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We propose a fast and efficient approach for solving the Bogoliubov–de Gennes (BdG) equations in super-
conductivity, with a numerical matrix-size reduction procedure proposed by Sakurai and Sugiura [J. Comput. Appl.
Math. 159 (2003) 119]. The resultant small-size Hamiltonian contains the information of the original BdG Hamiltonian
in a given low-energy domain. Thus, the present approach leads to a numerical construction of a low-energy effective
theory in superconductivity. The combination with the polynomial expansion method allows a self-consistent
calculation of the BdG equations. Through numerical calculations of quasi-particle excitations in a vortex lattice,
thermal conductivity, and nuclear magnetic relaxation rate, we show that our approach is suitable for evaluating
physical quantities in a large-size superconductor and a nano-scale superconducting device, with the mean-field
superconducting theory.
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1. Introduction

To solve an eigenvalue equation is one of the central
issues in condensed matter physics. The ground state in a
many-body system is nothing but the eigenvector associated
with the lowest eigenvalue of a many-body Hamiltonian.
The Lanczos algorithm in the exact diagonalization1) is
suitable for this issue. The critical temperature in super-
conductivity is evaluated by the greatest eigenvalue of the
linearized Eliashberg equations. The power iteration algo-
rithm is useful for solving these equations. Thus, a lot of
efficient methods for either minimum or maximum eigen-
values have been developed.

In superconductors, low-energy quasiparticle excitations
are quite important for examining thermodynamic quantities,
transport properties, and so on. Their energy scale is
characterized by a superconducting gap energy (� meV),
much smaller than a band width (� eV). In the mean-
field Bardeen–Cooper–Schrieffer (BCS) theory, these ex-
citations correspond to the eigenvalues at the center of an
energy distribution of the Bogoliubov–de Gennes (BdG)
Hamiltonian.2) This is a direct consequence of the particle–
hole symmetry of the BdG Hamiltonian. Furthermore, such
an intermediate region can include zero eigenvalues (i.e.,
zero modes). The zero modes are related to fundamental
properties of topological insulators and superconductors.3)

Therefore, in order to study bulk properties of various
superconductors and nano-scale devices with topological
materials from atomic-scale physics, an efficient method
to obtain an intermediate spectral region of the BdG
Hamiltonian is highly desirable.

Typically, the full diagonalization method is used for
solving the BdG equations.4–7) However, this approach
requires a lot of computational memories and a long
computational time. In contrast, the polynomial expansion
method8–12) allows efficient self-consistent calculations in

superconductivity, without any diagonalization. This ap-
proach drastically reduces a computational cost and has
an excellent parallel efficiency, but does not lead to direct
calculations of eigen-pairs (eigenvalues and eigenvectors)
of the BdG Hamiltonian. Thus, this method is not suitable
for calculating dynamical correlation functions (two-particle
Green’s functions), which lead to important quantities such
as spin/charge susceptibilities, nuclear magnetic relaxation
rate, optical/thermal conductivities. Hence, the algorithms
for treating an intermediate energy region of the BdG
Hamiltonian have not been adequately studied.

In this paper, we propose a fast and efficient method
for numerically calculating the eigenvalues and the eigen-
vectors of the BdG equations. Our approach is the
combination of the polynomial expansion method with a
contour-integral-based method developed by one of the
present authors (TS) and Sugiura (Sakurai–Sugiura meth-
od).13–16) The Sakurai–Sugiura (SS) method allows us to
extract the eigen-pairs whose eigenvalues are located in a
given domain on the complex plane, from a generic matrix.
Therefore, setting this domain around the origin of C, an
effective Hamiltonian for the full BdG Hamiltonian can be
constructed, with keeping the information relevant to low-
energy excitations in a superconductor. A contour-integral
representation of the projection operator onto an energy
domain plays a crucial role. We obtain an effective
Hamiltonian only with a gapless surface state in topological
insulators and superconductors in large-scale systems, for
example.

Let us summarize our approach for calculating physical
quantities in the mean-field superconducting theory. First,
we perform a self-consistent calculation of the BdG
equations to obtain a superconducting gap function. Next,
we numerically derive a low-energy (small-size) effective
Hamiltonian from the BdG Hamiltonian with the resultant
superconducting gap. Finally, we calculate physical quan-
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tities using the eigenvalues and the eigenvectors of this
effective Hamiltonian.

This paper is organized as follows. In Sect. 2, we show a
general formulation of a mean-field fermionic theory. The
Green’s functions are expressed by the eigenvalues and the
eigenvectors of the BdG equations. In Sect. 3, we explain
the polynomial expansion scheme. The application of the SS
method to superconductivity is proposed in Sect. 4. We
show the theoretical background of this approach and the
algorithm. We stress that the present algorithm is suitable for
parallel computation since the procedure is composed of
solving a set of the linear equations which are independent
of each other. In Sect. 5, we show the results for typical
examples, as well as the computational costs of the present
proposal. We perform large-scale calculations in various
physical situations. As for inhomogeneous systems, we
consider a vortex lattice on a two-dimensional square lattice.
The quasiparticle excitation spectrum is obtained, varying a
magnetic field and a coherence length. The thermal con-
ductivity is also evaluated. Moreover, we examine tem-
perature-dependence of the nuclear magnetic relaxation
rate in an s-wave superconductor, as an example of a
uniform superconductor. These demonstrations indicate
that the present approach is a fast and accurate method
for numerically constructing a low-energy effective
Hamiltonian in the mean-field superconducting theory.
Section 6 is devoted to the summary.

