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Mixed quantum-classical dynamics on the exact time-dependent potential energy surface:
a fresh look at non-adiabatic processes
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The exact nuclear time-dependent potential energy surface arises from the exact decomposition of the electronic and nuclear
motions, recently presented in [A. Abedi, N.T. Maitra, and E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)]. Such time-
dependent potential drives nuclear motion and fully accounts for the coupling to the electronic subsystem. We investigate the
features of the potential in the context of electronic non-adiabatic processes and employ it to study the performance of the
classical approximation on nuclear dynamics. We observe that the potential, after the nuclear wave packet splits at an avoided
crossing, develops dynamical steps connecting different regions, along the nuclear coordinate, in which it has the same slope
as one or the other adiabatic surface. A detailed analysis of these steps is presented for systems with different non-adiabatic
coupling strength. The exact factorisation of the electron-nuclear wave function is at the basis of the decomposition. In
particular, the nuclear part is the true nuclear wave function, solution of a time-dependent Schrödinger equation and leading
to the exact many-body density and current density. As a consequence, the Ehrenfest theorem can be extended to the nuclear
subsystem and Hamiltonian, as discussed here with an analytical derivation and numerical results.

Keywords: potential energy surface; non-adiabatic process; classical dynamics; exact factorisation of the electron-nuclear
wave function; Ehrenfest theorem

1. Introduction

The Born–Oppenheimer (BO) [1], or adiabatic, treatment
of the coupled motion of electrons and nuclei is among the
most fundamental approximations in modern condensed-
matter theory and forms the basis of our understanding of
dynamical processes in molecules and solids. It offers a
practical way to visualise a molecule or solid as a set of
nuclei moving on a single potential energy surface (PES)
generated by the electrons in a given eigenstate. However, it
is based on the assumption that the electrons adjust instan-
taneously to adiabatic changes of the nuclear positions, and
a variety of interesting phenomena in physics, chemistry
and biology take place in the regime where this approxima-
tion breaks down. Prominent examples are the process of
vision [2–4], photosynthesis [5,6], photovoltaic processes
[7–9], proton-transfer/hydrogen storage [10–13] as well as
phonon-induced superconductivity.

Non-adiabatic molecular processes are usually ex-
plained in terms of BOPESs and transitions between the
BO electronic states. In this context, the solution of the
time-dependent Schrödinger equation (TDSE) is expanded
in the complete system of BO electronic states, leading
to a nuclear wave packet with contributions on several
BOPESs that undergo transitions in the regions of strong
non-adiabatic coupling. This approach provides a formally

∗Corresponding author. Email: agostini@mpi-halle.mpg.de

exact description of the complete system if all the electronic
states are taken into account. However, practical applica-
tions are limited to a small number of degrees of freedom.
For large systems, the only feasible way of dealing with
non-adiabatic processes is the introduction of classical or
semi-classical approximations for the nuclear motion, cou-
pled, non-adiabatically, to the (quantum mechanical) elec-
trons. Although widely investigated [14–17], the nature of
the force driving the classical nuclei in this mixed quantum-
classical treatment has not yet been fully identified.

Recently [18], this problem has been addressed from a
novel perspective by referring to the exact representation of
the full molecular wave function [19,20] as a single product
of a purely nuclear wave function and an electronic fac-
tor that parametrically depends on the nuclear coordinates.
In this framework, a TDSE for the nuclear wave function
is derived, where a time-dependent PES (TDPES) and a
time-dependent vector potential arise as exact concepts and
provide the driving force for the nuclear evolution.

The present paper discusses situations where the vec-
tor potential can be set to zero by an appropriate choice
of gauge, thus leaving the TDPES as the only potential
responsible for the nuclear dynamics. In this case, the
force on the nuclei, in a classical sense, can be obtained
as the gradient of the TDPES. However, is this the true
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3626 F. Agostini et al.

classical force on the nuclei? We will try to address this
issue by employing the exact TDPES, which is known for
the simple system studied here, for the propagation of clas-
sical trajectories in order to (i) examine the quality of the
classical approximation for the nuclear motion and (ii) ob-
tain insight into the properties of approximated classical
forces for an eventual mixed quantum-classical treatment
of non-adiabatic processes. Moreover, we will discuss the
connections [18] between such novel approach, based on
a single TDPES, and the well-established description in
terms of several static (coupled) BOPESs.

