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The multiferroic behavior of rare-earth manganites is stud-
ied within a microscopic model including a symmetry-allowed
magnetoelectric coupling between polarization and magneti-
zation. The magnetic subsystem is described by a frustrated
Heisenberg spin model, whereas the ferroelectric subsystem is
characterized by an Ising model in a transverse field. Using
Green’s function method we find analytically the temperature
and wave vector dependent elementary excitation of the mag-
netoelectric system, the polarization and the magnetization for
different magnetoelectric coupling strengths. The system under-

goes a magnetic transition at TN and a further reduction of the
temperature leads to a ferroelectric transition at TC < TN depen-
ding on the coupling strength. That coupling is also manifested
as a kink in the magnetization and the elementary excitation at
TC. Due to the magnetoelectric coupling the excitation energy
exhibits a gap at zero wave vector which increases with increas-
ing coupling. We show that the macroscopic magnetization
can be slightly enhanced by an external electric field nearby
TC. An external magnetic field leads to an increase of the
polarization.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction There is currently a great effort in
understanding the microscopic nature of the coupling
between ferroelectric and magnetic ordering in several tran-
sition metal oxides such as RMn2O5 where R represents
rare-earth elements [1–4]. As argued [5, 6] the ferroelectric-
ity is driven by the magnetic ordering, i.e the material possess
a strong magnetoelectric coupling (MEC). The kind of MEC
is responsible for the sensitivity of the system to applied
magnetic fields and may lead to new classes of functional
materials. One of the key compounds that has triggered such
research activity is TbMn2O5, in which a continuous actu-
ation of electric polarization P is realized at low magnetic
field H < 2T. Numerous studies of this material and related
ones like RMn2O5 have shown that spatially modulating,
noncollinear magnetic order due to spin frustration is the rea-
son for inducing a ferroelectric order in those materials. More
specifically, the main mechanism for the appearance of a non-
trivial polarization P in RMn2O5 (R = Tb, Y, Dy, and Bi) has
been attributed to exchange-striction among frustrated Mn
spin networks [7], while a contribution to the polarization
due to a spiral spin order is relevant in RMn2O5 (R = Ho, Er,
and Tm) [8]. The dominant mechanism for developing a non-

zero polarization in RMn2O5 seems to be associated with
the order of the spins of Mn [9]. This fact is related to the
complexity of the RMn2O5 crystal structure, where Mn4+O6

octahedra and Mn3+O5 pyramids are linked through edge-
and corner-sharing networks. As a result one can discrimi-
nate five independent nearest-neighbor magnetic interactions
[10]. There is a limited number of works discussing the possi-
ble effects of rare-earth ions on the temperature and magnetic
field dependence of the polarization P on RMn2O5 [11–14].
So the role of the rare-earth ions in RMn2O5 is far from being
completely understood, in particular, the manipulation of the
polarization by an external magnetic field is of interest. Such
an effect is uniquely realized in TbMn2O5. Several studies
of the magnetic properties as function of the temperature
have indicated that RMn2O5 compounds are ferroelectric
in their magnetically ordered state [15–18]. A kink in the
magnetization [15–17] or in the magnetic susceptibility [18]
at the ferroelectric phase transition temperature is observed,
which give a strong evidence of a MEC in these substances.