2. Formulation

2.1 Hamiltonian
Throughout this paper, we set h� ¼ kB ¼ 1. Let us consider

a Hamiltonian for a fermionic many-body system,

H ¼ 1

2
¼yĤ¼ ¼ 1

2
ð �cT; cTÞ Â B̂

�B̂� �Â�

 !
c

�c

� �
; ð1Þ

with c ¼ ðc1; c2; . . . ; cNÞT and �c ¼ ðcy1; c
y
2; . . . ; c

y
NÞT. Here,

the symbol T represents transposition. The fermionic
annihilation and creation operators are denoted as, respec-
tively, ci and cyi (i ¼ 1; . . . ; N). The index i includes all the
relevant degrees of freedom such as spatial sites, spins,
orbitals, and so on. The canonical anti-commutation relation
is ½ci; cyj �þ ¼ �ij. The Hamiltonian matrix Ĥ is a 2N � 2N
Hermite matrix. The hermitian property of H and the
canonical anti-commutation relation imply that the N � N
complex matrices Â and B̂ in Ĥ satisfy Ây ¼ Â and B̂T ¼
�B̂. In the case of superconductivity, Ĥ corresponds to the
mean-field BCS Hamiltonian and B̂ contains superconduct-
ing gaps.

2.2 Bogoliubov–de Gennes equations
The BdG equations are regarded as the eigenvalue

equations with respect to Ĥ

Ĥx� ¼ ��x� ; ð� ¼ 1; 2; . . . ; 2NÞ; ð2Þ
with x� ¼ ðu� ; v�ÞT. The column vectors u� and v� are
N-component complex vectors. To solve the BdG equations
is equivalent to the diagonalization of Ĥ with a unitary
matrix Û. The matrix elements of Û are

Ui;� ¼ u�;i; UiþN;� ¼ v�;i: ð3Þ
The eigenvalues �� are not independent of each other.

In fact, using the particle–hole transformation17) such that
Ĵx� ¼ ðv�� ; u��ÞT, one can show that ĤðĴx�Þ ¼ ���ðĴx�Þ.

2.3 Two-particle Green’s functions
Two-particle Green’s functions are related to different

physical quantities in condensed matter physics. Here, they
are written in terms of the solutions of the BdG equations.
Let us consider a two-particle Green’s function in the
imaginary time �,

Q1234ð�Þ ¼ hT�½cyi1ð�Þci2 ð�Þc
y
i3
ð0Þci4ð0Þ�i; ð4aÞ

¼ Gi2i3ð�Þ �Gi1i4 ð�Þ � Fi2i4 ð�Þ �Fi1i3ð�Þ; ð4bÞ
with the one-particle Green’s functions

Gijð�Þ ¼ �hT�½cið�Þcyj ð0Þ�i; ð5aÞ
Fijð�Þ ¼ �hT�½cið�Þcjð0Þ�i; ð5bÞ
�Fijð�Þ ¼ �hT�½cyi ð�Þcyj ð0Þ�i; ð5cÞ
�Gijð�Þ ¼ �hT�½cyi ð�Þcjð0Þ�i: ð5dÞ

With the use of the relationZ �

0

d� ei�m�Að�ÞBð�Þ ¼ 1

�

X
!n

Aði!nÞBði�m � i!nÞ; ð6Þ

the Fourier transformed function Qði�mÞ is

Q1234ði�mÞ ¼
1

�

X
!n

½Gi2i3ði!nÞ �Gi1i4 ði�m � i!nÞ

� Fi2i4 ði!nÞ �Fi1i3 ði�m � i!nÞ�: ð7Þ
Here, � is the inverse temperature and !n ¼ �ð2nþ 1Þ=�
and �m ¼ �ð2mÞ=� are the fermionic and bosonic
Matsubara frequencies, respectively. The one-particle
Green’s functions are written as a 2N � 2N matrix,

ĜðzÞ ¼
Z 1

�1

d!

2�

ÂðzÞ
z� !

; Â��ð!Þ ¼
X2N
�¼1

U�;�U
�
�;��ð!� ��Þ:

ð8Þ
We find that Gij ¼ Ĝij, Fij ¼ Ĝi;jþN , �Fij ¼ ĜiþN;j, and
�Gij ¼ ĜiþN;jþN . We can phenomenologically describe a
dissipation effect, replacing the delta function in Â with an
approximate �-function. The dynamical correlation function
with the real energy � is

Q1234ð�Þ ¼
X2N
�;� 0

Ui2;�Ui1þN;� 0 ½U�
i3;�

U�
i4þN;� 0

� U�
i4þN;�U

�
i3;� 0

� f ð��Þ � f ð��� 0 Þ
�þ i	� ð�� þ �� 0 Þ

; ð9Þ

with setting i�m ! �þ i	 (	 ! 0þ) in Eq. (7). Here,
f ðxÞ ¼ 1=ðe�x þ 1Þ denotes the fermion distribution func-
tion.

3. Polynomial Expansion Method

We briefly summarize the polynomial expansion method
for a self-consistent calculation of the BdG equations,
according to our previous paper.11) The essence is the
expansion of the spectral density of the Green’s functions,
with orthonormal polynomials in ½�1; 1� satisfying

�ðx� x0Þ ¼
X1
n¼0

WðxÞ
wn


nðxÞ
nðx0Þ; ð10aÞ

wn�n;m ¼
Z 1

�1


nðxÞ
mðxÞWðxÞ dx; ð10bÞ
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nþ1ðxÞ ¼ ðan þ bnxÞ
nðxÞ � cn
n�1ðxÞ: ð10cÞ

The Chebyshev polynomial is often used, because the
resultant formulae become the simplest forms. The applica-
tion of the other polynomials is discussed in, e.g., our
previous paper.18)

