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First-principles calculations were performed to investigate the structural feasibility of M and Z phases

(novel monoclinic and orthorhombic structures recently reported for carbon) for silicon and

germanium. The lattice parameters, bulk modulus, vibrational properties, and elastic constants are

calculated using the local density approximation to describe the exchange-correlation energy, while the

optical properties are calculated by using Many-Body Perturbation Theory in the G0W0 approximation.

Our results indicate that silicon and germanium with the proposed crystal symmetries are elastically

and vibrationally stable and are small band-gap semiconductors. We discuss the possible synthesis of

such materials. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804668]

I. INTRODUCTION

The search of allotropes and polymorphs of single ele-

ments and polyatomic compounds has attracted considerable

attention from both theoretical and experimental researchers.

Indeed, since most of chemical and physical properties

depend on the crystal structure, it is expected that materials

with new crystal structures might show novel properties.

Among the important future electronic components, those

based on carbon are very promising. Indeed, its most stable

phase is a planar sp2 structure (graphite) and it has a wide va-

riety of allotropes such as graphene,1 fullerenes,2–4 nano-

tubes,5,6 and other more complicated structures,7 leading to a

large variety of electronic properties. The carbon family also

formed by silicon and germanium has a similar atomic elec-

tronic configuration with the same number of valence elec-

trons: they have an open-shell p orbital with only four

electrons, leading to the possibility of finding a diverse set of

geometries due to different hybridization as in the case of

carbon. Just to cite a few examples, Fujimoto et al. recently

reported two new silicon and germanium phases with body-

centered tetragonal (bct) unit cells.8 Using ab initio evolu-

tionary structural search, Li et al. have discovered a new

carbon phase with a monoclinic structure (referred to as M
phase) with hardness comparable to diamond.9 Applying ab
initio random structure search on the phase diagram of sili-

con, Malone et al. have identified a new phase with the Ibam
crystal structure.10 More recently, Amsler et al.11 have found

a new orthorhombic form of cold-compressed graphite

(called Z phase) showing the Cmmm symmetry and com-

posed by sp3 bonds. All these previous studies have opened

the possibility for a broader search of new allotropes of sili-

con and germanium (in the absence of pressure) possibly

showing novel properties within these materials. For

instance, Wu et al. have investigated the vibrational stability

and characterized the electronic properties of two of these

new allotropes (bct and M-phase) of silicon,12 discussing

their possible use as anode materials for lithium batteries.12

While Malone and Cohen have recently published a quite

complete report of different Germanium phases,13 some con-

sidered in this work for reference, neither the Z nor the M

phases were considered in this original work. On the other

hand, recently there has been strong interest in the Z phase of

carbon, where the elastic constants, stress-strain diagram,

vibrational stability, hardness, and Raman spectrum were

detailed studied. From these results, it has been shown that

the carbon Z has hardness comparable to diamond.14,15

On the other hand, various silicon and germanium allo-

tropes such as cubic diamond, allo16–18 clathrate,19,20 and nano-

tube phases21,22 have been synthetized at ambient pressure.

Some other allotropes can be synthesized under hydrostatic

conditions, such as b-Sn, Imma, simple hexagonal, Cmca, and

hexagonal close packed phases. Even more complex phases

can be obtained by decompression of the b-Sn phase (such as

R8, BC8, and ST12). This large number of allotropes has moti-

vated the theoretical study of new phases of silicon and germa-

nium. From the pioneering work of Joannopoulos and

Cohen,23,24 who performed predictions of new allotropes of sil-

icon and germanium with different physical properties of the

diamond phase, a long path has been committed into new crys-

tal structures based on these atoms. We refer the reader to
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some of the published papers to find details of the many differ-

ent considered structures, in particular those by Needs et al.,25

Pfrommer et al.,26 Malone et al.,10,13,27–29 and more recently

by Zhao et al.30 and Zhai et al.31

In the present work, we report on a first-principles study

of silicon and germanium in the M (space group C2/m,

monoclinic) and Z (space group Cmmm, orthorhombic)

phases, as reported in Refs. 9 and 11. These are compared

with the lowest energy structure for Si and Ge, the diamond

structure (space group Fd3m, cubic). We perform a struc-

tural, vibrational and elastic stability study as well as an opti-

cal characterization. Section II describes the theoretical

methods used to perform the different characterizations

while Sec. III discusses the results obtained for the consid-

ered monoclinic and diamond unit cells. Finally, we present

some conclusions and perspectives in the last section.