The known microscopic mechanisms of magnetically
induced ferroelectricity include lattice distortion (exchange-
striction) and redistribution of electron density in response
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to the spin ordering. Such processes occur locally in all mag-
netic materials. However, only when a spin ordering breaks
the inversion symmetry these local electric dipoles sum up to
a macroscopic electric polarization. Good candidates of spin
orders breaking inversion symmetry are frustrated magnets,
where competing interactions and the geometry of spin
lattice favors unconventional magnetic states. In most of the
recently discovered multiferroic materials such competing
interactions force the spins to generate a cycloidal spiral.
This non-collinear spin order breaks the inversion symmetry
and activates for instance an antisymmetric Dzyaloshinskii–
Moriya interaction proportional to the cross-product of
spins, S1 × S2 [19]. In case inversion symmetry is broken by
a collinear magnetic ordering the dominant spin interaction
that can shift ions and polarize electronic clouds is the
Heisenberg exchange coupling proportional to the scalar
product of spins S1 · S2. This mechanism is used to explain
the multiferroic properties of RMn2O5, where R denotes
a rare earth ions, Y or Bi, and orthorhombic manganites
offer the E-type antiferromagnetic ordering [20]. In that
paper [20] a microscopic model is discussed based on the
assumption that the mechanism of magnetically induced
ferroelectricity and electromagnon absorption relies entirely
on the isotropic Heisenberg exchange and additional
magnetostrictive coupling of spins to a polar lattice mode.
So relativistic effects are not involved. Another approach
is due to [21] where an effective model was developed
to explain the mechanism of magnetoelectric coupling in
multiferroic RMn2O5 and the related phase diagram. The
origin of the magnetoelectric effect in RMn2O5 is a coupling
between two Ising-type orders, namely the ferroelectric
order along the b-axis, and the coupled magnetic order
between two frustrated antiferromagnetic chains. Based on
the exchange-striction mechanism, a model is proposed in
Ref. [22] with the intent to capture the interplay between
spin and dipolar moments in the presence of a magnetic
field in BiMn2O5. The magnetic properties of RMn2O5

multiferroics were reviewed in Ref. [23] using unpolar-
ized and polarized neutron diffraction experiments. The
nature of ferroelectricity is based on calculations of the
ferroelectric polarization predicted by different microscopic
coupling mechanisms (exchange-striction and cycloidal
spin-orbit models). A minimal model including a small set
of parameters is also presented in order to understand the
propagation of the magnetic structure along the c-direction.
To that aim an effective spin Hamiltonian for YMn2O5 were
constructed [24] and studied by density-functional theory.
Using the related first-principles-derived spin Hamiltonian
the authors have calculated the magnon dispersion relation
for this compound and compared it with the experimentally
measured spectra probed using inelastic neutron scattering.
The magnetostructural transitions and the magnetoelectric
effects reported for TbMn2O5 are described in Ref. [25]
theoretically. The ground state as well as structural, elec-
tronic, and magnetic properties of multiferroic TbMn2O5

via first-principles calculations were found by Wang et
al. [6]. Due to this work the ferroelectricity in TbMn2O5

is driven by the non-centrosymmetric magnetic ordering,
without invoking the spin-orbit coupling and non-collinear
spins.

In spite of a broad variety of effects occurring in multi-
ferroic material a detailed analysis of underlying quantum
models is still lacking. Therefore the goal of the present
paper is to propose and to analyze a microscopic model for
rare-earth manganites. The model comprises three items, the
frustrated magnetic subsystem characterized by competing
magnetic interactions, the ferroelectric subsystem character-
ized by an Ising model in a transverse field [26–28] and the
magnetoelectric coupling. That coupling between both sub-
systems is allowed by symmetry and includes a quadratic
magnetic order parameter and a linear polar order param-
eter. The analysis is performed in such a manner that the
MEC triggers the transition to the ferroelectric phase. An
appropriate tool to investigate such a quantum model ana-
lytically is the method of thermodynamic Green’s function.
The poles of the Green’s function yields the spectrum of the
elementary excitations, which, on the other hand determine
the macroscopic quantities like polarization and magneti-
zation as functions of temperature and the magnetoelectric
coupling constant. The excitation spectrum offers a gap due
to the MEC. The model can be extended by inclusion the
coupling of external electric and magnetic fields. We demon-
strate that the magnetization is affected by an electric field
and the polarization by the corresponding magnetic field