The spectral density (matrix) is given as a difference
between the retarded and the advanced Green’s functions,
d̂ð!Þ ¼ Ĝð!þ i0Þ � Ĝð!� i0Þ. Let us expand d̂ð!Þ by

nðxÞ, rescaling Ĥ and ! so that K̂ ¼ ðĤ � bÞ=a and
x ¼ ð!� bÞ=a, with a ¼ ðEmax � EminÞ=2 and b ¼ ðEmax þ
EminÞ=2. Here, Emax and Emin are energy scales satisfying
Emin � �� � Emax. The elements of d̂ð!Þ are related to
various correlation functions. Using the constant vectors eðiÞ
and hðiÞ such that ½eðiÞ�� ¼ �i;� and ½hðiÞ�� ¼ �iþN;� , we
obtain

hcyi cji ¼
X1
n¼0

eð jÞTenðiÞ
T n

wn
; ð11aÞ

hcicji ¼
X1
n¼0

eð jÞThnðiÞ
T n

wn
; ð11bÞ

where

T n ¼
Z 1

�1

dx f ðaxþ bÞWðxÞ
nðxÞ: ð12Þ

A sequence of a vector qn ¼ 
nðKÞq [q ¼ eðiÞ; hðiÞ] is
recursively obtained by

qnþ1 ¼ ðan þ bnK̂Þqn � cnqn�1 ðn � 2Þ; ð13aÞ
q1 ¼ 
1ðK̂Þq; q0 ¼ 
0ðK̂Þq: ð13bÞ

The use of the recurrence formula leads to a self-consistent
calculation of the BdG equations, without any diagonaliza-
tion of Ĥ.

4. Contour-Integral-Based Method (Sakurai–Sugiura
Method)

In this paper, we use the SS method for finding
eigenvalues in a given energy domain and their associated
eigenvectors. This approach is a numerical solver for a
generalized eigenvalue problem so that Ax ¼ �Bx, with
A;B 2 C

ns�ns , and has been applied to various physical
issues such as the real-space density functional theory19) and
the lattice quantum chromodynamics.20) In this paper, B is
the identity matrix, and A is an Hermite matrix.

Our aim is to reduce the size of A, keeping as much
information of the eigenvalues and the eigenvectors as
possible. Let us consider the use of an ns � ms (ns � ms)
matrix Q, whose ith column is qi 2 C

ns (i.e., Q ¼
fq1; . . . ; qms

g). Here fqigms

i¼1 is a set of linearly independent
vectors in C

ns . We obtain an ms � ms matrix

~A ¼ QyAQ: ð14Þ
We denote a given energy domain of A as E ð	 RÞ. Let us
suppose that qi is represented by a linear combination of
fx jgms

j¼1, where Axj ¼ �jx j (�j 2 E). Thus, ~A contains ms

eigenvalues of A (f�jgms

j¼1). It is necessary for implementing
this procedure to know parts of the eigenvectors of A.
Furthermore, one has to carefully choose ms to avoid losing
the relevant information of A. Remarkably, this issue will
be solved by an approximate evaluation of contour integrals
associated with a projection operator onto eigenspaces of

A. All the steps of the algorithm is summarized in
Sect. 4.4.

4.1 Projection and moment vectors
We start with a way to make a projection onto a target

subspace spanned by fx jgms

j¼1 (kxjk ¼ 1). An arbitrary
ns-dimensional vector v is expanded by fxig, with ns
complex coefficients, v ¼

P
�ixi. We define the projection

P�ðAÞ as

P�ðAÞv ¼
Xms

j¼1

�jx j: ð15Þ

Using Pi ¼ xix
y
i , we find that the resolvent21) of A is

1

zI � A
¼
Xns
i¼1

Pi

z� �i
ðz 2 Cn�ðAÞÞ; ð16Þ

with the ns � ns identity matrix, I and a set of all the
eigenvalues of A, �ðAÞ, since A ¼

P
�iPi. Let us suppose

that the ms distinct eigenvalues (i.e., simple poles on C) are
located inside a closed loop � on C, and the others are
outside �, as shown in Fig. 1. Thus, we obtain a contour-
integral representation of P�ðAÞ

P�ðAÞ ¼
I
�

dz

2�i

1

zI � A
: ð17Þ

Now, let us write essential quantities for determining
the reduction matrix Q. The moment vector sk (k ¼
0; 1; . . . ;M � 1) is defined as sk ¼ AkP�ðAÞv, with a vector
v 2 C

ns . From its contour-integral representation, we find
that sk is related to the kth moment,

sk ¼
I
�

dz

2�i

zk

zI � A
v: ð18Þ

An important property of sk is that this is a vector in a vector
space associated with P�ðAÞ. This fact is checked by
applying Ak to Eq. (15). We remark that all the moment
vectors are linearly independent of each other for an arbitrary
v, since the subspace spanned by fskgM�1

k¼0 is the order-M
Krylov subspace22) generated by A, KMðA; P�ðAÞvÞ ¼
spanfP�ðAÞv; AP�ðAÞv; A2P�ðAÞv; . . . ; AM�1P�ðAÞvg. In
our algorithm to determine Q, M is an input parameter.
Then, one has to construct linearly independent vectors from
fskgM�1

k¼0 , varying v, and evaluate ms with a proper manner.
Another important issue is to numerically calculate the
contour integrals. These points will be explained in the
following.

4.2 Approximation of contour integrals with numerical
quadrature

We show a method to approximate a contour integral with
numerical quadrature. Let us suppose that a Jordan curve �

Re z

Im z

Γ

Fig. 1. Schematic diagram of a contour on C.
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on C is represented by scaling and shifting another Jordan
curve �0, with a scaling factor � and a shift �. Without loss
of generality, we assume that �0 encloses the origin on C.
Let ð�Þ be a point on �0, with a parameter � (0 � � � 2�),
and let z on � be given by zð�Þ ¼ � þ �ð�Þ. Then, using
Nq-point quadrature rule, the moment vector is approxi-
mately written by

sk �
1

Nq

XNq

j¼1

�wjz
k
jy j; ð19Þ

with wj ¼ wð�jÞ, wð�Þ ¼ �i0ð�Þ, zj ¼ � þ �j, and j ¼
ð�jÞ. The vector y j is the solution of the linear equation
ðzjI � AÞy j ¼ v. When all the eigenvalues are located on the
real axis, it might be better to put the quadrature points
closer to the real axis,

zj ¼ � þ �ðcos �j þ i� sin �jÞ; �j ¼
2�

Nq
j� 1

2

� �
; ð20Þ

with vertical scaling factor � (0 < � � 1). The quadrature
weight is

wj ¼ � cos �j þ i sin �j: ð21Þ

When � ¼ 1, �0 is a unit circle. Other formulae including
contour integrals are also calculated by this Nq-point
numerical quadrature.