II. CALCULATION METHODS

The structural parameters of the diamond, M and Z phases

of silicon and germanium are optimized using Density

Functional Theory.32 The exchange-correlation energy is

described through the Local Density Approximation (LDA),

as parametrized by Perdew and Zunger.33 In order to study the

influence of the chosen exchange-correlation functional, we

also calculate the structural and elastic properties using the

Generalized Gradients Approximation (GGA) functional pro-

posed by Perdew, Burke, and Enzerhof.34 Since the obtained

errors (with respect to experimental data) in the elastic con-

stants are larger than those obtained with the LDA functional

for the diamond phase,34 we restrict ourselves by using LDA

for the rest of properties. We use the Hartwigsen-Goedecker-

Hutter (HGH) relativistic separable dual-space Gaussian pseu-

dopotential35 within the ABINIT code and Vanderbilt ultrasoft

pseudopotential36 for the CASTEP code to describe the va-

lence electrons. The Kohn-Sham orbitals and electron density

are expanded in terms of a plane-wave basis set with an

energy cut-off of 700 and 750 eV for Si and Ge, respectively.

The Brillouin zones are sampled using 10� 10� 10,

10� 10� 8, and 8� 8� 16 Monkhorst-Pack37 grid k-points

for the diamond, M and Z phases, respectively. Special atten-

tion is paid to the relaxation of the internal degrees of freedom

of the monoclinic and orthorhombic structure, which have

eight atoms per unit cell. The bulk modulus is obtained by fit-

ting the total energy versus volume with a third order Birch-

Murnaghan (BM) equation of state.38

We calculate the elastic constants by means of two dif-

ferent methods, as well as two different pseudopotentials.

Basically, we use the finite strain method39 and Density-

Functional Perturbation Theory (DFPT)40 as implemented in

the CASTEP41 and ABINIT42 codes, respectively. The pho-

non dispersion relations are obtained within the linear

response theory as implemented in the ABINIT code.42,43

The dynamical matrices are computed on a 6� 6� 7 mesh

of q-points, and then a Fourier interpolation is employed to

obtain the phonon frequencies in the full Brillouin zone.

The band-structures and optical properties are calculated

using Many-Body Perturbation Theory (MBPT) within the

one-shot G0W0 approximation44 as implemented in the

ABINIT code. An 8� 8� 9 Monkhorst-Pack grid of k-

points is used for both silicon and germanium in the M and Z
phases. For the materials in the diamond phase, a denser

mesh with 328 k-points is used. It is defined as the reciprocal

lattice of a supercell lattice defined by the three vectors:

(11,�11,0), (11,0,11), and (0,�11,11). Trouiller-Martins

pseudopotentials are used for the G0W0 and optical response

calculations (HGH pseudopotentials cannot be used for

G0W0 calculations in ABINIT). The dielectric matrix is cal-

culated using the Adler-Wiser expression summing over 64

bands. Local-field effects are taken into account adopting an

energy cut-off of 136 eV, corresponding to a matrix size of

181, 585, and 573 (resp. 169, 649, and 641) plane waves for

the diamond, M and Z phases of Si (resp. Ge). To accelerate

the convergence with respect to the number of bands treated

explicitly, we use the extrapolar method described in Ref.

45. The G0W0 corrections are calculated for 36 bands and

328, 165, and 189 irreducible k-points corresponding to the

k-grids mentioned above for the diamond, M and Z phases,

respectively. The band-structures are then obtained using an

interpolation scheme based on maximally localized Wannier

functions, as explained in Refs. 46 and 47.