2 The model So far, two distinct scenarios have been
proposed for the microscopic mechanism of magnetically
induced ferroelectricity. Many of the recently discovered
multiferroic materials, such as TbMnO3 and MnWO4, show
cycloidal spin order attributed to frustration due to com-
peting interactions [2, 29]. In these systems, non-collinear
magnetic orders break inversion symmetry and give rise to
polarization via the antisymmetric Dzyaloshinskii–Moriya
interaction. The resulting polarization is induced by a pair
of spins and is given by P ∝ S1 × S2. On the other hand,
a configuration of collinear spins breaking the inversion
symmetry can induce polarization via a mechanism based
on the isotropic Heisenberg exchange and a magnetostric-
tive coupling of spins to a polar lattice mode. In this case
the polarization is related to P ∝ S1 · S2. The last mecha-
nism was proposed to explain the properties of orthorhombic
manganites RMn2O5 [30]. Here we follow the second way
where different to other approaches the ferroelectric subsys-
tem is described by an Ising model in a transverse field.
This model reflects the physical situation in a more ade-
quate manner. The broad spectrum of the Ising model in a
transverse field in studying ferroelectric behavior has been
demonstrated recently [28, 27]. The model can be success-
fully applied for a large class of ferroelectric materials.

2.1 Hamiltonian The Hamiltonian of the model can
be written as:

H = Hm + Hf + Hmf . (1)

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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The Hamiltonian of the magnetic subsystem Hm is given by
the Heisenberg model including nearest neighbor ferromag-
netic coupling J > 0 and next nearest antiferromagnetic
coupling J̃ > 0 :

Hm = −1

2

∑
ij

JijSi · Sj + 1

2

∑
〈ij〉

J̃ ijSi · Sj. (2)

The sum over all next nearest neighbors is indicated by 〈ij〉.
Due to the competition between ferromagnetic and antifer-
romagnetic order the magnetic subsystem is able to develop
frustration if J̃ > J/4 [31]. Otherwise we are aware that
the modeling of the magnetic subsystem by the Hamilto-
nian in Eq. (2) is an approximation. As discussed in Ref.
[10, 32] the magnetic behavior is characterized by five dif-
ferent coupling parameters within the spin Hamiltonian. Due
to [33] adjacent Mn3+ and Mn4+ ions are coupled antifer-
romagnetically. As pointed out this fact leads to magnetic
frustration. Because an analytical modeling of an Heisen-
berg spin model with five independent exchange couplings
is too comprehensive we have simplified the model by
including two couplings which leads however to frustration.

The ferroelectric behavior is modeled by the Ising
model in a transverse field (TIM), the relevance of which
is discussed in Refs. [26, 27], for a recent review compare
[28]. The Hamiltonian reads

Hf = −1

2

∑
ij

J ′
ij
Bz

i
Bz

j
− 2Ω

∑
i

Bx

i
. (3)

Here the pseudo-spin operator Bz
i

characterizes the two
position of the ferroelectric unit at the lattice point i.
These two positions are separated by a barrier. The inter-
action between adjacent lattice sites is denoted by J ′

ij
. The

dynamics of the model with strength Ω is determined by
the operator Bx. This term is responsible for overcom-
ing the barrier between the two positions. It describes the
flipping process between both wells. Therefore Ω is some-
times called tunneling frequency. Let us stress that the
operators Bi are pseudo-spin operators which fulfill the com-
mutation relation of conventional spin operators but have
nothing to do with real spins of the ferroelectric units.

The last term in Eq. (1) describes the coupling between
the magnetic and the ferroelectric subsystems. As shown
by [20, 21] the material allows a coupling of the general form

Hmf =
∑

ijl

KijlB
z

i
Sj · S l. (4)

For the subsequent calculations we need only the coupling
at zero wave vector. So, the MEC should be written with a
(pseudo)-scalar coupling K instead of Kijl. The parameter K

is a measure for the coupling strength between the magnetic
and the electric order parameters.