The paper is organised as follows. In Section 2, the
exact factorisation of the time-dependent electron-nuclear
wave function is presented and the equations that govern
the evolution of the electronic and nuclear subsystems are
discussed. The TDPES is investigated and analysed in detail
in Section 4 for systems showing different degree of non-
adiabaticity. Section 5 presents some results obtained by
performing classical dynamics on the exact surface and in
Section 6 we discuss the Ehrenfest theorem in the exact
factorisation representation of the full wave function. In
Section 7, some concluding words are given.

2. Exact decomposition of the electronic
and nuclear motions

In the absence of a time-dependent external field, a sys-
tem of interacting electrons and nuclei is described, non-
relativistically, by the Hamiltonian

Ĥ = T̂n + ĤBO, (1)

where T̂n is the nuclear kinetic energy operator and

ĤBO(r, R) = T̂e(r) + Ŵee(r) + V̂en(r, R) + Ŵnn(R) (2)

is the standard BO electronic Hamiltonian. The symbols r
and R are used to collectively indicate the coordinates of Ne

electrons and Nn nuclei, respectively. It has been proved in
[19,20] that the full time-dependent electron-nuclear wave
function, �(r, R, t), that is the solution of the TDSE,

Ĥ�(r, R, t) = i�∂t�(r, R, t), (3)

can be exactly factorised to the correlated product,

�(r, R, t) = χ (R, t)�R(r, t), (4)

of the nuclear wave function, χ (R, t), and the electronic
wave function, �R(r, t), that parametrically depends on the
nuclear configuration and satisfies the partial normalisation
condition (PNC),∫

dr|�R(r, t)|2 = 1, ∀ R, t. (5)

The PNC is an essential element of this representation.
Without imposing the PNC, the full wave function can be
factorised in many different (unphysical) ways. It is the
PNC that makes the factorisation (4) unique up to within a
(R, t)-dependent gauge transformation,

χ (R, t) → χ̃ (R, t) = e− i
�

θ(R,t)χ (R, t)

�R(r, t) → �̃R(r, t) = e
i
�

θ(R,t)�R(r, t).
(6)

Another important implication of imposing the PNC is that
the diagonal of the N-body nuclear density matrix of the
complete system is equal to |χ (R, t)|2.

The stationary variations [21] of the quantum mechani-
cal action1 w.r.t. �R(r, t) and χ (R, t) lead to the derivation
of the equations of motion(

ĤBO(r, R) + Û coup
en [�R, χ ] − ε(R, t)

)
�R(r, t)

= i�∂t�R(r, t) (7)⎛⎝ Nn∑
ν=1

[−i�∇ν + Aν(R, t)
]2

2Mν

+ ε(R, t)

⎞⎠χ (R, t)

= i�∂tχ (R, t). (8)

Here, ε(R, t) is the TDPES, defined as

ε(R, t) = 〈
�R(t)

∣∣ĤBO + Û coup
en − i�∂t

∣∣�R(t)
〉
r, (9)

Û
coup
en [�R, χ ] is what we name ‘electron-nuclear coupling

operator’, defined as

Û coup
en [�R, χ ] =

Nn∑
ν=1

1

Mν

[
[−i�∇ν − Aν(R, t)]2

2
+
(−i�∇νχ

χ
+Aν(R, t)

)

× (−i�∇ν − Aν(R, t))

]
, (10)

and Aν(R, t) is the time-dependent vector potential,

Aν(R, t) = 〈�R(t)| − i�∇ν�R(t)〉r. (11)

The symbol 〈·〉r indicates an integration over electronic
coordinates only. Equations (7) and (8) are form-invariant
under the gauge transformation (6), with the scalar and
vector potential transforming as

ε̃(R, t) = ε(R, t) + ∂tθ (R, t) (12)

Ãν(R, t) = Aν(R, t) + ∇νθ (R, t) (13)

under the gauge transformation (6).
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Molecular Physics 3627

In Equations (7) and (8), Û
coup
en [�R, χ ], ε(R, t) and

Aν(R, t) mediate the coupling between the electronic and
nuclear motions in a formally exact way. The electron-
nuclear coupling operator, Û

coup
en [�R, χ ], in the electronic

equation (7), depends on the nuclear wave function and the
first and second derivatives of the electronic wave function
with respect to the nuclear coordinates. This operator in-
cludes the coupling to the nuclear subsystem beyond the
parametric dependence in the BO Hamiltonian ĤBO(r, R).

