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Absence of dynamical steps in the exact correlation potential in the linear response regime
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Recent work [Phys. Rev. Lett. 109, 266404 (2012)] showed that the exact exchange-correlation potential of
time-dependent density-functional theory generically displays dynamical step structures. These have a spatially
nonlocal and time-nonlocal dependence on the density in real-time dynamics. The steps are missing in the usual
approximations, which consequently yield inaccurate dynamics. Yet these same approximations often yield good
linear response spectra. Here we investigate whether the steps appear in the linear response regime, when the
response is calculated from a real-time dynamics simulation, by examining the exact correlation potential of
model two-electron systems at various times. We find there are no step structures in regions where the system
response is linear. Step structures appear in the correlation potential only in regions of space where the density
response is nonlinear; these regions, having exponentially small density, do not contribute to the observables
measured in linear response.
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I. INTRODUCTION

Time-dependent density functional theory (TDDFT) is
now a method of choice for the calculation of excitation
spectra and response properties in materials science and
quantum chemistry [1–3]. It maps the system of interacting
electrons into a fictitious one of noninteracting fermions, called
the Kohn-Sham (KS) system, from which all properties of
the original system may be exactly extracted in principle.
Therefore large systems of relevance in biochemistry and
nanoscience may be treated. The KS fermions evolve in
a one-body potential, vS(r,t), which has the property that
the exact one-body density of the system of interacting
electrons is exactly reproduced by the noninteracting KS
fermions. However, an essential component of this potential,
the exchange-correlation (xc) potential, is unknown and must
be approximated as a functional of the density, the interacting
initial state �0, and the noninteracting initial state �0:
vXC[n,�0,�0](r,t). The vast majority of applications today use
an adiabatic approximation, meaning one where the instanta-
neous density is input into a ground-state xc approximation:
vA

XC[n,�0,�0](r,t) = v
g.s.
XC [n(r,t)]. All memory dependence is

neglected. The adiabatic approximation is behind the linear
response results whose success has propelled TDDFT forward,
and it is implicitly assumed in all the readily available codes
today. Cases for which the adiabatic approximation fail are
known (e.g., states of double-excitation character, long-range
charge-transfer excitations between open-shell fragments,
conical intersections), and users are generally aware to apply
caution when interpreting the TDDFT results in these cases.
Still, TDDFT has proven itself remarkably useful in its balance
between accuracy and efficiency for spectra and response, and
functional developments are ongoing [2–4].

TDDFT is not limited to the linear response regime.
Indeed, given the dearth of alternative practical methods
of solving correlated electron dynamics in nonequilibrium
situations, the nonlinear regime is arguably more important
for TDDFT. Moreover, due to the recent intense progress
in attosecond technology, the control and study of electron
dynamics, with the concomitant control and study of nuclear

dynamics, are becoming an experimental reality. However,
for real-time nonequilibrium dynamics, much less is known
about the accuracy of the usual functionals in TDDFT, and
from comparisons with the few available exactly solvable
systems, it appears that memory effects, missing in the usual
adiabatic approximations, can be significant. In this context,
hydrodynamic-inspired approaches (e.g., Refs. [5–7]), and
orbital-dependent functionals [8], among others, are being
explored.

Recent work has shown the prevalence of dynamical step
structures in the time-dependent xc potential in far-from-
equilibrium situations [9–11]. These step structures were
found to arise in a variety of dynamics, from resonant
Rabi oscillations in a model atom and molecule [10,11], to
dynamics under an arbitrary strong field [10], to quasiparticle
propagation in a semiconducting wire [9]. The steps were
found to have a nonlocal dependence on the density in both
space and time; it was shown that even an adiabatically exact
approximation fails to capture them. Typical approximations
in use today do not contain these structures, resulting in inac-
curate dynamics, as shown in the examples in Refs. [10,11].
Yet these same approximations do give good spectra for
these systems. The question then arises: what happens to
these steps in the linear response regime? In this paper,
we show that the steps are in fact a nonlinear response
phenomenon and do not appear when the response of the
system is linear. To show this, we calculate the time-dependent
correlation potential in model two-electron systems under
several linear response situations, including a weak field
smoothly turned on and off, as well as evolution under a δ kick.
A nonadiabatic kernel has been shown to be essential to obtain
excitations of double-excitation character [12,13], but we show
here that the nonadiabatic step of Ref. [10] is an unrelated
phenomenon.