To study the magnetic subsystem it is appropriate to
introduce spin-ladder operators S± = Sx ± iSy leading to

Hm = −1

2

∑
i,j

Jij(S
+
i
S−

j
+ Sz

i
Sz

j
)

+ 1

2

∑
〈i,j〉

J̃ il(S
+
i
S−

j
+ Sz

i
Sz

j
). (5)

Here i, j means summation over nearest neighbors whereas
〈i, j〉 denotes next nearest neighbors. Because the ferroelec-
tric part Hf in Eq. (3) suggests that both mean values 〈Bz〉
and 〈Bx〉 are nonzero in the ordered phase, it seems to be
appropriate to introduce a rotated frame according to

Bx

i
=

(
1

2
− ρi

)
sin ν + 1

2

(
bi + b†

i

)
cos ν,

By

i
= i

2
(b†

i
− bi),

Bz

i
=

(
1

2
− ρi

)
cos ν − 1

2

(
bi + b†

i

)
sin ν. (6)

The angle is determined in such a manner that 〈Bx〉 = 0
after rotation. Moreover the determination of the angle guar-
antees that the ferroelectricity is induced by the magnetic
behavior and is triggered by the MEC. Insofar the model
describes improper ferroelectricity. Notice that in Eq. (6)
b and b† are Pauli-operators which fulfill the commutator
relation [bi, b

†
j] = (1 − 2ρi)δij with ρi = b

†
i bi. Both Hamil-

tonian Hf and Hmf in terms of Pauli-operators can be found
in the appendix. The model system will be analyzed in terms
of Green’s function introduced in the following subsection.

2.2 Green’s functions and results As already
mentioned the method of thermodynamic Green’s function
[34] allows to find the dispersion relation of the elementary
excitation of the underlying quantum model, and moreover
the temperature dependent macroscopic quantities as
magnetization and polarization. In particular, the poles of
the Green’s function will be identified with the spectrum of
the excitations. To be specific let us define for the magnetic
part the Green’s function by [34]:

G(m)
lm

(t − t′) ≡ 〈〈S+
l

(t); S−
m

(t′)〉〉
= −iΘ(t − t′)〈[S+

l
(t) , S−

m
(t′, ]〉. (7)

Using the commutation relation and making a simple RPA
decoupling [31, 34] it results after Fourier transformation

G(m)(q, E) = 2〈Sz〉
E − EM(q)

with

EM(q)= 〈Sz〉 (
J0 − Jq − J̃ 0 + J̃ q − 2K0〈σP〉 cos ν

)
.

(8)

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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The excitation energy of the magnetic spin-waves EM(q)
depends on the competing ferromagnetic J and antiferro-
magnetic couplings J̃ , introduced in Eq. (2). Due to MEC the
spectrum includes both the magnetization M = 〈Sz〉 = 〈σM〉
as well as the polarization P = 〈σP〉 = 1

2
− 〈ρ〉. Since the

spin of TbMn2O5 is assumed to be S = 2 the calculations
of the magnetic system are performed for arbitrary spin.
Following [35] we find the magnetization M ≡ 〈σM〉:

〈σM〉 = 1

N

∑
q

((
S + 1

2

)
coth

[(
S + 1

2

)
βEM(q)

]

− 1/2 coth
βEM(q)

2

)
. (9)

The analysis of the ferroelectric subsystem is more complex.
One needs a matrix Green’s function defined by(

〈〈bl; b†
m
〉〉 〈〈bl; bm〉〉

〈〈b†
l ; b

†
m
〉〉 〈〈b†

l ; bm〉〉

)
≡

(
G

(f )11
lm G

(f )12
lm

G
(f )21
lm G

(f )22
lm

)
. (10)

The related equations of motion for the Green’s function
matrix and the results are given in the appendix. In our case
we find ε11

q
= −ε22

q
and ε12

q
= −ε21

q
. Here we present the

result for G(f )11(q, E) in the following form

G(f )11
q

= 〈σP〉
(

εq

E − EF

− ε′
q

E + EF

)
,

EF (q) =
√

(ε11
q

)2 − (ε12
q

)2. (11)

The coefficients εq, ε
′
q

as well as ε11
q

and ε11
q

can be found in
the appendix. The polarization P = 〈σP〉 follows as

1

〈σP〉 = 2

N

∑
q

ε11
q

EF (q)
coth

βEF (q)

2
. (12)

As one can observe the excitation energy of the ferroelectric
part depends on the rotation angle ν which has to be
determined. To that aim we use

i
∂

∂t
〈bq〉 = 〈[bq , H]〉 = 0.