3. The classical force on the nuclei

The nuclear equation (8) in the above decomposition has
a particularly appealing form of a Schrödinger equation
that contains a time-dependent vector potential (11) and
a time-dependent scalar potential (9) that uniquely (up to
within the gauge transformations (12) and (13)) govern
the nuclear dynamics and yield the nuclear wave function
χ (R, t). The crucial feature of this representation of the
electron-nuclear problem (4) is that the molecular processes
can be studied, without approximation, using a single PES.
This is particularly important if one considers to treat the
nuclei classically or semi-classically where a well-defined
single classical force that accounts for the quantum back-
reaction on the classical nuclei is highly desirable. The wave
function χ (R, t), whose time evolution is determined by the
TDPES and the vector potential, leads to an N-body nuclear
density

	(R, t) = |χ (R, t)|2 (14)

and an N-body current density

Jν(R, t) = 1

Mν

(χ∗(R, t)�∇νχ (R, t)) + 	(R, t)Aν(R, t),

(15)

which reproduce the true nuclear N-body density and cur-
rent density obtained from the full wave function �(r, R, t)
[20]. This means that if one wants a TDSE whose solution
χ (R, t) yields the true nuclear N-body density and cur-
rent density, then the potentials appearing in this TDSE
are (up to within a gauge transformation) uniquely given
by Aν(R, t) and ε(R, t); there is no other choice. The
uniqueness of ε(R, t) and Aν(R, t) can be straightforwardly
proved by following the steps of the current-density version
[22] of the Runge–Gross theorem [23]. This also implies
that the gradient of this exact TDPES plus terms arising
from the vector potential is the only correct force on the
nuclei in the classical limit. Therefore, Equations (7) and
(8) provide a proper starting point for a systematic devel-
opment of the classical or semi-classical treatment of the
nuclei. In order to assess the quality of the classical treat-
ment of the nuclear motion, in this paper we investigate
the classical nuclear dynamics on the exact TDPES using

a one-dimensional model system [24] (to be discussed in
Section 4) for which the vector potential can be set to zero
by a choice of gauge and the force driving classical nuclear
motion is derived from the gradient of the scalar potential
only. In three dimensions, obviously, the vector potential
cannot be gauged away whenever it has a non-zero curl.
Inserting the exact factorisation (4) in definition (11) of the
vector potential, one immediately finds the identity [19]

Aν(R, t) = Im
∫

dr �∗(r, R, t)�∇ν�(r, R, t)

	(R, t)
−∇νS(R, t)

(16)

(with S(R, t) the phase of the nuclear wave function), which
relates the vector potential to the nuclear velocity field (i.e.
the first term on the RHS of Equation (16)). Whether and
under which conditions the exact nuclear velocity field has
a non-vanishing curl is currently an open question.

4. Time-dependent potential energy surface

In this work, we present a detailed study of the TDPES for
strongly coupled electronic and nuclear motions. In order to
obtain the TDPES, the full electron-nuclear wave function
has to be calculated. Therefore, we need to choose a system
that is simple enough to allow for a numerically exact treat-
ment and that nevertheless exhibits characteristic features
associated with non-adiabatic dynamics. Here, we employ
the model of Shin and Metiu [24], consisting of three ions
and a single electron, as depicted in Figure 1. Two ions are
fixed at a distance of L = 19.0 a0, and the third ion and the
electron are free to move in one dimension along the line
joining the two fixed ions. The Hamiltonian of this system
reads

Ĥ (r, R) = − 1

2

∂2

∂r2
− 1

2M

∂2

∂R2
+ 1∣∣L

2 − R
∣∣ + 1∣∣L

2 + R
∣∣

−
erf
(

|R−r|
Rf

)
|R − r| −

erf
( |r− L

2 |
Rr

)
∣∣r − L

2

∣∣ −
erf
( |r+ L

2 |
Rl

)
∣∣r + L

2

∣∣ .

(17)

Figure 1. Schematic representation of the model system de-
scribed by Hamiltonian (17). R and r indicate the coordinates
of the moving ion and electron, respectively, in one dimension. L
is the distance between the fixed ions.