4.3 Construction of subspace
Now, we show a way to determine the subspace size

and the corresponding reduction matrix. First, we make a
sequence of the moment vectors, varying v. The use of this
sequence is essential for constructing the linearly indepen-
dent vectors and the subspace. We set L complex vectors, vi

ð2 C
nsÞ (i ¼ 1; 2; . . . ; L), and make an ns � L real matrix

V̂ ¼ fv1; v2; . . . ; vLg. We call V̂ a source matrix. Then, we
obtain an ns � L matrix Ŝk,

Ŝk ¼
1

Nq

XNq

j¼1

�wjz
k
j Ŷj; ð22Þ

with

ðzjI � AÞŶj ¼ V̂ : ð23Þ

The ith column of Ŝk is related to vi, sik ¼
ð1=NqÞ

P
j �wjz

k
jy

i
j, with ðzjI � AÞyij ¼ vi. Each element of

vi is a uniform random variable in ð�1; 1Þ. It means that we
make AkP�ðAÞ via random sampling, with the source size L.
The integer parameter L is determined by the calculation of
TrP�ðAÞ, as seen below.

Next, we determine the subspace size. A bundle of Ŝk
leads to an ns � LM matrix Ŝ ¼ fŜ0; Ŝ1; . . . ; ŜM�1g. Now,
we perform the singular-value decomposition of Ŝ, and
obtain the singular values f�ig, with �1 � �2 � 
 
 
 � 0.
Then, we find the number of the singular values satisfying
�i=�1 > �, with a small positive constant � ð� 10�14Þ.
Thus, we have an effective rank (i.e., the number of the
predominant linearly independent vectors) of Ŝ. We stress
that this rank should be greater than or equal to a prior value
~ms, which is determined by calculating the trace of the
resolvent matrix (see below). We use the resultant effective
rank as the dimension of the subspace. We remark a large
source size leads to a highly accurate calculation, but causes
an extreme increase in the subspace size. To avoid this

increase for the high accuracy, one can use an iterative
refinement14) of a subspace, as seen in Appendix A.

Now, the construction of the reduction matrix to the
subspace is straightforward. Using a submatrix composed
of the first ms columns of Ŝk [e.g., Ŝkð:; 1 : msÞ in terms of
Fortran 90] and the Gram–Schmidt orthonormalization, we
obtain an ns � ms matrix ~Q whose ms column vectors are
orthonormal to each other. This is our reduction matrix.
From the construction manner, one finds that ~Q contains
predominant ms eigenvectors of A. Alternatively, one
may use a matrix Û such that Ŝ ¼ Û�̂Ŵy and �̂ ¼
diagð�1; �2; . . .Þ. This matrix is automatically obtained when
performing the singular-value decomposition of Ŝ by using
the ZGESVD routine of LAPACK, and the ms column-
vectors are orthogonal to each other.

The source size L and the moment size M have to be
carefully chosen. In particular, the integer LM, which is the
total number of the moment vectors to take in a simulation,
should be as small as possible for a few computational costs.
First, we predict the prior rank ~ms, with the stochastic
estimation method.15,16) We prepare an ns � L0 real matrix
V̂ whose elements are either �1 or 1 with equal probability.
Here, L0 is an input parameter. The number of the
eigenvalues inside � is TrP�ðAÞ, since

TrP�ðAÞ ¼
X
i

I
�

dz

2�i
xyi

1

zI � A
xi; ð24Þ

¼
X
i

Res
1

z� �i
: ð25Þ

The stochastic estimation of TrM for an ns � ns matrix
is TrM � ð1=L0Þ

PL0

i¼1ðviÞTMvi (see Appendix B). Thus,
using the Nq-point numerical quadrature, ~ms is estimated
by

~ms ¼
1

L0

XL0

i¼1

ðviÞTsi0: ð26Þ

Then, the source size L is

L ¼ � ~ms

M

� �
; ð27Þ

with � � 1. The symbol ½x� means the smallest integer
greater than x. The value of LM is larger than ~ms. Thus, the
requirement that the rank of Ŝ is greater than and equal to ~ms

is automatically satisfied.

4.4 Algorithm of the SS method
Now, we show all the steps of the SS method for

calculating the eigenvalues and the eigenvectors of the BdG
Hamiltonian Ĥ.

(i) Set Ĥ 2 C
N�N (ns ¼ N), L0, M, Nq and V̂ ¼

fv1; . . . ; vL0g. The elements of the sampling vector
vi take either �1 or 1, with equal probability.

(ii) Solve Eq. (23) for Yj, j ¼ 1; . . . ; Nq. One can solve
these equations separately so that parallel computa-
tions can be easily implemented.

(iii) Compute Eq. (22).
(iv) Compute Eq. (26), and estimate L via Eq. (27).
(v) Give the elements of V̂ ¼ fv1; . . . ; vLg by random

numbers and solve Eq. (23).
(vi) Compute Eq. (22) using the results in (v).
(vii) Perform the singular-value decomposition Û�̂Ŵy ¼
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fŜ0; . . . ; ŜM�1g and find ms such that j�jj=j�1j � � for
1 � j � ms.