The rest of the paper is organized as follows: In Sec. II, we
first introduce the model systems used in our study. We then
proceed to find the time-dependent correlation potential in
linear response to a smoothly-turned-on weak field (Sec. II A)
and to a δ kick (Sec. II B). In Sec. III we find explicit
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expressions for the terms in the correlation potential that
scale linearly with the system’s response and, finally, Sec. IV
contains our conclusions.

II. DYNAMICS IN THE LINEAR RESPONSE REGIME

The system we will mostly focus on in this paper is a
one-dimensional (1D) model of the He atom; the Hamiltonian
can be written as

Ĥ = Ĥ0 + Ĥ1(t) = T̂ + V̂ (t) + Ŵ , (1)

where T̂ = ∑
i − 1

2
∂2

∂x2
i

is the kinetic energy, V̂ (t) =∑
i[−2/(x2

i + 1)1/2 − xiE(t)] is the external potential, and
Ŵ = 1/[(x1 − x2)2 + 1]1/2 is the soft-Coulomb electron-
electron interaction [14]. The sums go over two fermions.
(Atomic units e2 = h̄ = me = 1 are used throughout the pa-
per.) This soft-Coulomb model is commonly used in analyzing
functionals, since it is numerically straightforward to find
the exact time-evolving wave function, and then extract the
exact exchange and correlation potentials for comparison with
approximations [15–23]. We will apply weak off-resonant
fields, represented by E(t) above, to stimulate linear response
of the system, as will be detailed below.

Since all double excitations in the He atom lie in the
continuum, we instead consider a model of a quantum dot
to study this issue, taking V̂ (t) = ∑

i[
1
2x2

i + x2
i F(t)]. The

time-dependent driving in this case is modified from the
usual dipole form to a quadratic form, since the linear dipole
perturbation only couples to the first-excited state which is
predominantly a single excitation [24,25].

For two electrons in a spin-singlet, choosing the initial KS
state as a doubly occupied spatial orbital φ(r,t) means that the
exact KS potential for a given density evolution can be found
easily (see, e.g., Refs. [10,26]). In 1D, we have

vS(x,t) = − [∂xn(x,t)]2

8n2(x,t)
+ ∂2

xn(x,t)

4n(x,t)
− u2(x,t)

2

−
∫ x ∂u(x ′,t)

∂t
dx ′, (2)

where u(x,t) = j (x,t)/n(x,t) is the local “velocity,” n(x,t)
is the one-body density, and j (x,t) is the current density. We
numerically solve the exact time-dependent two-electron wave
function, obtain the one-body density and current density,
and insert them into Eq. (2). The exchange-potential in this
case is simply minus half the Hartree potential, vX(x,t) =
−vH(x,t)/2, with vH(x,t) = ∫

w(x ′,x)n(x ′,t)dx ′, in terms of
the two-particle interaction w(x ′,x). Therefore, we can directly
extract the correlation potential using

vC(x,t) = vS(x,t) − vext(x,t) − vH(x,t)/2, (3)

where vext(x,t) is the external potential applied to the system.
Computational details. We use OCTOPUS [27,28] to compute

the exact wave function. The time-dependent Schrödinger
equation is solved by first mapping the Hamiltonian of two
interacting electrons in 1D onto the Hamiltonian of one
electron in two dimensions (2D). We use a grid of size 40.00
a.u. and grid spacing of 0.1 a.u. The approximated enforced
time-reversal symmetry method was used in the propagation,
with a time step of 0.001 a.u. The densities and current
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FIG. 1. (Color online) This plot shows the modulus square of
the Fourier-transformed field of strength of ε1 = 0.0067 a.u., which
includes the first several excitation energies.

densities are then extracted and a standard finite-difference
scheme is used get the time derivative of the velocity.