From here we get an equation of the type A〈bq〉 +
B〈b†

q
〉 + C = 0, where A, B, and C are well defined coeffi-

cients. Due to 〈b〉 = 0 it results

C = (−2Ω cos ν + 1
2
J ′

0 sin ν cos ν〈σP〉)〈σP〉
− 1

2
K0 sin ν〈σP〉〈σM〉2. (13)

As a nontrivial result we find the equation for the angle ν

tan ν = 4Ω

J ′
0〈σP〉 cos ν − K0〈σM〉2

. (14)

This equation reflects the improper nature of the ferro-
electricity. It is magnetically induced and the occurrence
of the polarization is strongly related to magnetoelectric
coupling K0. The further analysis is done using the couplings

Jq = zJ cos

(
1

2
qxa

)
cos

(
1

2
qya

)
cos

(
1

2
qza

)
,

J ′
q
= zJ ′ cos

(
1

2
qxa

)
cos

(
1

2
qya

)
cos

(
1

2
qza

)
,

J̃ q = z′

3
J̃(cos(qxa) + cos(qya) + cos(qza)), (15)

where z = 8 is the number of nearest neighbors and z′ = 6
is the number of next nearest neighbors. Furthermore we
have J0 = zJ .

3 Discussion In this section we present the numerical
results based on our theoretical calculations where the fol-
lowing model parameters are used for the ferroelectric and
the magnetic subsystem: TC = 37 K, TN = 44 K, J ′

0 = 75 K,
Ω = 0.2 K, J0 = 54 K, J̃ = 18.5 K, K0 = −7 K, pseudo-
spin S = 1/2. The spin is S = 2. The data are appropriate
for TbMn2O5. The analysis is focused on the magnetiza-
tion obtained by in Eq. (9), the polarization, Eq. (12), and
the spin-wave frequency according to Eq. (8). The tem-
perature dependence of the magnetization M is shown in
Fig. 1. Notice that the calculation of the magnetization
is based on the spin-wave energy of the magnetic sub-
system EM which is given in Eq. (8). The temperature
dependent spin-wave energy EM at zero wave vector is
shown in Fig. 2. In both figures the MEC between the two
order parameters is manifested as a kink at the ferroelec-
tric phase transition temperature TC. This discontinuity in M

and EM characterizes the mutual influence between ferro-
electric and magnetic ordering. A simple physical picture
behind this effect could be related to an energy transfer

Figure 1 Temperature dependence of the magnetization M with
with J ′

0 = 75 K and K0 = −7 K.

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 Temperature dependence of the spin-wave energy EM for
zero wave vector with J ′

0 = 75 K and K0 = −7 K.

from the magnetic phase to the polar phase. This energy is
necessary to establish the new ferroelectric phase. Because
of TC < TN , the electric subsystem is not able to influence
the magnetic one above TC. The two phases coexist only
below TC. Such a cusp-like anomaly at the ferroelectric criti-
cal temperature is obtained experimentally for example in the
magnetic susceptibility [18] in TbMn2O5 and in the magne-
tization [15–17] of RMn2O5 and orthorhombic RMnO3. The
kink is an strong indication for the magnetoelectric effect.
A similar change, a kink in the temperature dependence
of the magnetization at the ferroelectric Curie tempera-
ture TC is reported by Zheng et al. [36] in nano-structured
BaTiO3–CoFe2O4 ferroelectromagnet. The measured spe-
cific heat shows kinks at the critical temperatures TC and
TN in DyMn2O5 [4]. As shown in Fig. 2 the magnetic
excitation offers a novel softening behavior around TN .

