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In this paper we propose a model to reproduce superconductive and normal properties of the iron pnic-
tide LiFeAs in the framework of the four-band s± wave Eliashberg theory. A confirmation of the multiband
nature of the system rises from the experimental measurements of the superconductive gaps and resis-
tivity as function of temperature. We found that the most plausible mechanism is the antiferromagnetic
spin fluctuation and the estimated values of the total antiferromagnetic spin fluctuation coupling con-
stant in the superconductive and normal state are ktot = 2.00 and ktot,tr = 0.77 respectively.

� 2013 Elsevier B.V. All rights reserved.
Recent ARPES measurements of iron superconductor LiFeAs re-
port four slightly anisotropic gaps [1]. Their isotropic values at 8 K
are given by D1 = 5.0 meV, D2 = 2.6 meV, D3 = 3.6 meV,
D4 = 2.9 meV and the critical temperature for this compound is
Tc = 18 K [2]. In another work [3] we disregarded the anisotropic
part of the gap values and we tried to reproduce the experimental
data in the framework of s ± wave multiband Eliashberg theory. At
first, we calculated [3–8] the Fermi surface, depicted in Fig. 1: five
different sheets are present, with two electron pockets centered
near the M-point of the Brillouin zone and three hole pockets
around the C-point. The 5th sheet can be disregarded because of
its low density of states and size [3] as can be seen in Table 1. In
this way we formulate a four-band s-wave Eliashberg model
[9,10] consisting of eight coupled equations for the gaps Di(ixn)
and the renormalization functions Zi(ixn). If i is the band index
(that ranges between 1 and 4) and xn are the Matsubara frequen-
cies, the imaginary-axis equations are:
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where Cij and CM
ij are the non magnetic and magnetic impurity scat-

tering rates, H(xc � jxmj) is the Heaviside function and xc is a cut-
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Here the superscripts sf and ph refer to ‘‘antiferromagnetic spin fluc-
tuations’’ and ‘‘phonons’’, respectively. In particular,
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and the electron–boson coupling constants are defined as
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The solution of Eqs. (1) and (2) requires a huge number of input
parameters. To make the model solvable, then, it is necessary to
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Fig. 1. Fermi surface of LiFeAs [4].

Table 1
Fermi Surface resolved Kohn Sham properties: the Fermi density of states N(0) is
given in states/spin/eV and plasma frequencies xp in eV. ab label the in-plane and c
for the out-of-plane direction of the diagonals of the plasma tensor [8].

FS 1 2 3 4 5 TOT

N (0) 0.556 0.646 0.616 0.370 0.039 2.228

xkab
p

1.131 1.455 1.581 1.161 0.639 2.980

xkcp
0.202 0.034 0.890 0.365 0.319 1.523

Table 2
The experimental data are reported in the first row. The second row concerns the pure
intraband case (kii = 0.0) while the third one refers to the case where a large intraband
term is present. (k11 = 2.1). The critical temperatures are given in K and the gap values
in meV.

k11 ktot k13 k23 k14 k24 D1 D2 D3 D4 Tc

Exper. – – – – – – 5.0 2.6 3.6 2.9 18
Theor. 0.0 1.8 1.78 0.66 0.45 0.52 3.7 2.6 3.6 2.9 15.9
Theor. 2.1 2.0 1.15 0.80 0.45 0.30 5.0 2.6 3.6 2.9 18.6

Table 3
The first and second rows concern the phonon case while the third one concerns the
case of the antiferromagnetic spin fluctuation spectral function. The ci and X0 are
given in meV.

ktr,tot ktr,3 ktr,4 c1 c2 c3 c4 X0

ph 1 band 0.32 – – 0.90 – – – –
ph 4 bands 0.14 0.44 0.10 5100 5100 0.65 550 –
sf 4 bands 0.77 1.70 1.70 164 164 4.87 1.52 47
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introduce some simplifications and approximations, aiming to
reproduce only the essential physics of the problem. As for many
other pnictides we assumed that [3]: (i) the total electron–phonon
coupling constant is small [11]; (ii) spin fluctuations mainly provide
interband coupling [12]. This means that we can set
kph

ii ¼ kph
ij ¼ 0;l�iiðxcÞ ¼ l�ijðxcÞ ¼ 0, i.e. the electron–phonon cou-

pling constant and the Coulomb pseudopotential in first approxima-
tion compensate each other and ksf

ii ¼ 0 (only interband SF coupling)
[12]. However, within these assumptions, we were not able to
reproduce the observed gap values, and in particular the high value
of D1. In order to solve this problem it is necessary to introduce an
intraband coupling in the first band (k11 – 0).