A. Dynamics in a Gaussian-shaped pulse

The examples in Ref. [10] began in the ground state and
either applied a weak resonant field or a strong arbitrary field
to the system, or began in a superposition of a ground and
excited state. None of these situations are the territory of linear
response. Instead here, we apply a weak off-resonant field, but
with an envelope such that a number of excitations fall under
it. To this end, we apply a weak electric field E(t) with the
following Gaussian envelope:

E(t) = εαe
−[ t−3T0√

2T0
]2

cos(	0t), (4)

where T0 = 2π/	0 is the period corresponding to the central
frequency, and εα is the peak field strength (see below).
Figure 1 shows the power spectrum for strength ε1; excitations
of the 1D He model of frequency 0.533, 0.672, 0.7125, . . . a.u.
lie in its bandwidth. Here we have chosen 	0 = 0.7 a.u., but
our conclusions are independent of this value.

We choose a weak-field strength ε1 = 0.0067 a.u. such that
the predominant response of the system is linear. We then
apply weaker fields εα of strengths ε0.50 = ε1

2 and ε0.25 = ε1
4 .

The top-left panel of Fig. 2 shows that the density response,
defined as δnα(x,t) = nα(x,t) − n(x,0), predominantly scales
linearly with the field strength: plots of δnα/α lie essentially
on top of each other. The correlation potential response, in the
lower left panel, in region ≈(−5,5) also scales linearly with
the applied field but deviates from linearity outside this region,
displaying step and peak structures; these are also evident in
the full correlation potential plotted in the top-right panel.
Zooming into the tail regions of the densities (see, e.g., inset
of top panel), we see in fact that the density response is not
linear in these regions. The steps and peaks in the nonlinear
region do not scale with the field strength; we do not expect
them to because the response is not linear, and they also do
not have any higher-order consistent scaling behavior with the
field strength.

We have checked that the step features are not numerical
artifacts: they are converged with respect to the size of the
box and grid spacing. Changing these parameters may change
the details of the noise in the small oscillations visible in δvC
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FIG. 2. (Color online) Densities and correlation potentials at
time t = 22.440 a.u. The top-left shows the scaled density response
δnα(x,t)/α for the three values of α indicated. The inset zooms in on
the scaled density response in the outer region. The top-right shows
the correlation potentials at different field strengths. The bottom-left
panel plots the scaled correlation potential response, δvc,α(x,t)/α.
The steps of the correlation potentials occur where the density
response is nonlinear. The lower-right panel plots the deviation from
linearity, Mα , of Eq. (5).

(much smaller scale than the scale of the step itself) but do
not change the overall structure. This is true for all the graphs
shown in the paper.

To quantify the deviation from linearity we next define a
measure, which we plot in the lower-right panel. Since the
weakest strength is closest to the ideal linear response limit,
we define the deviation relative to this strength and define:

Mα = |δnα − 4αδn0.25|
|δnα| + 4α|δn0.25| . (5)

If the density response at field strength α was truly linear, the
numerator would vanish (within the approximation that when
α = 0.25 the system response is linear); and it is trivially
zero when α = 0.25. The measure takes values from 0 to 1,
growing as the degree of nonlinearity grows. Note that when
the signs of δnα and δn0.25 are opposite, the measure takes
the value of 1. In the lower-right panel in Fig. 2, we see that,
aside from a sharp peak structure near x = 0, Mα is small in the
region x ≈ (−5,5), then grows outside this region, peaking and
remaining large after the peak. The sharp structure near x = 0
occurs due to the density responses themselves going through
zero near the origin. The step structures in the correlation
potential appear only in the outer region, where the measure is
appreciable, i.e., the density response is significantly nonlinear.