D
ow

nl
oa

de
d 

by
 [

M
PI

 M
ax

-P
la

nc
k-

In
st

 F
ue

r 
M

ik
ro

st
ru

kt
ur

ph
ys

ik
],

 [
Fe

de
ri

ca
 A

go
st

in
i]

 a
t 0

6:
39

 2
7 

Ja
nu

ar
y 

20
14

 



3628 F. Agostini et al.

Here, the symbols r and R are replaced by r and R, the
coordinates of the electron and the movable ion measured
from the centre of the two fixed ions and M = 1836 is
the mass of the movable ion. The parameters Rf, Rl and
Rr specify the interactions between the charged particles
and can be tuned to have different couplings between the
electronic and nuclear motions.

To obtain the TDPES, we first solve TDSE (3) for
the complete system and obtain the full wave function,
�(r, R, t). This is done by the numerical integration of
the TDSE using second-order split-operator technique [25],
with the time steps of 2.4 × 10−3 fs (or 0.1 a.u.). The nu-
clear density is calculated, at each time, as the marginal
probability of the configuration R2 from the full wave
function

	(R, t) = |χ (R, t)|2 =
∫

dr|�(r, R, t)|2. (18)

The phase S(R, t) of χ (R, t) is determined by the choice
of the gauge. We use Equation (16) to set the vector poten-
tial to zero A(R, t) ≡ 0, which is possible in our specific
example because we are dealing with a one-dimensional
system. Obviously, the choice of the gauge does not affect
any physical observable. S(R, t) is thus determined from the
expression

S(R, t) =
∫ R

dR′ Im
∫

dr �∗(r, R′, t)�∇R′�(r, R′, t)
	(R′, t)

.

(19)

From the calculated exact nuclear wave function χ (R, t) =
e

i
�

S(R,t)|χ (R, t)|, we obtain the TDPES ε(R, t) from
Equation (9) by explicitly calculating the electronic wave
function �R(r, t) = �(r, R, t)/χ (R, t). Alternatively,
we may invert the nuclear equation (8). In the gauge we
have implemented to perform the calculations, the TDPES
alone determines the time evolution of χ (R, t). In order
to investigate the TDPES in detail, we study its gauge-
invariant (GI) and gauge-dependent (GD) constituents
separately3,

ε(R, t) = εGI(R, t) + εGD(R, t), (20)

where

εGI(R, t) = 〈�R(t)|ĤBO|�R(t)〉r

+
Nn∑
ν=1

(
�

2

2Mν

〈∇ν�R(t)|∇ν�R(t)〉r − A2
ν(R, t)

2Mν

)
,

(21)

with the second term on the RHS obtained from the action
of the electron-nuclear coupling operator in Equation (10)
on the electronic wave function, and

εGD(R, t) = 〈�R(t)| − i�∂t |�R(t)〉r. (22)

The GI part of the TDPES, εGI, is not affected by the gauge
transformation (6). The GD part, on the other hand, de-
pends on the choice of the gauge. They both have impor-
tant features [18] that will be discussed and analysed in the
following section. For this analysis, we will use a repre-
sentation in terms of the BO electronic states, ϕ

(l)
R (r), and

BOPESs, ε
(l)
BO(R), which are the eigenstates and eigenval-

ues of the BO electronic Hamiltonian (2), respectively. If
the full wave function is expanded in this basis

�(r, R, t) =
∑

l

Fl(R, t)ϕ(l)
R (r), (23)

then the nuclear density may be written as

|χ (R, t)| =
√∑

l

|Fl(R, t)|2. (24)

This identity is obtained by integrating the squared modulus
of Equation (23) over the electronic coordinates with nor-
malised adiabatic states. The exact electronic wave function
may also be expanded in terms of the BO states,

�R(r, t) =
∑

l

Cl(R, t)ϕ(l)
R (r). (25)

The expansion coefficients of Equations (23) and (25) are
related,

Fl(R, t) = Cl(R, t)χ (R, t), (26)

by virtue of factorisation (4). The PNC then reads∑
l

|Cl(R, t)|2 = 1, ∀ R, t. (27)

In the cases studied in the following sections, the initial
wave function is the product of a real-valued normalised
Gaussian wave packet, centred at Rc = −4.0 a0 with vari-
ance σ = 1/

√
2.85 a0 (black line in Figure 2), and the

second BO electronic state, ϕ
(2)
R (r).