The polarization P decreases with increasing temper-
ature and vanishes at the critical temperature TC which is
depicted in Fig. 3. The polarization offers a phase transition

Figure 3 Dependence of the polarization P on the temperature for
J ′

0 = 75 K and K0 = −7 K.

Figure 4 Dependence of the polarization P for different magneto-
electric couplings K0 = −3 K (1); K0 = −7 K (2); K0 = −10 K

(3); J ′
0 = 75 K and K0 = −7 K.

at TC where above TC the system is disordered and reveals no
ferroelectric order. Notice that the spontaneous polarization
P exists below TC where the system is likewise magnetically
ordered. Such a behavior is characteristic for multiferroics.
The polarization is magnetically induced. In a recent paper
[37] the authors have identified three independent contribu-
tions to the polarization related to Mn3+ and Mn4+ as well as
to the antiferromagnetic Tb3+ order. We argue that this subtle
effect could be included in our approach, too. However to
that aim, the magnetic part of our model, see Eq. (2), should
be extended by including more than two exchange coupling
terms following the line given in Ref. [10]. Such an extension
of the model is in principle possible but seems to be out of
the scope of an analytical approach. A further complication
is originated by the different values of the spins which contri-
butes differently to the magnetization accordinng to Eq. (9).
Otherwise our model demonstrates clearly the effect and the
relevance of the magnetoelectric coupling on the polarization
P . As indicated in Fig. 4 the polarization depends strongly on
the MEC K0 introduced in Eq. (4). With increasing coupling
K0 the polarization P is enhanced and the phase transition
temperature TC grows, too. Consequently the discontinuity in
the magnetization M and energy EM at TC is shifted towards
TN . Moreover the discontinuity in M and EM becomes more
pronounced with enlarged MEC, compare Fig. 5 and Fig. 6.
This result seems to us a strong indication for the relevance
of the MEC. As mentioned above the discontinuity in M

and EM is related to an energy transfer, which obviously
increases the stronger the MEC is. The magnetic phase tran-
sition temperature TN remains essentially unaffected by K0.
The increase of the ferroelectric transition temperature TC

with stronger MEC strength offers mathematically the pos-
sibility that TC ≥ TN . Therefore the improper nature of the
polar phase is only guaranteed when the coupling parameter
K0 is limited to such values that TC remains smaller than TN .
The growing TC is also discussed below where we show that

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 5 Temperature dependence of the magnetization M for
different magnetoelectric couplings: K0 = −3 K (1); −7 K (2);
−10 K (3).

TC is enlarged by an increasing external electric field. The
magnetic excitation energy EM(q) is also influenced by the
MEC K0. The result for a fixed temperature is shown in Fig. 7.

In the same manner the spin-wave dispersion at zero
wave vector is varied for different MEC which is shown
in Fig. 6. The dispersion relation EM(q) increases with
the wave vector q, see Fig. 7. If the MEC is absent the
energy is typically zero at q = 0 (curve 3). Due to the non-
vanishing MEC the system develops an energy gap at zero
wave vector which increases with increasing of the mag-
netoelectric coupling K0, see curve 1 and 2 in Fig. 7. The
MEC breaks the continuous symmetry of the magnetic sub-
system and the related Goldstone mode becomes massive,
i.e., the dispersion relation reveals a gap at zero wave vector.

One of the advantage of multiferroic material is the possi-
bility to control the polarization by an external magnetic field
h and the magnetization by an external electric field E. There-
fore the total Hamiltonian Eq. (1) has to be supplemented

Figure 6 Temperature dependence of the spin-wave-energy
EM(q = 0) for different magnetoelectric couplings: K0 = −3 K

(1); −7 K (2); −10 K (3).