Figures 3 and 4 show the density responses and correlation
potentials plotted in the same way, at two other times, t =
26.929 a.u. and t = 31.417 a.u. The same conclusions can be
drawn as for the earlier time, and in fact for all the different
times throughout the time propagation that we analyzed: step
structures appear only in regions where the system’s response
is nonlinear. We did not find a single time at which steps
occurred in a region where the density response is linear. The
step structures do not scale in any consistent way with the field
strength. (Where the system response is linear, the correlation
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FIG. 3. (Color online) Densities and correlation potentials at time
t = 26.929 a.u. See caption of Fig. 2 for details.

potential response scales linearly with the field, as expected.)
There are times at which the step is abnormally large: this
tends to happen in close-to-nodal structures of the density and
is likely a feature only of two-electron systems.

We note that regions of nonlinear system response are
typical in linear response calculations: essentially, the term
representing the field in the Hamiltonian H0 + E(t)x gets
larger than the field-free term for large x, so a perturbative
treatment of it in that region is no longer valid. However, such
a calculation is still considered to be in the linear response
regime, since these regions contribute negligibly to practical
observables extracted from the system dynamics.

B. Dynamics under a “δ kick”

A common way to obtain linear response spectra from real-
time dynamics is to apply a “δ kick” to the system at the initial
time and measure the subsequent free evolution [29]. That is,
E(t) = kδ(t), so that we can write �(t = 0+) = eikx̂�(t = 0).
For sufficiently small kick strengths k, the system response
is linear in k. Fourier transforming the time-dependent dipole
moment yields the spectrum shown in Fig. 5, where a value
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FIG. 4. (Color online) Densities and correlation potentials at time
t = 31.417 a.u. See caption of Fig. 2 for details.
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FIG. 5. (Color online) The dipole power spectrum obtained from
solving the time-dependent Schrödinger equation. Vertical dashed
lines indicate the dipole-allowed singlet transition energies, which
agree with the energy spectrum. (Note that the relative oscillator
strengths are not accurate because the propagation time was not long
enough.)

of k = 0.01 was used. The peaks correspond to the singlet
excited states of odd parity as these are dipole allowed. The
peak frequencies shown can be confidently assigned to these
states only up to about ω ∼ 0.73 a.u., because the excited
states of energies higher than this have spatial extent too large
for the size of the box in our calculation (we have checked
convergence with respect to box size for the lower excitations).

Now we consider the same analysis as in the previous
case: we halve k and study the response of the correlation
potential and density, looking for the step feature. The main
difference from the Gaussian-pulse field is that now all the
dipole-allowed singlet excited states are equally stimulated:
the power spectrum for the δ kick is uniform.

Figures 6 and 7 show the response densities and correlation
potentials at two snapshots of time: 400 and 1400 a.u.,
respectively. Similar graphs appear at the other times we
looked at. We again see steps and (sometimes large and
oscillatory) peak-like structures but, again, they appear only
in the region of nonlinear density response; regions that
contribute negligibly to the linear response observables. Once
again, these structures are fully nonlinear, in that there is no
consistent scaling of their size with the field strength.
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FIG. 6. (Color online) At time 400 a.u. after the kick is applied,
the response densities and correlation potentials are shown; please
refer to Fig. 1 for the details of the panels.
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FIG. 7. (Color online) As in Fig. 6 but for time 1400 a.u.

III. LINEAR TERMS IN vC IN FIELD-FREE EVOLUTION
OF PERTURBED GROUND STATE

The dynamical step that was found in typical nonlinear
dynamics situations arises from the fourth term of Eq. (2),
as discussed in Ref. [10]. Here we analyze that term, as well
as the full correlation potential, in a linear response situation
by explicitly finding the terms that scale linearly with the
deviation from the ground state.