In the case of the optical calculations, we use norm-

conserving pseudopotentials without semi-core states, since

it was found that including them worsens the agreement with

experiments, for Si and Ge diamond.48,49 The optical proper-

ties are obtained with the DP code50 and compare with the

ABINIT results using 30 bands in the calculation of the

dielectric functions. Local-field effect are accounted for tak-

ing a matrix size of 51 plane waves, corresponding to an

energy cutoff of 54, 27, and 25 eV (resp. 52, 22, and 23 eV)

for the diamond, M and Z phases of Si (resp. Ge). The optical

properties are calculated using the same k-point mesh as for

the G0W0 calculations. Moreover, a Gaussian broadening of

0.12 eV is used. To account for excitonic effects, time-

dependent DFT (TDDFT) is used adopting the long-range

kernel derived in Ref. 51, with the parameter a¼ 0.2. This

approximation yields excellent agreement between the calcu-

lated and the experimental absorption spectrum of silicon

bulk in the diamond phase.

The above mentioned computation parameters (energy

cutoffs, k-point and q-point grids, number of bands) guaran-

tee errors smaller than 1 meV/atom on the total energy,

0.1 GPa on the elastic constants, 3 cm�1 on the phonon fre-

quencies, �1 meV on the QP energies, and a convergence in

the optical spectra up to 10 eV.

III. RESULTS AND DISCUSSIONS

In order to check the validity of the pseudopotentials,

we compare the calculated elastic constants based on the pa-

rameters described in Sec. II with the experimental results

reported in Ref. 52 for the Si and Ge diamond phases. From

our results, we observe a closer agreement with the HGH

pseudopotentials.53 Therefore, for the M and Z phases, we

only used the HGH pseudopotentials to describe the core

electrons. Table I shows the cell parameters, bulk modulus,

shear modulus (G), and Young modulus (E). The bulk modu-

lus obtained from the BM equation is in parentheses. We can
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see that in the case of the lattice parameters for silicon and

germanium in the diamond phase, there is good agreement

with available experimental data,54,55 with maximum errors

of 1%. In the case of the bulk modulus and the elastic con-

stants, we obtain very similar values to those calculated from

the BM equation, with maximum differences of 2 GPa. The

maximum errors with respect to experimental data are 5.9%.

These error percentages are typical of first principles calcula-

tions. Table I also shows the lattice parameters, the b angle,

bulk modulus, shear modulus, and Young modulus of the

monoclinic and orthorhombic structures for silicon and ger-

manium. For the M phase, the b angle values for silicon and

germanium are very similar to those for carbon.9 In the case

of the M phase of silicon, the lattice parameters obtained in

this work are in agreement with those reported by Wu

et al.12 The calculated mechanical moduli (B, G, E) provide

us with an idea of the mechanical behavior of the studied

materials. The bulk modulus is the resistance to hydrostatic

compression, while the shear and Young moduli describe the

mechanical behavior under shear and uniaxial deformation.

In general, the bulk moduli in the M phases are slightly

smaller than in the diamond phase, which means a smaller

compressibility for these phases. The same behavior is

obtained for the shear modulus, whose values are smaller

than the diamond phase. On the other hand, the Young’s

moduli for the monoclinic phases are larger than in the dia-

mond phase. While in the case of the Z phase of silicon, the

modules of compressibility and Young’s are larger than in

the diamond phase. In both cases, this means a greater me-

chanical resistance to compression and uniaxial deformation.

Along the same line, the Germanium Z phase shows better

mechanical resistance to uniaxial deformation.

In order to evaluate the thermodynamic stability of the

different phases, it is common to perform total-energy calcu-

lations over all experimentally observed phases as well as

for various predicted metastable phases (see, e.g., Ref. 10).

Here, we focus on those that are the most stable ones in the

absence of pressure. Hence, in addition to the diamond, M
and Z phases, we also consider the bct phase, which is meta-

stable at hydrostatic tensile pressures,8 as it is the case of M
and Z phases for silicon and germanium. Figure 1 shows the

total energy as a function of the volume for silicon and ger-

manium in the different phases. Black squares, red [gray]

circles, green [medium gray] triangles, and yellow [light

gray] diamonds indicate the obtained data for diamond, Z,

bct, and M phases, respectively, where the lines come from a

fitting obtained through the BM equation of state.

The energy of the M and Z phases with respect to the di-

amond phase for silicon (0.1 eV/atom and 0.065 eV/atom)

and germanium (0.09 eV/atom and 0.062 eV/atom) is similar

to the thermal energy (kBT � 0.1 eV), from which we infer

that these phases may exist at room temperature or can be

synthetized under metastable conditions if the system is

properly quenched.8 The volumes of the M and Z phases are

TABLE I. Cell parameters and bulk modulus for silicon and germanium in the diamond, M and Z phases.