Figure 7 Wave vector dependence of the spin-wave energy EM

for different magnetoelectric coupling constant K0 = 0 K (3);
−7 K (2); −10 K (1).

by such external field terms. The coupling of both external
fields is a linear ones to the spins and to the pseudo-spins,
respectively. The strong MEC can be seen by studying the
influence of an applied electric field on the magnetic proper-
ties, see Fig. 8. It is shown that the increase of the electric field
E leads to an enhancement of the magnetization M mainly
in the temperature range TC ≤ T ≤ TN . Whereas TN remains
unchanged for small couplings K0, the ferroelectric phase
transition temperature TC is enhanced. The kink is shifted
to higher temperatures, near to TN , and for larger E-values
the kink becomes smaller and can disappear completely. The
reason is that the electric field shifts the phase transition tem-
perature TC to higher values and the distance between TC

and TN shrinks. The saturation magnetization remains like-
wise unchanged indicating that the magnetic domains do not
increase in size. From here we conclude that the domains are

Figure 8 Temperature dependence of the magnetization M for dif-
ferent electric fields E: E = 0 K (1); E = 1 K (2); E = 5 K (3).

www.pss-b.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 9 Magnetic field dependence of the polarization P for dif-
ferent temperatures: T = 24 K (1); T = 30 K (2); T = 35 K (3).

just reoriented by the electric field. The calculations suggest
that for sufficient high electric field strengths the polariza-
tion becomes larger as the magnetization and hence TC > TN .
Then the kink disappears. This theoretical finding should be
confirmed by experiments with higher electric fields. Here
we present the results for small electric fields. The influ-
ence of an external magnetic field h on the polarization P

is shown in Fig. 9. The polarization is enhanced with an
increasing external magnetic field h. The higher the tem-
peratures the stronger are the changes, compare curve 3 in
Fig. 9. Such a behavior is in agreement with the experimental
data for TmMn2O5 [8], MnWO4 [38], and of orthorhombic
YMnO3 [39]. The strong MEC is evident in TbMn2O5 [3],
the upward jump in the dielectric constant at TC transition is
pushed to higher temperatures if a magnetic field is applied.
The increase of the polarization with the external magnetic
field is also in accordance with the results found in Ref. [37].
Using our method we find that the ferroelectric phase tran-
sition temperature TC and the related excitation EF increase
with increasing magnetic field h. Hence the electric phase
in the multiferroic compounds RMn2O5 can be controlled
by an external magnetic field and the dielectric properties
turn out to be highly susceptible to such applied fields.

4 Conclusions In spite of the great progress in study-
ing multiferroic materials experimentally there is a current
debate on an adequate theoretical description. Here we have
studied the influence of the MEC in rare-earth compounds.
The presented quantum model is based on the Heisenberg
spin model with competing ferromagnetic and antiferro-
magnetic order. As consequence the magnetic subsystem
is frustrated as one feature of the multiferroic material
considered. The ferroelectric subsystem is approximately
characterized by the Ising model in a transverse field which
can be expressed by pseudo-spin operators. The z-component
exhibits the two different polarization directions whereas
the transverse field simulates the flip-process between the
various polarization directions. The system undergoes a

magnetic phase transition at temperature TN . For T < TN the
system offers a finite magnetization which increases with
decreasing temperature. At the temperature T = TC < TN the
system develops due to the magnetoelectric coupling a fer-
roelectric phase with nonzero polarization. As a result of
the symmetry allowed MEC between both order parameters
the system becomes multiferroic. Based on this microscopic
model we find the excitation spectrum of the multiferroic
system at finite temperature. For TC < T < TN the system
offers conventional Goldstone modes, i.e., gapless spin–wave
excitations, the MEC breaks the continuous symmetry of
the Heisenberg model and hence the dispersion relation is
altered and shows a gap for zero wave vector. The effect is the
stronger the higher the MEC is. The appearance of ferroelec-
tricity at TC is induced by the MEC, where the ferroelectric
phase is manifested by a kink in the dispersion relation. As
evident by using the Green’s function method the excitation
spectrum determines the macroscopic quantities as magne-
tization and polarization. The magnetization is finite in the
interval TC < T < TN and tends to zero for T → TN . Owing
to the MEC the system offers below TC simultaneously a
finite polarization. Likewise the magnetization is changed in
the vicinity of TC. The effect can be observed for different
strengths of the MEC. Finally, the multiferroic system is sub-
jected to external electric and magnetic fields. We find that
the polarization increases with growing up magnetic field,
i.e., the ferroelectric subsystem can be influenced by a mag-
netic field. In the same manner the magnetization alters due
to an external electric field. Our results suggest that for suffi-
cient high electric fields the phase transition temperature TC