4.1. Steps in the TDPES in strong
non-adiabatic regime

We first study a case in which the electronic and nuclear
motions are strongly coupled. In order to produce that situ-
ation, we choose the parameters of the Hamiltonian (17) as
Rf = 5.0 a0, Rl = 3.1 a0 and Rr = 4.0 a0 such that the first

BOPES, ε
(1)
BO, is strongly coupled to the second BOPES,

ε
(2)
BO, around the avoided crossing at Rac = −1.9 a0 and

there is a weak coupling to the rest of the surfaces. The
four lowest BOPESs for this set of parameters are shown
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Molecular Physics 3629

Figure 2. Left: lowest four BO surfaces, as functions of the nuclear coordinate. The first (red line) and second (green line) surfaces will
be considered in the actual calculations that follow, and the third and fourth (dashed black lines) are shown as reference. The squared
modulus (reduced by 10 times and rigidly shifted in order to superimpose it on the energy curves) of the initial nuclear wave packet is
also shown (black line). Right: populations of the BO states along the time evolution. The strong non-adiabatic nature of the model is
underlined by the population exchange at the crossing of the coupling region.

in Figure 2 (left panel), along with the initial nuclear den-
sity. Energies are given in atomic (Hartree) units εh. The
same figure (right panel) presents the time evolution of the
populations of the BO states,

ρl(t) =
∫

dR|Fl(R, t)|2, (28)

and underlines the strong non-adiabatic character of the
system with the intense population exchange taking place
at the passage through the avoided crossing (t � 12 fs).

As recently discussed [18], the GI part of TDPES (21)
shows, in general, two distinct features: (i) in the vicinity
of the avoided crossing, as the nuclear wave packet passes
through the region of non-adiabatic coupling between dif-
ferent BOPESs, εGI(R, t) resembles the diabatic surface
that smoothly connects the two adiabatic surfaces; (ii) a bit
further away from the avoided crossing, it shows dynam-
ical steps between regions in R space where it is on top
of one or the other BOPES. The GD part of the TDPES
(22), on the other hand, is a piecewise constant function
of the nuclear coordinate. This is illustrated in detail in
Figure 3 that contains the GI part of the TDPES (upper
panel), the GD part of the TDPES (middle panel) and the
nuclear density together with |F1|2 and |F2|2 (lower panel)
for three different snapshots of time. In all the plots, the re-
gions highlighted within the boxes are the regions which we
refer to in the following discussion. Outside such regions,
the value of the nuclear density drops under the numerical
accuracy and the resulting potentials are not meaningful.
That is why the TDPES are trimmed. The left panels show,
at the initial time step, (top) the GI part of the TDPES
(black dots), with the two lowest BOPESs (ε(1)

BO(R), dashed

red line, and ε
(2)
BO(R), dashed green line) as reference, (cen-

tre) the GD part of the exact potential (dark-green dots)

and (bottom) the nuclear density (dashed black line) and its
components from the BO states (see Equation (24)), |F1(R,
t)|2 (red line) and |F2(R, t)|2 (green line). At time t = 0 fs,
the electronic wave function, �R(r, t), coincides with the
second adiabatic state ϕ

(2)
R (r); therefore, the GI component

of the TDPES is identical with ε
(2)
BO(R), apart from a slight

deviation due to the second term in Equation (21). This is
easily confirmed by the expression of εGI(R, t) in terms of
the BO states and energies

εGI(R, t) =
∑

l

|Cl(R, t)|2 ε
(l)
BO(R)

+ �
2

2M

[∑
l,k

C∗
l (R, t)Ck(R, t)d (2)

lk (R)

+
∑
l,k

(
C∗

l
′(R, t)Ck(R, t)

− C∗
l (R, t)C ′

k(R, t)
)
d

(1)
lk (R)

+
∑

l

|C ′
l (R, t)|2

]
, (29)

where we use the prime to indicate the spatial derivative of
the coefficients and we introduced the non-adiabatic cou-
plings

d
(1)
lk (R) =

〈
ϕ

(l)
R

∣∣∇Rϕ
(k)
R

〉
r
= −d

(1)
kl

∗
(R) (30)

d
(2)
lk (R) =

〈
∇Rϕ

(l)
R

∣∣∇Rϕ
(k)
R

〉
r
= d

(2)
kl

∗
(R). (31)

The leading term in Equation (29) is the average of
the BOPESs weighted by |Cl(R,t)|2, since the second
term is O(M−1). The GD component of the TDPES in
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3630 F. Agostini et al.

Figure 3. TDPES and nuclear densities at different time steps, namely t = 0, t = 10.88 and t = 26.61 fs. Top: GI part of the TDPES
(black dots) and the two lowest BOPESs (first: dashed red line and second: dashed green line) as reference. Centre: the GD part of the
TDPES (green dots). Bottom: nuclear density (dashed black line) and |Fl(R, t)|2 (l = 1 red line and l = 2 green line). The grey boxes define
the regions in R space where the energies have been calculated, since the nuclear density is (numerically) not zero.

