analytic continuation procedure precludes determina-
tion of magnon frequencies from the dynamic susceptibility in
the long wavelength limit.17 This is the reason why the results
of the dynamic calculation are given starting from q = 0.08.
The magnon energies obtained from the dynamic susceptibility
are in good agreement with the results of adiabatic calculations.
The difference between the two approaches can be traced back
to the influence of finite lifetime effects and a systematic error
in the determination of Heisenberg exchange parameters with
the magnetic force theorem approach.27

It is instructive to characterize the magnons from their
origin in the Cr and Mn sublattices. In each magnon state,
all atomic moments precess with one single chirality and one
single frequency, but with different amplitudes. The values
of the deviations of the precessing moments from the ground
state direction are given by the eigenvectors of matrix (8).
In Fig. 2(c) we show the components of the normalized
eigenvectors as a function of q for the case of the compensated
system. Each line gives the deviation of a certain type of atomic
moment in a given branch. For q = 0 the deviations of the
moments of both sublattices are equal, as expected for the
uniform Goldstone mode. With increasing q the difference of
the deviations monotonously increases. At the zone boundary
the deviation of the moments of one of the sublattices is much
larger than for the other. On this basis the branch of positive
chirality can be characterized as “Cr type” while the mode of
negative chirality as “Mn type.”

The properties of the spin excitations of half-metals are
significantly affected by the change of the activation energy
of the Stoner excitations that can be achieved, for instance,
through doping. We have simulated doping by increasing the
electron number of all three elements by 0.2e. This procedure
shifts the Fermi level to the middle of the gap (cf. Fig. 1).
The compensation of the spin moments is lost since additional
electrons result in a negative total moment.

The disturbance of the spin compensation leads to the
opening of a gap at q = 0 between the two spin wave branches
[Fig. 2(b)]. The most important change pertains, however, to
the lifetimes. Since the Fermi level reaches now the middle of
the half-metallic gap, both up-to-down and down-to-up Stoner
transitions develop comparable activation energies, as evident
from the dashed lines in the inset of Fig. 2(b). The absence of
the Stoner transitions at the spin wave energies makes Landau
damping inoperative for both branches.
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IV. CONCLUSIONS

In summary, we study the dispersion and lifetimes of spin
wave excitations in a half-metallic compensated ferrimagnet,
using both the Heisenberg adiabatic and the electronic dy-
namic susceptibility approaches. Half-metallicity is a natural
source of protection against magnons attenuation, and we
show that HM-AFMs exhibit unique excitation properties,
combining virtues of antiferromagnets and ferromagnets.
Due to inequivalence of the sublattices, we observe an
asymmetric damping of the magnon branches that can be
useful in the design of magnonic devices with selective
use of spin wave branches. The damping can be efficiently
manipulated by influencing the position of the Fermi level
within the half-metallic gap. On the practical side, there

are several challenges ahead. Further efforts are needed to
synthesize and experimentally study half-metallic antiferro-
magnets. The Heusler alloys are good candidates for the
search for new half-metallic antiferromagnets due to typically
high magnetic critical temperature and compatibility with
semiconductor technology.16,23 We hope that our findings
will further stimulate the research on this promising class of
materials.
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