(viii) Obtain a matrix ~Q from ~Q ¼ Ûð:; 1 : msÞ.
(ix) Form ~H ¼ ~QyH ~Q.
(x) Compute the eigenvalues �i and eigenvectors wi of

the matrix ~H.
(xi) Set xi ¼ ~Qwi.
If one uses the iterative refinement of a subspace, one

adopts either Eqs. (A
1) or (A
3), and goes to (vi). The one-
or two-particle Green’s function are calculated by the eigen-
pair ð�i; xiÞ.

5. Numerical Demonstrations

We show the effectiveness and the validity of the present
approach, focusing on a single-band superconductor. Here-
after, the index i in Sect. 2.1 indicates a spatial site on a two-
dimensional square lattice. The spin indices (" and #) are
explicitly written in the creation and annihilation operators.
We consider a two-dimensional Lx � Ly lattice system,
with the nearest-neighbor hopping t. The spatial site index
runs from 1 to Lx � Ly. We impose the periodic boundary
condition. The superconducting gap equations is given as
�ij ¼ Vijhci;#cj;"i, with pairing interaction Vij. This equation
is self-consistently solved by the polynomial expansion
method, as shown in Sect. 3. The parameters in the SS
method are set as L0 ¼ 10, M ¼ 16, and � ¼ 1:5. We
remove the eigen-pair ð�i; xiÞ whose relative residual is
greater than 10�1, as spurious eigenpairs [see Eq. (28)]. We
do not use the iterative refinement of a subspace in the
following examples.

5.1 Computational costs in self-consistent calculations
We use the polynomial expansion scheme to obtain

self-consistent superconducting gaps. Let us evaluate
computational costs for a d-wave superconductor at zero
temperature, on a square lattice (Lx ¼ Ly). An evaluation
for an s-wave superconductor was shown in our previ-
ous contribution.11) We measure the elapsed time for
calculating and updating the order parameters at one
iteration.

We used a supercomputing system PRIMERGY BX900
in Japan Atomic Energy Agency. As shown in Fig. 2, the
elapsed time for one iteration is subjected to an OðN2Þ rule,
with increasing the system size N ¼ 2ðLx � LyÞ. This
tendency is kept from 32 to 4096 CPU cores. In contrast,
the full diagonalization scheme inevitably demands OðN3Þ
costs in the core part of a calculation. This is a big advantage
of the polynomial expansion scheme. Furthermore, we focus
on the strong scaling, as shown in Fig. 3. One can see an
excellent strong scaling up to 4096 CPU cores.

5.2 Eigenvalues in a vortex lattice system in an s-wave
superconductor

We show the eigenvalues obtained by the SS method. The
system in this section has a vortex square lattice in an s-wave
superconductor. The parameters are set as follows: on-site
interaction Vii ¼ �1:5t, chemical potential � ¼ 0, and
spatial size Lx � Ly ¼ 64� 64. The matrix dimension is
N ¼ 8192 with 49152 nonzero entries. The rescaling
parameters in the polynomial expansion method are a ¼ 8t
and b ¼ 0. Also, a cut-off parameter in the polynomial

expansion scheme11) is 2000. The resultant order parameter
is shown in Fig. 4.

The relative residual for the eigen-pair ð�i; xiÞ is calculated
by

resi ¼
kHxi � �ixik

kHxik þ j�ijkxik
: ð28Þ

After the self-consistent calculations with 100 iterations, we
obtain the eigen-pairs with the use of the SS method.

The quadrature points are set by Eq. (20) and the
corresponding weights are set by Eq. (21), with � ¼ 0:5.
The contour � is set as � ¼ 0 and � ¼ 0:15t. We adopt a
sparse solver PARDISO23) to compute Eq. (23). This solver
uses the nested dissection algorithm from the METIS
package.24) We also confirm that the calculations with the
shifted BiCG method, which is suitable for large sparse
matrices, have a similar result.

Let us investigate Nq-dependence of the eigenvalues and
the relative residual. Figure 5 shows that a calculation with
Nq ¼ 64 has good precision about the eigenvalues inside
� (�0:15 < �i < 0:15). We note that the calculation with
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Nq ¼ 64 takes about 30 s with only one CPU core (Intel
Xeon X5550 2.66GHz) by a desktop computer. The
conventional full diagonalization takes about 40min with
the same machine. When the system size becomes quadruple
(Lx � Ly ¼ 128� 128), it takes about 5min to obtain the
same eigenvalue distribution, with the same one CPU core.

We discuss the accuracy of an eigenvalue calculation in
the SS method. This issue depends on the parameters related
to the contour integral representation, as well as the source
size L. The simplest improvement can be achieved by
increasing the total number of the quadrature points, Nq.
Alternatively, we obtain better accuracy with smaller Nq,
continuously deforming the contour �. Figure 6 shows the

relative residual, varying Nq and the vertical scaling factor
�. We find that the accuracy becomes higher than Fig. 5(b),
even though Nq is small. Here, we take a relatively larger
source size [� ¼ 2 and M ¼ 10 in Eq. (27)], compared with
the previous calculations.

5.3 Magnetic-field dependence of the eigenvalue in long-
coherence-length superconductors

We show the magnetic-field dependence of the eigenva-
lues in a long-coherence-length superconductor. A coher-
ence length of a superconductor � is roughly estimated by
the ratio of the Fermi velocity to the amplitude of the order-
parameter (� � vF=�). In many materials expect for high-Tc
cuprates, the coherence length is much larger than an atomic
length. Typically, the electric states in such superconducting
systems are described by the quasiclassical Eilenberger
theory,25) with neglecting atomic-scale physics. However,
interesting microscopic phenomena such as an interference
effect and discretized quantum bound states in a vortex core
are never treated in this approach. The mean-field BdG
approach can treat these atomic-scale phenomena, but
requires extremely large computational costs when the
coherence length is much larger than an atomic length.
Thus, to solve the BdG equations in a long-coherence-length
superconductor is a challenging issue.