Equation (22), in terms of the BO states, becomes

εGD(R, t) =
∑

l

|Cl(R, t)|2 γ̇l(R, t), (32)

where γ̇l(R, t) is the time derivative of the phase of the coef-
ficients Cl(R, t) = e

i
�

γl (R,t)|Cl(R, t)|. The nuclear density,
along with its components on the BO states from Equation
(24), is presented in the bottom panels of Figure 3. At the
initial time, |χ (R, t)|2 = |F2(R, t)|2.

At t = 10.88 fs in Figure 3 (central panels), (top) the
GI part of the TDPES resembles the diabatic surface [24]
that smoothly passes through the avoided crossing. This
behaviour allows the nuclear density moving on the upper
BOPES to be partially ‘transferred’ to the lower state, as
the consistent increase of the population of state ϕ

(1)
R (r) (red

curve in the bottom plot in Figure 3) confirms. In the region
highlighted by the dashed box, the GD part of the exact
potential is constant; therefore, it does not affect nuclear
dynamics.

At later times (t = 26.61 fs shown in the right panels
of Figure 3), when the nuclear wave packet has split at the

avoided crossing, both components of the TDPES present
a pronounced stepwise behaviour: the GI part follows one
or the other BOPES in different regions of R space that
are connected by a step, whereas the GD part is stepwise
constant, with steps appearing in the same region.

The overall shape of the TDPES, at initial times, is
determined by the GI part, as the effect of the GD part
is no more than a constant shift. Hence, the TDPES that
drives the nuclear dynamics behaves like a diabatic surface
and ‘opens’ in the direction of the wave packet’s motion
in order to facilitate the population exchange between the
adiabatic states. After the wave packet splits at the avoided
crossing, in different regions in R space, the TDPES is
parallel to one or the other BOPES and a step forms in
the transition region. Therefore, the motion of the com-
ponents Fl(R, t) of the nuclear wave packet is driven by
single adiabatic surfaces and not (like e.g. in Ehrenfest dy-
namics) by an average electronic potential. This feature is
reminiscent of the way the well-known trajectory surface
hopping (TSH) scheme [14] deals with the non-adiabatic
dynamics. In this approach, the components (in our case
identified by the symbol |Fl(R, t)|2) of the nuclear density
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Molecular Physics 3631

Figure 4. Top: GI part (black line) and the GD part (blue line, rigidly shifted along the energy axis) of the exact potential at time
t = 26.61 fs. The first (dashed red) and second (dashed green) BOPESs are shown as reference. Bottom: coefficients |Fl(R, t)|2 of the
expansion of the full wave function (Equation (23)) on the BO states (l = 1 dashed red line and l = 2 dashed green line) and coefficients
|Cl(R, t)|2 of the expansion of the electronic wave function (l = 1 continuous red line and l = 2 continuous green line); the black line
represents the nuclear density. R0 is the position where the coefficients |F1(R, t)|2 and |F2(R, t)|2 have the same values and the dashed box
highlights the region of the step.

on different BO states are represented by bundles of classi-
cal trajectories evolving, independently from one another,
on different BO surfaces. The ratio of the total number of
trajectories occupying, at each time, the surfaces approxi-
mates the population ρ l of the corresponding BO state. The
success of this method in reproducing non-adiabatic pro-
cesses becomes clear in the light of the fact that the exact
TDPES itself is parallel to different BOPESs in different
regions along the nuclear coordinate. The usually abrupt
transitions between the adiabatic surfaces, i.e. the steps in
the exact treatment, are reminiscent to the stochastic jumps
between BO surfaces in TSH.