The final matrix of the electron–boson coupling constants
becomes

kij ¼

k11 0 k13 k14

0 0 k23 k24

k31 ¼ k13m13 k32 ¼ k23m23 0 0
k41 ¼ k14m14 k42 ¼ k24m24 0 0

0
BBB@

1
CCCA ð4Þ

where mij = Ni(0)/Nj(0) and Ni(0) is the normal density of states at the
Fermi level for the ith band (i = 1, 2, 3, 4). We choose spectral func-
tions with Lorentzian shape [12,14] i.e:

a2
ijFijðXÞ ¼ CijfLðXþXij;YijÞ � LðX�Xij; YijÞg ð5Þ

where LðX�Xij; YijÞ ¼ 1
ðX�XijÞ2þY2

ij
and Cij are normalization constants,

necessary to obtain the proper values of kij while Xij and Yij are the
peak energies and half-widths of the Lorentzian functions, respec-

tively [12]. In all the calculations we set Xij ¼ Xsf
ij ¼ Xsf

0 ¼ 8 meV

[13], and Yij ¼ Ysf
ij ¼ Xsf

ij =2 [14]. The cut-off energy is xc ¼ 18 Xsf
0

and the maximum quasiparticle energy is xmax ¼ 21 Xsf
0 . Bandstruc-

ture calculations (see Table 1) provide information about the factors
mij that enter the definition of kij. Eventually the model contains five
free parameters: The coupling constants k13, k23, k14, k24 and k11. We
have solved the imaginary-axis Eliashberg Eqs. (1) and (2) (the solu-
tion is analytically continued to the real-axis by using the Padé
approximant technique) by fixing the free parameters to reproduce
the low temperature gap values. The large number of free parame-
ters (five) may suggest that from this procedure is possible to find a
large set of solutions that produce the same results. On the contrary,
as a matter of fact, the predominantly interband character of the
model drastically reduces the number of possible choices. At this
point there are no more free parameters. We can calculate the crit-
ical temperature that turns out to be very close to experimental one

[2]: Tcalc
c ¼ 18:6 K. In Table 2 the obtained results are summarized.

The problem with this model is the necessity of a large intraband
term k11 in order to give a physical interpretation of the experimen-
tal data [3].

We consider the experimental temperature dependent resistiv-
ity as measured in Ref. [15], and reported in Fig. 3. Its saturation at
high temperature [16] suggests that the presence of several sheets
in the Fermi surface also affects the normal state transport proper-
ties. While the low temperature behaviour q(T) / T2 seems to indi-
cate that a non-phononic mechanism plays a relevant role [17].

We tried to fit the data within a one-band model [18,19] (see
Eq. (6) with i = 1) where the phonon spectrum has been taken from
Ref. [20] and the plasma energy has been obtained by first principle
calculation (see Table 1). The transport coupling constant and the
value of the impurities are considered as free parameters. The ob-
tained values are reported in Table 3, in particular ktr,tot = 0.32
which is in agreement with the calculated value of the transport
electron–phonon coupling constant [21]. However, as can be seen
in Fig. 2, within a one-band model (black dashed line) the experi-
mental data cannot be reproduced.

The phenomenological model [22] proposed to explain satura-
tion at high temperature generally assumes the presence of paral-
lel conductivity channels where one of them has a strong
temperature dependence and another one is characterized by a
temperature-independent contribution. In the wake of our model
for the superconducting state, we propose a multiband model
[23,24] to analyze the resistivity data. We will examine two possi-
ble mechanisms responsible for resistivity: phonons and antiferro-
magnetic spin fluctuations. The theoretical expression of resistivity
as function of temperature [23,24] is given by the equation:

1
qcðTÞ

¼ e0

�h

X4

i¼1

ð�hxpl;iÞ2

ci þW 0
iðTÞ

; ð6Þ

where xpl,i is the bare plasma frequency of the i-band and



Fig. 2. Temperature dependence of resistivity in LiFeAs. Experimental data (from
Ref. [15]) and calculated fits are reported. The black dashed line comes from a
single-band model. Within a four-band model two different cases have been
considered, one obtained with the phononic spectrum (green dash-dotted line) and
one with the antiferromagnetic spin fluctuation spectrum (red solid line). The inset
shows the two normalized spectral function that have been used, the phonon
spectrum (black solid line) and the antiferromagnetic spin fluctuation spectrum
(red dashed line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Magnification of the previous figure. Resistivity at low temperature.
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here ci ¼
P4

j¼1Cij þ CM
ij is the sum of the inter- and intra-band non

magnetic and magnetic impurity scattering rates present in the Eli-
ashberg equations and

a2
tr;iFtr;iðXÞ ¼

X4

j¼1

a2
tr;ijFtr;ijðXÞ; ð8Þ

where a2
trðXÞFtr;ijðXÞ are the transport spectral functions related to

the Eliashberg functions [18].
If a normalized transport spectral function a2

trðXÞF
0
tr;iðXÞ is de-

fined, then a2
trðXÞFtr;ijðXÞ ¼ ktr;ija2

trðXÞF
0
tr;ijðXÞ where the coupling

constants are defined as for the standard Eliashberg functions.
In order to build a model as simple as possible, we chose all the

normalized transport spectral functions to be equal, then
a2

trðXÞF
0
tr;iðXÞ ¼ ktr;ia2

trðXÞF
0
trðXÞ where ki ¼

P
j¼1;::4kij.