We consider a vortex lattice in an s-wave superconductor,
with on-site interaction Vii ¼ �2t and chemical potential
� ¼ �t. These parameters correspond to a model with a
relatively smaller Fermi surface, compared with Sect. 5.2.
The temperature is set as T ¼ 0:04t. We use the domain
� with � ¼ 0 and � ¼ 0:1t (�0:1t < �i < 0:1t), and Nq ¼
64. The magnetic field becomes small with decreasing
the system size, since the total magnetic flux is fixed. As
shown in Fig. 7, the amplitude of the order-parameter is
similar to that in the previous section. Combined with the
small Fermi surface, the coherence length is longer than in
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Sect. 5.2. Under the periodic boundary condition, two
bound states appear at each vortex core. Their energy
eigenvalues are degenerate when the system size is large
(low magnetic field). With increasing the magnetic field,
a splitting in the degenerate eigenvalues occurs, as shown
in Fig. 8(a). The splitting comes from the occurrence of
an overlap between the bound states in a vortex core.
Figure 8(b) shows quantum oscillation as a function of
the inter-vortex distance originating from an interference
effect between two vortex bound states. We note that it is
hard to discuss the degeneracy splitting with the only use of
the polynomial expansion scheme, since the polynomial
expansion calculates the local density of the states not the
eigenvalues.

5.4 Magnetic field dependence of the thermal conductivity
We show the magnetic-field-dependence of the thermal

conductivity in an s-wave superconductor, with a vortex
lattice. All the physical parameters are the same as the ones
in Sect. 5.3. We use the domain � with � ¼ 0 and � ¼ 0:45t
(�0:45t < �� < 0:45t), and Nq ¼ 64. It takes about one hour
to obtain 1857 eigenvalues located in the domain � with the
same one CPU core when the system size is Lx � Ly ¼
90� 90 as shown in Fig. 9. One can clearly find that the gap
amplitude in the bulk states is �0 � 0:2t, which is consistent
with the estimation with the use of Fig. 7.

Let us consider the case when a temperature gradient
exists along x-axis. Using the linear response theory,26) the
electronic thermal conductivity per volume of a super-
conductor is

�xx ¼
1

T
lim
�!0

1

�
Im½Pxxði�m ! �þ i0Þ� ð29Þ

¼ 1

T

X
�;� 0

F�� 0 j½ÛyV̂ ðxÞÛ�� 0� j2; ð30Þ

with

F�� 0 ¼
Z

d!

2�
�	ð!� ��Þ

Z
d!0

2�
�	ð!0 � �� 0 Þ

� ��ð!� !0Þ!2f 0ð!Þ: ð31Þ
Here, Pxxði�mÞ is the Fourier transformation of a current–
current correlation function5,27,28) in the imaginary time,
Pxxð�; 0Þ ¼ hT�½Ju;xð�ÞJu;xð0Þ�i, where Ju;x is the Heisenberg
operator of energy flux27) along x-axis. The Lorentian kernel
�	ð!Þ ¼ 	=½�ð!2 þ 	2Þ� in F�� 0 represents a dissipation
effect.5) The matrix Û contains the eigenvectors of the
BdG Hamiltonian, while the matrix V̂ ðxÞ includes contribu-
tions from the energy flux. We show their explicit formulae
in Appendix C.

We adopt the damping factor 	 ¼ 0:005t. We assume
that �ij ¼ 0 in Eq. (C
2) because the vector potential around
a vortex is small. Figure 10 shows that �xx drastically
increases when the inter-vortex distance is shorter than
around 60 (i.e., a high magnetic-field domain). This behavior
could be related to an interference effect between the
two bound states in vortex cores in high magnetic field,
as seen Fig. 7. A quantum oscillation in the eigenvalue
distribution becomes remarkable in such a high magnetic-
field domain.
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5.5 Temperature dependence of nuclear magnetic
relaxation rates

We show the temperature dependence of the nuclear
magnetic relaxation rate in a uniform s-wave superconduc-
tor. It is well known that the nuclear magnetic relaxation rate
T1ðri; T Þ is calculated by4)

T1ðri; T Þ ¼
1

Rðri; T Þ
; ð32Þ

Rðri; T Þ ¼ lim
�!0þ

Im
��þðri; ri; �Þ

�=T
; ð33Þ

¼ �
X

��;��>0;��>0

Ui�U
�
i�½Ui�U

�
i� þ UiþN�U

�
iþN��

� �Tf 0ð��Þ�ð�� � ��Þ: ð34Þ
We use the eigenvalues in the domain with � ¼ 0:25t,
� ¼ 0:25t (0 < �� < 0:5t). The parameters are set as
follows: the onsite interaction Vii ¼ �2t, the chemical
potential � ¼ �t, and the system size Lx � Ly ¼ 64� 64.
The delta function �ðxÞ is approximated by �ðxÞ ¼
ð1=�Þ	=ðx2 þ 	2Þ with the smearing factor 	 ¼ 0:01t. We
adopt the shifted BiCG method as a iterative linear solver.
As shown in Fig. 11, the nuclear magnetic relaxation rate
can be successfully reproduced by the SS method. We note
that the discrete energy levels due to the finite size system
cause the relatively smaller Hebel–Slichter peak below Tc.
We mention here that the accuracy of calculating physical
quantities by the SS method depends on the size of an energy
domain on the complex plain. A truncation error may occur
in evaluating Eq. (9), if this size is not enough large.
Figure 6 indicates the eigen-pairs inside � are evaluated

with high accuracy. Therefore, the accuracy of evaluating
the nuclear magnetic relaxation rate around Tc may increase,
taking a relatively larger domain size.