4.2. Analysis of the steps

The behaviour of the GI part of the TDPES is mainly deter-
mined by the first term in Equation (29). The steps appear
in the region around R0, the cross-over of |F1(R, t)|2 and
|F2(R, t)|2. In particular, at this point |F1(R0, t)|2 = |F2(R0,
t)|2 = |X(t)| and, irrespective of this value, the expansion

coefficients in the electronic wave function (25) have the
value |C1(R0, t)|2 = |C2(R0, t)|2 = 1/2. This relation holds
as consequence of Equation (26), which can be written as

|Cl(R0, t)|2 = |Fl(R0, t)|2
|F1(R0, t)|2 + |F2(R0, t)|2

= 1

2
with l = 1, 2, (33)

and is clearly shown in Figure 4. Here we present, in the
upper panel, the GI part (black line) and the GD part
(blue line, rigidly shifted along the energy axis) of the
exact potential at time t = 26.61 fs. The BO surfaces
(dashed red and green lines) are also plotted as reference.
In the lower panel, we plot the coefficients of the expan-
sions in Equation (23) (dashed red and green lines) and in
Equation (25) (continuous red and green lines). The con-
tinuous black line represents the nuclear density.
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3632 F. Agostini et al.

The expression of the GI component of the TDPES for
a two-state system, from Equation (29), is

εGI(R, t) � |C1(R, t)|2 ε
(1)
BO(R) + |C2(R, t)|2 ε

(2)
BO(R),

(34)

neglecting terms O(M−1). If |Cl(R, t)|2 is Taylor-expanded
around R0, up to within the linear deviations,

|C1
2
(R, t)|2 � |F1

2
(R, t)|2

|χ (R, t)|2
∣∣∣∣∣
R0

+ ∇R

|F1
2
(R, t)|2

|χ (R, t)|2
∣∣∣∣∣
R0

(R − R0)

= 1

2
± α(t)

2
(R − R0) , (35)

one can identify the parameter α(t), defined as

α(t) = (∇R |F1(R, t)|)R0
− (∇R |F2(R, t)|)R0

|X(t)| , (36)

where α(t) is the slope of the coefficients in the step region
from which the width of the region can be determined.
Using the relation 0 ≤ |C1(R, t)|2 ≤ 1, we obtain

0 ≤ 1

2
+ α(t)

2
(R − R0) ≤ 1 with

�R

2
= |R − R0| ≤ 1

α(t)
. (37)

Therefore, �R is small because the step is steep, as a conse-
quence of a large α(t). α(t) can be large either because |X(t)|
is small, i.e. the cross-over is located in a region of small
nuclear density, or because the terms in the numerator of
Equation (36) have opposite slopes at R0 (this is the case
depicted in Figure 4). Outside the region �R, one or the
other coefficients |Cl(R, t)|2 dominates, thus leading to

εGI(R, t) =
⎧⎨⎩

ε
(2)
BO(R), R < R0

ε
(1)
BO(R), R > R0.

(38)

The GD part of the TDPES can be analysed similarly:
εGD(R, t) from Equation (32) may be written, in terms of
the two BO states, as

εGD(R, t) = |C1(R, t)|2 γ̇1(R, t) + |C2(R, t)|2 γ̇2(R, t)
(39)

and we recall that γ l(R, t) is the phase of the coefficient
Cl(R, t). As in Equation (38), outside the step region, this
part of the potential becomes

εGD(R, t) =
{

γ̇2(R, t), R < R0

γ̇1(R, t), R > R0.
(40)

Moreover, Figure 4 shows that in these regions γ̇1(R, t) and
γ̇2(R, t) are constant functions of R. This is a consequence
of the gauge we chose. The gauge condition, A(R, t) =
〈�R(t)| − i�∇R�R(t)〉r = 0, in terms of the two BO states
involved in the dynamics, reads

0 =
∑
l=1,2

|Cl(R, t)|2 ∇Rγl(R, t) − i�

2
∇R

∑
l=1,2

|Cl(R, t)|2

− i�
∑

l,k=1,2

C∗
l (R, t)Ck(R, t)d (1)

lk (R). (41)

However, the second term of the RHS is identically zero,
due to the PNC in Equation (27), and the third term can
be neglected, due to the presence of the non-adiabatic cou-
plings, d (1)

lk (R), that are small far from the avoided crossing.
The gauge condition then states

|C1(R, t)|2 ∇Rγ1(R, t) = − |C2(R, t)|2 ∇Rγ2(R, t),

(42)

or equivalently

∇Rγ2(R, t) = 0 for R < R0 where |C1(R, t)|2 = 0

(43)

∇Rγ1(R, t) = 0 for R > R0 where |C2(R, t)|2 = 0.

(44)

We obtain γ l(R, t) = 	l(t), namely the phase of the coeffi-
cient Cl(R, t) is only a function of time (constant in space) in
the region where the squared modulus of the corresponding
coefficient is equal to unity. Similarly, γ̇l(R, t) = 	̇l(t), as
shown in Figure 4.