It has been shown that, at least for iron pnictides, this model
can have a theoretical support [24] depending on the electronic
structure of the compound. The basic idea, based on ARPES and
de Haas-van Alphen data, is that transport is drawn mainly by
the electronic bands and that the hole bands have a weaker mobil-
ity [25]. Then the impurities are mostly present in the hole bands
and c1,2� c3,4, while the transport coupling is much higher in
bands 3 e 4 and this means that, at least as a first approximation,
k1 and k2 can be fixed to be zero. In this way we will have two con-
tributions almost temperature independent and two which change
the slope of the resistivity with the temperature [24].

Let us start with the phononic case. For simplicity we consid-
ered all the spectral functions to be proportional to the phonon
spectra used also in a previous fit [20]. As mentioned above the
transport spectral functions are similar to the standard Eliashberg
functions. The main difference is the behavior for X ? 0 [18],
where the transport function behaves like X4 instead of X2 as in
the superconducting state. So the condition a2

trðXÞFtrðXÞ / X4 has
been imposed in the range 0 < X < kBTD/10 and then

a2
trðXÞF

0
trðXÞ ¼ biX

4#ðkBTD=10�XÞ þ cia2
trðXÞF

00
trðXÞ#ðX� kBTD=10Þ;

where TD = 240 K is the Debye temperature [26], the constant bi and
ci have been fixed by imposing the continuity in kB TD/10 and the
normalization. a2

trðXÞF
00
trðXÞ is proportional to the electron–phonon
spectral function [20] while a2
trðXÞF

0
trðXÞ is shown in the inset of

Fig. 2.
All the plasma frequencies have been determined by first prin-

ciple calculations (see Table 1) and the coupling constants consid-
ered as free parameters as well as the impurities parameters. The
best fit is obtained with ktr,tot = 0.14, as reported in Table 3, which
is in agreement with the hypothesis that the phonon coupling in
LiFeAs is very weak and the value of ktr,4 almost does not influence
the final result. However the experimental data are not perfectly
reproduced, as can be seen by looking the green dash-dotted curve
in Fig. 2 and in Fig. 3. Moreover a huge quantity of impurity has
been necessary to obtain this theoretical curve and this is not con-
sistent with the good quality of the single crystal [16].

Then we considered the case of antiferromagnetic spin fluctua-
tions. Now for X ? 0 the transport function behaves like X3 in-
stead of X as in the superconducting state. So the condition
a2

trðXÞFtrðXÞ / X3 has been imposed in the range 0 < X < X0/10,
then
a2

trðXÞF
0
trðXÞ ¼ biX

3#ðX0=10�XÞ þ cia2
trðXÞF

00
trðXÞ#ðX�X0=10Þ and

the constants bi and ci have been fixed in the same way as before.
For the spectral function a2

trðXÞF
00
trðXÞ we chose the theoretical

antiferromagnetic spin fluctuation function in the normal state
[27]

a2
trF
00ðXÞ / X0X

X2 þX2
0

#ðX�X0Þ; ð9Þ

where X0 is a free parameter: from the fit of experimental data we
obtain X0 = 47 meV.

Also in this case the value of the free parameters are reported in
Table 3 and Fig. 2 depicts the obtained results with the red solid
line as well as the spectral function (in the inset).

This approach reproduces accurately the experimental data, sig-
nificantly better than previous attempts. The fitted total coupling is
ktr,tot = 0.77 consistent with expectations, and actually smaller than
the value in the superconducting state. Moreover the impurity
scattering parameters seem to account properly for the high qual-
ity of the sample. We are aware that, in spite of the good fitting,
this is still a rough simplification as compared to the more plausi-
ble situation where the two mechanisms coexist. However, it is
clear from our analysis that the antiferromagnetic spin fluctuations
must constitute the main contribution.

In conclusion, in this work we have shown that antiferromag-
netic spin fluctuations play an important role not only in the super-
conducting state but also in the normal state, and by fitting the
experimental resistivity we have extractedrelevant information
on the energy peak of the spectral function and the total transport
coupling constant. We also underline the possibility that the very
different properties of the mediating boson in the normal and
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superconductive state [24] can be a unifying principle at the root of
superconductivity in the iron-based materials.
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