We consider field-free evolution of a perturbed ground state;
for example, as would occur in the δ-kicked propagation of the
previous section. We can then expand the wave function at time
t in terms of the eigenstates �m of the unperturbed system, as

�(t) = e−iE0t

(
�0 +

∑
m

cme−iωmt�m

)
, (6)

where �0 is the ground state, ωm = Em − E0 are excita-
tion frequencies, and cm are expansion coefficients, to be
considered the small parameter. For example, in the δ-kick
of the previous section, cm = ik〈�0|x̂|�m〉 (where, for the
two-electron case, x̂ = x1 + x2). (Note that in the general case,
c0 need not be zero.) Then we may write, to first order in cm,

n(x,t) = n0(x) − 2i
∑
m

cm sin(ωmt)n0m(x), (7)

where n0(x) is the ground-state density and n0m(x) =
2
∫

dx ′�0(x,x ′)�m(x,x ′) is the mth transition density. Also,
we have to linear order in cm,

j (x,t) = i
∑
m

cm cos(ωmt)j0m, (8)

where j0m(x) = 2
∫

dx ′[�m∂�0/∂x − �0∂�m/∂x]. So, to
linear order in cm,∫ x

∂tu(x ′,t)dx ′ = −i
∑
m�=0

cmωm sin(ωmt)
∫ x j0m(x ′)

n0(x ′)
dx ′.

(9)

If there is any step in the correlation potential that appears
at linear order, it must appear in this term. From computing
just the excited-state wave functions and their energies, the
right-hand side can easily be computed. Further, expanding all
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FIG. 8. (Color online) Correlation responses for the δ-kicked soft-
Coulomb well, from the first three terms of Eq. (10).

terms in Eq. (2) to linear order and using Eq. (3), we get the
response of the correlation potential to first order:

δvC =
∑
m�=0

icm sin(ωmt)

[
(∂xn0)2

2n2
0

(
∂xn0m

∂xn0
− n0m

n0

)

− ∂2
xn0

2n0

(
∂2
xn0m

∂2
xn0

− n0m

n0

)
+ ωm

∫ x j0m(x ′)
n0(x ′)

dx ′

+
∫

n0m(x ′)√
(x − x ′)2 + 1

dx ′
]
. (10)

(Note that the cm are pure imaginary, and the correlation
potential is indeed purely real.)

Plotting these terms for the δ-kicked soft-Coulomb well,
where cm = 2ikd0m, there is no step seen; as one moves out
to larger x the terms can grow very large, but there is no
step structure. Figure 8 plots the response correlation potential
arising from the lowest three dipole-accessible states (which
are the first, third, and fifth excitations) in the sum of Eq. (10);
the contributions from higher-order terms decrease rapidly,
due to the decreasing oscillator strength. Moreover, carrying
out the expansion to second order in k there is also no evidence
of step-like structure. This is consistent with the results of the
previous section; the regions where there is a step are in fact
where such an expansion does not hold, and the response of
the system is fully nonlinear.

The results so far show that the dynamical step feature
does not appear in linear response. That is, the lack of
the nonadiabatic step feature in approximations does not
affect the success of the approximations in predicting linear
response, because this feature only appears in situations where
the system response is nonlinear. This conclusion has been
based on the model 1D He atom, and we expect it to go
through for the general three-dimensional (3D) N -electron
case. A question might arise about systems that have states of
multiple-excitation character in their linear response spectra:
it is known that for TDDFT to capture such states the xc
kernel must have a frequency dependence [12], indicating
the underlying linear response xc potential has an essentially
nonadiabatic character. For the He atom (1D or 3D), such
states, however, lie in the continuum and, although they can
be accessed by the δ-kick perturbation [21], they contribute
much less to the spectrum than the bound states and are
outside the range of frequencies for which our dynamical
simulations can be trusted. A better model to explore states
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FIG. 9. (Color online) Correlation-potential responses from
double-excitation contributions in the quadratically kicked harmonic
potential.

of multiple-excitation character is a 1D model of a quantum
dot: the Hooke’s atom, where two soft-Coulomb interacting
fermions live in a harmonic potential. The lowest singlet
excitation is predominantly a single excitation (excitation
of the electronic center-of-mass coordinate), but the second
and third excitations are (largely) mixtures of one single
excitation and one double excitation [12,24]; one is the second
excitation in the center-of-mass coordinate while the other is
an excitation in the electronic relative coordinate. A dipole
perturbation applied to such a system can only couple to
the lowest excitation in linear response; a result that can be
interpreted in terms of the harmonic potential theorem [25].
A quadratic kick, however, does excite the second and third
excitations, and this is what we will consider now. We take