is shifted to higher values and even to TC > TN . This effect
should be observable in experiments. In summary, we have
studied a quantum model for multiferroic RMn2O5 systems
with a magnetoelectric coupling quadratic in the magnetiza-
tion and linear in the polarization. The microscopic behavior
manifested by the excitation spectrum is analyzed and from
there we find the macroscopic behavior of the system.

Appendix The Hamiltonian of the ferroelectric
subsystem and magnetoelectric coupling reads after rotation

Hf + Hmf = −Ω
∑

i

[
(1 − 2ρi) sin ν + (b†

i
+ bi) cos ν)

]

− 1

8

∑
i,j

J ′
ij

⎧⎪⎪⎩(
b†

i
b†

j
+ b†

i
bj + bib

†
j
+ bibj

)
sin2

ν

− (
b†

j
+ bj − 2ρib

†
j
− 2ρibj

)
sin ν cos ν

− (
b†

i
+ bi − 2b†

i
ρj − biρj

)
sin ν cos ν

+ (
1 − 2ρj − 2ρi + 4ρiρj

)
cos2 ν

⎫⎪⎪⎭
+ 1

2

∑
ijl

KijlS
z

j
Sz

l

[
(1 − 2ρi) cos ν

− (b†
i
+ bi) sin ν

]
. (16)
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The matrix Green’s function obeys(
G(f )11

q
G(f )12

q

G(f )21
q

G(f )22
q

)
=

(
2〈σP〉 0

0 −2〈σP〉
)

+
(

εq
11 εq

12

εq
21 εq

22

) (
G(f )11

q
G(f )12

q

G(f )21
q

G(f )22
q

)
(17)

with

εq
11 = 2Ω sin ν + J ′

0〈σP〉 cos2 ν − K cos ν〈σM〉2

− 1

2
J ′

q
〈σP〉 sin2

ν,

εq
12 = −1

2
J ′

q
〈σP〉 sin2

ν,

εq
21 = −εq

12, εq
22 = −εq

11. (18)

The solution for the Green’s functions are

G(f )11
q

= 〈σP〉[E − εq
22
](

E − εq
11
)(

E − εq
22
) − (

εq
12εq

21
) ,

G(f )12
q

= −〈σP〉εq
21(

E − εq
11
)(

E − εq
22
) − (

εq
12εq

21
) ,

G(f )21
q

= 〈σP〉εq
12(

E − εq
11
)(

E − εq
22
) − (

εq
12εq

21
) ,

G(f )22
q

= − 〈σP〉[E − εq
11
](

E − εq
11
)(

E − εq
22
) − (

εq
12εq

21
) . (19)

The most relevant function G(f )11 can be rewritten in the
following general form:

G(f )11
q

= 〈σP〉
⎧⎪⎪⎩ εq

E − E1

− ε′
q

E − E2

⎫⎪⎪⎭ (20)

with

2E1,2(q) = (εq
11 + εq

22)

± √
(εq

11 + εq
22)2 − 4(εq

11εq
22 − εq

12εq
21).

(21)

Using the realization presented in Eq. (18) the coefficients
in Eq. (11) are given by

εq = E1 − εq
22

E1 − E2

= εq
11

2EF (q)
+ 1

2
,

ε′
q
= E2 − εq

22

E1 − E2

= εq
11

2EF (q)
− 1

2
. (22)

Here we have defined EF (q) = √
(εq

11)2 − (εq
12)2 ≡ E1 ≡

−E2. The result for G(f )11
q

is presented in the text as Eq.
(11) where the realizations Eqs. (18) and (22) are used.
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