5.6 Computational costs in the eigenvalue problem with
the SS method in a vortex lattice system

Now, let us evaluate the computational costs of the SS
method. We measure the elapsed time from reading the
Hamiltonian matrix constructed by the polynomial expan-
sion scheme to finishing the SS method in a Lx � Ly square
lattice s-wave superconductor at T ¼ 0:04t (Lx ¼ Ly). We
use the contour � with � ¼ 0 and � ¼ 0:1t, and the physical
parameters are the same as in Fig. 8. For the measurement,
we use a desktop computer with only one CPU core (Intel
Xeon X5550 2.66GHz). As shown in Fig. 12, the elapsed
time of the SS method grows in an OðNÞ manner with
increasing the system size N ¼ 2ðLx � LyÞ. The computa-
tional costs are roughly estimated by OðmsNÞ. In all the
calculation of this subsection, the energy domain is restricted
to �0:1t < �� < 0:1t. As a result, the number of the
eigenvalues ms is independent of the spatial size N. Indeed,
we find that only the bound states in vortices are relevant to
this narrow energy window. If an energy domain is wide
(large �), ms increases. In this case, the computational cost
predominantly depends on the Gram–Schmidt orthonorma-
lization procedure to construct ~Q. Then, we find that the cost
is estimated by OðNm2

s Þ. When one tries to obtain all the
eigenvalues (i.e., ms ¼ N) with a wide energy domain, the
cost of the SS method becomes OðN3Þ. This result is
equivalent to the one in the full diagonalization method.
However, the wide energy domain is easily divided into
small energy domains. For example, with using Ns domains
with Ns parallel computation with Ns CPU cores, the elapsed
time reduces to 1=Ns. This is a big advantage of the SS
method.

6. Conclusion

We proposed the fast efficient method on the basis of
the SS method and the polynomial expansion scheme to
calculate the eigen-pairs and the dynamical correlation
functions in the BdG scheme of superconductivity. The
polynomial expansion scheme enables us to solve the gap-
equations self consistently, with large scale parallel
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computations. With the use of the SS method, one can solve
issues for finding eigenvalues in a given energy domain and
their corresponding eigenvectors. The virtue of the SS
method is to reduce systematically the size of a large
Hamiltonian, keeping its predominant contributions in a
low-energy scale. In other words, this proposal leads to
a numerical construction of an effective low-energy
Hamiltonian in the BdG approach of superconductivity.
We applied the present approach to the calculations of
various physical quantities including the eigenvalues
distribution of the BdG Hamiltonian in a vortex lattice,
magnetic-field-dependence of the thermal conductivity,
and temperature-dependence of the nuclear magnetic
relaxation rate. We stress that most of the calculations were
performed, changing the system size. This is quite important
for developing a theoretical tool to predict physical
behaviors in nano-scale superconductors from a microscopic
theory.

Acknowledgments

The authors would like to acknowledge Masahiko
Machida and Susumu Yamada for helpful discussions and
comments. The calculations have been performed using the
supercomputing system PRIMERGY BX900 at the Japan
Atomic Energy Agency. This study has been supported by
Grants-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology of
Japan. Y.O. is supported in part by the Special Postdoctoral
Researchers Program, RIKEN.

Appendix A: Iterative Refinement

In Sect. 4.3, we remark that larger subspace makes more
higher accuracy but needs more heavier computational costs.
A problem may occur when we choose a small value of L to
avoid the use of a large subspace. If some residuals of the
obtained approximate eigenvalues and eigenvectors are not
small enough for a given tolerance, we can brush up the
resulting approximate eigenvalues and eigenvectors. We

propose two ways to brush up the eigen pairs with the choice
of the appropriate source matrix V̂ dominantly constructed
by the information in a given domain �.

First, one can use the source matrix V̂ as

V̂ ¼ Ŝ0: ðA
1Þ
Then, we implement r iterations of P�ðAÞ on V̂ ,

ŜðrÞ0 ¼ P�ðAÞŜðr�1Þ
0 ; Ŝð0Þ

0 ¼ V̂ : ðA
2Þ
Using Ŝðr�1Þ

0 , we construct a refined matrix including a
higher moment vector, ŜðrÞk ¼ AkP�ðAÞŜðr�1Þ

0 . In a simula-
tion, numerical quadrature is used for calculating P�ðAÞ
and AkP�ðAÞ, as seen in Sect. 4.2. Thus, performing the
singular-value decomposition of ŜðrÞ ¼ fŜðrÞ

0 ; . . . ; ŜðrÞ
M�1g, we

evaluate a refined effective rank ms.
Second, we can brush up the resulting approximate

eigenvalues and eigenvectors by setting the source matri
as

V̂ ¼ fx1; . . . ; xms
gĈ; ðA
3Þ

where Ĉ 2 C
ms�L whose elements are random numbers in

ð�1; 1Þ, and x1; . . . ; xms
are the selected eigenvectors that are

regarded as the approximate eigenvectors with respect to the
eigenvalues inside �. Using this V̂ , we reevaluate Ŝ and ms

in Sect. 4.2.

Appendix B: Estimation of the Trace

We show that the trace of an n� n matrix A can be
estimated by

TrA � 1

s

Xs
k¼1

ðvkÞTAvk; ðB
1Þ

with random vectors vk with entries �1. If the vectors vk
have entries �1, the right-hand side in the above equation is
expressed as

1

s

Xs
k¼1

ðvkÞTAvk ¼ TrAþ 1

s

Xn
ij;i 6¼j

Aij

Xs
k¼1

ðvkÞiðvkÞ j: ðB
2Þ

On the average, the coefficient of Aij in the above expansion
will converge to zero provided that the components of the
vectors vk have balanced � signs.