V (x,t) =
2∑

i=1

1

2
[1 + kδ(t)]x2

i (11)

so that in Eq. (6), cm = ik〈�0|x̂2|�m〉.
In Fig. 9, we plot the contribution to the first-order

correlation potential of Eq. (10) of the two states of double-
excitation character mentioned above. Once again, there is no
step structure evident. The nonadiabaticity required to capture
states of double excitation in linear response is unrelated to
the nonadiabatic step feature uncovered in Ref. [10].

IV. SUMMARY

In this work, we studied the correlation potential of
model two-electron systems in the linear response regime to
investigate the role of the dynamical step feature found in
recent studies of time dynamics [10,11]. We applied a weak
field to the soft-Coulomb helium atom for which we could
extract the exact correlation potential. We found that step
features in vC only appear in regions far from the system,
in the tails of the density, where the response of the system
is in fact nonlinear. These regions, by definition, do not con-
tribute to the measured linear response of observables. These
results therefore explicitly justify the expectation expressed
in Ref. [10] that the nonadiabatic nonlocal step feature that
was generically found there in the time-dependent correlation
potential is a feature of nonlinear dynamics and is related to
having appreciable population in excited states.

This explains why adiabatic approximations can usefully
predict linear response spectra in general, while these same
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approximations may, in many cases, give incorrect time
dynamics in the nonperturbative regime [7–11,23]. The in-
correct dynamics observed in the nonlinear regime was due
in part to the nonadiabatic nonlocal dynamical step found
recently in these works, while the results here show that
these are absent in the linear response regime. It should also
be noted that TDDFT within the adiabatic approximation
is still useful in many strong-field applications, as shown,
for example, in Refs. [30–32]; the size of the error may be
small depending on what observable is of interest. States
of multiple-excitation character require a nonadiabatic ap-
proximation, but our analysis of the Hooke’s quantum dot
model here has shown that this is unrelated to the appearance
of the dynamical step: even in dynamics where double

excitations appear, the step still is absent in the linear response
region.
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108, 146401 (2012).
[9] J. D. Ramsden and R. W. Godby, Phys. Rev. Lett. 109, 036402

(2012).
[10] P. Elliott, J. I. Fuks, A. Rubio, and N. T. Maitra, Phys. Rev. Lett.

109, 266404 (2012).
[11] J. I. Fuks, P. Elliott, A. Rubio, and N. T. Maitra, J. Phys. Chem.

Lett. 4, 735 (2013).
[12] N. T. Maitra, F. Zhang, R. Cave, and K. Burke, J. Chem. Phys.

120, 5932 (2004).
[13] D. Tozer and N. Handy, Phys. Chem. Chem. Phys. 2, 2117

(2000); M. E. Casida, J. Chem. Phys. 122, 054111 (2005);
P. Romaniello et al., ibid. 130, 044108 (2009); O. Gritsenko
and E. J. Baerends, Phys. Chem. Chem. Phys. 11, 4640 (2009);
M. Huix-Rotllant and M. E. Casida, arXiv:1008.1478.

[14] J. Javanainen, J. H. Eberly, and Q. Su, Phys. Rev. A. 38, 3430
(1988).

[15] D. M. Villeneuve, M. Yu. Ivanov, P. B. Corkum, Phys. Rev. A.
54, 736 (1996).

[16] A. D. Bandrauk and N. H. Shon, Phys. Rev. A. 66, 031401
(2002).

[17] T. Kreibich, M. Lein, V. Engel, and E. K. U. Gross, Phys. Rev.
Lett. 87, 103901 (2001).

[18] D. G. Lappas and R. van Leeuwen, J. Phys. B 31, L249
(1998).

[19] F. Wilken and D. Bauer, Phys. Rev. Lett. 97, 203001
(2006).

[20] M. Thiele, E. K. U. Gross, and S. Kümmel, Phys. Rev. Lett. 100,
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