Element a (Å) b (Å) c (Å) b (degrees) B (GPa) G (GPa) E (GPa)

Si

Diamond (this work) 5.40 … … … 95.9 (94.1) 82.8 126.5

Diamond (Exp. Refs. 54 and 55) 5.43 … … … 102

M-Si (this work) 13.67 3.80 6.28 96.73 87.9 (89.6) 71.7 192.5

M-Si (Ref. 11) 13.90 3.863 6.359 … … … …

Z-Si (this work) 7.33 7.33 3.79 91.6 68.0 146.6

Ge

Diamond (this work) 5.58 … … … 72.9 (72.4) 68.5 103.0

Diamond (Exp. Refs. 54 and 55) 5.66 … … … 77

M-Ge (this work) 14.18 3.95 6.49 96.79 67.2 (68.0) 59.7 174.8

Z-Ge (this work) 7.60 7.60 3.94 69.8 56.6 119.9

FIG. 1. Total energy curves for silicon and germanium in the diamond, Z,

bct, and M phases. The symbols correspond to the calculated data, and the

lines are fits to the BM equation of state.
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larger than the diamond phase; therefore, these phases could

be obtained under tensile stresses.8

Table II shows the elastic constants of the diamond, M
and Z phases for silicon and germanium, calculated by DFPT

with HGH pseudopotentials. In the case of the diamond phase,

there are three independent elastic constants (C11, C12, and

C44). For the M-phase, there are thirteen independent elastic

constants (C11, C22, C33, C44, C55, C66, C12, C13, C15, C23,

C25, C35, C46); and for Z-phase, there are nine independent

elastic constants (C11, C22, C33, C44, C55, C66, C12, C13, C23).

The bulk, shear, and Young’s moduli were obtained using the

Voigt scheme from the values of the elastic constants.56 Very

good agreement is observed between the calculated elastic

constants and the experimental data for the diamond phase.

Table II also shows the calculated elastic constants for the M
and Z phases. These values are consistent with the Born-

Huang elastic stability criteria,57 and therefore both phases are

elastically stable. On the other hand, to confirm the dynamical

stability of silicon and germanium in the M and Z phases, we

compute their phonon dispersion curves (Fig. 2). The frequen-

cies remain positive throughout the whole Brillouin zone,

indicating that Si and Ge are dynamically stable. The phonon

range is similar to the diamond phase, which goes a bit

beyond 500 cm�1 for Si and 320 cm�1 for Ge. The change in

the symmetry is clearly visible in the acoustic branches, and

no phonon gaps are observed. While in the diamond case,

there are two degenerate branches and another branch with

larger dispersion, the three acoustic branches are all degener-

ated and the dispersion is smaller in the M phases. Notice the

similarities in the dispersion relation in the M phase between

the two compounds, which is related to the fact that phonons

scale as the inverse of the square root of the ion mass.

TABLE II. Elastic constants for silicon and germanium in the diamond, M and Z phases.

Material/elastic

constants

Diamond Si

(this work)

Diamond Si

(Exp.) Ref. 48

M-Si

(this work)

Z-Si

(this work)

Diamond Ge

(this work)

Diamond Ge

(Exp.) Ref. 48

M-Ge

(this work)

Z-Ge

(this work)

C11 161.9 165.78 148.9 169.9 127.3 128.53 124.3 135.3

C22 174.7 176.5 140.8 141.6

C33 169.8 191.1 136.0 151.9

C44 77.1 79.62 69.4 50.7 66.9 66.80 60.5 44.0

C55 60.6 60.1 52.3 50.4

C66 39.0 36.1 33.6 36.3

C12 63.0 63.94 36.9 50.1 45.8 48.26 23.1 35.9

C13 59.4 52.4 40.4 37.0

C15 12.8 10.9

C23 52.7 40.9 38.2 27.1

C25 �6.7 �6.4

C35 7.2 6.8

C46 �2.6 �1.5

FIG. 2. Phonon dispersion relations for

silicon and germanium at the M and Z
phases.
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On the other hand, Fig. 3 shows the curves of pressure

vs. enthalpy difference for the phases considered in this

study. As we can see, there are some possible phase transi-

tions within the considered structures as a function of hydro-

static tensile pressure

diamond!M (11.3 GPa)!bct (12.3 GPa)!Z (14.1 GPa)

for silicon, and

diamond!bct (9.4 GPa)!M (9.6 GPa)!Z (11 GPa) for

germanium.