Appendix C: Thermal Conductivity

We derive the expression of the thermal conductivity in
terms of the solution of the BdG equation. Let us consider
the case when a temperature gradient exists along x-axis on
a two-dimensional Lx � Ly lattice with lattice constant a.
The electronic thermal conductivity per volume of a
superconductor associated with heat flux along x-axis is
given in Eq. (29). The current–current correlation function
with respect to the energy flux is

Pxxð�; 0Þ � hT�½Ju;xð�ÞJu;xð0Þ�i

¼ 1

�

X
i�m

e�i�m�Pxxði�mÞ: ðC
1Þ

The Heisenberg operator of energy flux27) along x-axis is

Ju;x ¼
X
i; j

1

i

X
�¼";#

@cyi;�
@�

Dx;ijc�;j �D�
x;ijc

y
j;�

@ci;�
@�

 !
; ðC
2Þ

with Dx;ij ¼ �iþ1x; jð�iatÞei�ij and 1x ¼ ð1; 0Þ ¼ a=a. The link
variable ei�ij represents the contribution of the magnetic
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field, �ij ¼ ð�=
0Þa 
 A½ðri þ rjÞ=2�, with the flux quantum 
0

and the vector potential A. The matrix Dx ½¼ ðDx;ijÞ� is
related to the momentum operator on a square lattice.5)

This current–current correlation function may be rewritten
as the form of a two-particle Green’s function,28)

Pxxð�1; �2Þ ¼
X
a;b;c;d

Ĵ ðxÞ
ab ð@�01 ; @�1 ÞĴ

ðxÞ
cd ð@�02 ; @�2 Þ

� hT�½¼y
að�01Þ¼bð�1Þ¼y

cð�02Þ¼dð�2Þ�i; ðC
3Þ
with �01 ! �1 þ 0 and �02 ! �2 þ 0. We neglected some
terms associated with the action of the imaginary-time
derivative on the time ordering operator, according to the
discussion by Ambegaokar and Teword.28) Here, ¼ and ¼y

are defined as, respectively, ¼ ¼ ðc"; �c#ÞT and ¼y ¼ ð �cT"; cT#Þ,
with c� ¼ ðc1;� ; . . .ÞT and �c� ¼ ðcy1;� ; . . .ÞT. This convention
corresponds to the Nambu representation. The indices a, b,
c, and d run from 1 to 2LxLy. The 2LxLy � 2LxLy matrix
Ĵ ðxÞ is defined as

Ĵ ðxÞ ¼ J ðxÞ 0

0 �J ðxÞ �

 !
; ðC
4Þ

with the LxLy � LxLy matrix J ðxÞð@�0 ; @�Þ ¼ �ið@�0Dx �
@�D

y
xÞ. The formulation in Sect. 2, which is developed in a

more general representation for a fermion mean-field theory,
is straightforwardly rewritten in terms of the Nambu
representation.

Now, let us derive the expression of the thermal
conductivity. First, we evaluate the imaginary part of
Pxxði�m ! �þ i0Þ. Next, we expand the resultant formula
up to �, to take the limit � ! 0. We note that
Im½Pxxð� ¼ 0Þ� ¼ 0. Then, we obtain Eq. (29). The
2LxLy � 2LxLy matrix V̂ ðxÞ in Eq. (29) is defined as

V̂ ðxÞ ¼ Dx þDy
x 0

0 ðDx þDy
xÞ�

 !
: ðC
5Þ

1) E. Dagotto: Rev. Mod. Phys. 66 (1994) 763.

2) P. G. de Gennes: Superconductivity of Metals and Alloys (Westview

Press, Boulder, CO, 2008).

3) J. C. Y. Teo and C. L. Kane: Phys. Rev. B 82 (2010) 115120.

4) M. Takigawa, M. Ichioka, and K. Machida: J. Phys. Soc. Jpn. 69

(2000) 3943.

5) M. Takigawa, M. Ichioka, and K. Machida: Eur. Phys. J. B 27 (2002)

303.

6) B. M. Andersen, P. J. Hirschfeld, A. P. Kampf, and M. Schmid: Phys.

Rev. Lett. 99 (2007) 147002.

7) B. M. Andersen and P. J. Hirschfeld: Phys. Rev. Lett. 100 (2008)

257003.

8) L. Covaci, F. M. Peeters, and M. Berciu: Phys. Rev. Lett. 105 (2010)

167006.

9) G. Q. Zha, L. Covaci, S. P. Zhou, and F. M. Peeters: Phys. Rev. B 82

(2010) 140502(R).

10) Q. Han, T. Li, and Z. D. Wang: Phys. Rev. B 82 (2010) 052503.

11) Y. Nagai, Y. Ota, andM.Machida: J. Phys. Soc. Jpn. 81 (2012) 024710.

12) Y. Nagai, N. Nakai, and M. Machida: Phys. Rev. B 85 (2012) 092505.

13) T. Sakurai and H. Sugiura: J. Comput. Appl. Math. 159 (2003) 119.

14) T. Sakurai, Y. Futamura, and H. Tadano: to be published in J. Algo. &

Comp. Tech.

15) Y. Futamura, H. Tadano, and T. Sakurai: JSIAM Lett. 2 (2010) 127.

16) Y. Maeda, Y. Futamura, and T. Sakurai: JSIAM Lett. 3 (2011) 61.

17) J. L. van Hemmen: Z. Phys. B 38 (1980) 271.

18) Y. Nagai, Y. Ota, and M. Machida: Phys. Procedia 27 (2012) 72.

19) Y. Futamura, T. Sakurai, S. Furuya, and J.-I. Iwata: High Performance

Computing for Computational Science—VECPAR 2012 (Springer,

Berlin, 2013) Lecture Notes in Computer Science, Vol. 7851, p. 226.

20) H. Ohno, Y. Kuramashi, T. Sakurai, and H. Tadano: JSIAM Lett. 2

(2010) 115.

21) A. Messiah: Quantum Mechanics: Two Volumes Bound as One

(Dover, New York, 1999) p. 712.

22) D. S. Watkins: The Matrix Eigenvalue Problem: GR and Krylov

Subspace Methods (SIAM, Philadelphia, PA, 2008) Chap. 9.
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