The band-structures are calculated using MBPT within

the G0W0 approximation, which is known to be very accurate

in describing the electronic structure of the diamond phases

for these systems. For instance, our G0W0 gap of diamond Si

(Ge) is 1.17 (0.65) eV, in good agreement with the experi-

mental gap of 1.17 (0.74) eV.58 Therefore, our results for the

gaps of the solids in diamond phase are in good agreement

with previous works.49 The band-structures for silicon and

germanium in the M and Z phases are shown in Fig. 4. The

DFT (red [gray] lines) and G0W0 (solid lines) results are

shown. For M-Si, the G0W0 indirect gap is of 0.85 eV

between the C and M (0.5, 0.5, 0.5) points. Silicon in the Z
phase has a gap of 1.12 eV between the C and Y (�0.5, 0.5,

0.0) points. For M-Ge, the G0W0 gap is of 0.30 eV. Here, the

top of the valence band (TVB) is at C, whereas the bottom of

the conduction band (BCB) is located between C and M (at

�57% of their distance) in the Brillouin zone. The Z-Ge

structure has a G0W0 gap of 0.64 eV. The TVB is at Y and

the BCB is at the C point. The G0W0 corrections, in both

materials, corresponds to an almost shift of the electronic

bands, as a simple scissors-operator, which happen to be

similar to the corrections for the diamond structures of sili-

con and germanium.

Figure 5 shows the imaginary part of the dielectric func-

tion of silicon and germanium in the diamond (solid lines),

M (green [medium gray] lines and square symbols), and Z
(red [gray] lines and circle symbols). In the case of silicon,

the diamond spectra have two main peaks: an excitonic peak

at �3.6 eV and a second peak at 4.4 eV. The M phase shows

FIG. 3. Enthalpy pressure curves for different phases of silicon and germanium.

Black lines, red [gray] squares, green [medium gray] triangles, and yellow [light

gray] triangles correspond to diamond, Z, and M phases, respectively.

FIG. 4. Energy band structure along

high-symmetry lines of the Brillouin

zone for silicon and germanium in the M
and Z phases. Red lines correspond to

DFT, while solid lines correspond to the

G0W0 calculation.
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one main peak centered at �3.8 eV; whereas for the Z phase,

there are two adsorption maxima at 3.7 and �4.1 eV.

Moreover, the spectra of the both the M and Z phases have a

narrower optical adsorption gap, which can directly be linked

to the narrower electronic energy band gap. In the case of

germanium, the spectrum of the diamond structure has a big

excitonic peak at low energies (x< 0.4 eV), which is not

present in the M and Z phases. The spectrum of the diamond

structure also has several adsorption peaks at �2, 2.5, 3.3,

and 3.0 eV. In the M phase spectrum, there are only three

main peaks at �1.18, 2.0, and 2.6–3 eV. For Z phase, the

adsorption spectra consists of a main peak at �3.0 eV and a

small shoulder at 1.2 eV.

IV. CONCLUSIONS

We have conducted a stability study of silicon and ger-

manium in the M and Z phases, which have been compared

to the diamond phase. From the Born-Huang stability crite-

ria, both the M and Z phases happen to be elastically and

vibrationally stable, with small energy differences with

respect to the diamond phase, indicating that these structures

can be synthetized at room temperature. Due to the volume

differences of these phases with respect to the diamond

structure, it may be possible to obtain them from a tensile

stress. These phases have a better uniaxial mechanical

strength than diamond phases based on the values of

Young’s modulus. However, in the case of shear deforma-

tions and hydrostatic compressibility, the mechanical

strength is lower. The optical properties have also been

reported and we have found energy bands much smaller than

in the diamond phases. These phases have a different optical

behavior, with a reduction of the electronic gap as well as

excitonic effects, which happen at smaller energies.
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