In the step region, around R0, the expression of the
TDPES can be approximated as

ε(R, t) = ε
(1)
BO(R) + ε

(2)
BO(R)

2
+ γ̇1(R, t) + γ̇2(R, t)

2

+α(t)

[
ε

(1)
BO(R)−ε

(2)
BO(R)

2
+ γ̇1(R, t) − γ̇2(R, t)

2

]
× (R − R0). (45)

The first two terms on the RHS are the average of the
BO energies plus the average value of the time derivative of
the phases γ 1(R, t) and γ 2(R, t); the terms in square brackets
are the energy gaps between the BO surfaces and between
the time derivatives of the phases, which give the contri-
bution proportional to the parameter α(t). From Figure 4,
we note that, around R0, the slope of εGD is opposite to
the slope of εGI and this is a general feature in the studied
system (in the absence of a time-dependent external field).
Therefore, the GD part reduces the height of the steps in
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Molecular Physics 3633

Figure 5. Same as Figure 2 but for a weaker non-adiabatic coupling between the two lowest BO states.

the GI part. We will see the effect of this contribution on
(classical) nuclear dynamics in the Section 5.

4.3. Steps in the TDPES in weak
non-adiabatic regime

In this section, we study a case of weaker non-adiabatic
coupling between the two lowest BO states. In order to
make the coupling weaker, we choose the parameters in the
Hamiltonian (17) as L = 19.0 a0, Rf = 3.8 a0, Rl = 2.9 a0

and Rr = 5.5 a0. The BO surfaces, along with the evolution
of the populations of the BO states, are shown in Figure 5.
The initial conditions for the dynamical evolution of this
system are the same as in the previous example; however,
the coupling between the two lowest electronic states is
weaker, thus leading to a reduced population exchange,
clearly shown in Figure 5 (right panel). Nonetheless, the
process described here shows similarities to the previous
case, as can be seen from Figure 6. The GI part of the

Figure 6. Same as Figure 3 but for a weaker non-adiabatic coupling between the two lowest BO states, at time steps 9.68, 27.33 and
32.65 fs.
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3634 F. Agostini et al.

Figure 7. Diabatic-like behaviour feature of εGI(R, t) (blue dots) for the two model systems (left panel, strong coupling at t = 9.68 fs
and right panel, weak coupling at t = 6.29 fs) presented here. The dashed lines represent the BO surfaces (ε(1)

BO(R) red line and ε
(2)
BO(R)

green line) and the continuous black line represents the nuclear density (reduced by a factor 10 and rigidly shifted along the y-axis).

TDPES presents again two main features: (i) the diabatic-
like behaviour at the avoided crossing, when the nuclear
wave packet crosses the region of relatively strong non-
adiabatic coupling, and (ii) the steps at the cross-over of
|F1(R, t)|2 and |F2(R, t)|2, signature of the splitting of the
nuclear density. The GD part is either constant, before the
splitting at the avoided crossing, or stepwise constant, with
steps appearing in the same region as the steps in the GI
term, but with opposite slope. At different snapshots of
time, i.e. 9.68, 27.33 and 32.65 fs, these properties are
shown in Figure 6, along with the nuclear density and its
components on the BO states. The notation used in the
figures is the same as in Figure 3.

A slightly different behaviour from the situation of
strong non-adiabatic coupling can be identified in εGI(R, t)
before the passage through the avoided crossing. As the
nuclear wave packet approaches the avoided crossing,
the GI part of the TDPES ‘opens’ towards the direction
of motion, resembling the diabatic surface that connects
the BO surfaces through the avoided crossing. This is
clearly shown in Figure 7 (left) at time t = 9.68 fs
for the strongly coupled system. In the case of weaker
non-adiabatic coupling, εGI(R, t), at the avoided crossing,
lies between the BO surfaces, as shown in Figure 7 (right).
Therefore, the diabatic-like behaviour feature strictly
depends on the strength of the non-adiabatic coupling
and, in general, can be viewed as a transient configuration
of the GI part of the TDPES before the formation of the
steps.

5. Classical dynamics on PESs

In Section 4, we have addressed some of the generic fea-
tures of the TDPES that governs the nuclear dynamics in

the presence of non-adiabatic electronic transitions. As dis-
cussed before, some of these features, in particular the step
that bridges between the two parts of the TDPES that are
parallel to the BOPESs, are reminiscent of the jumping be-
tween the BOPESs in TSH methods [14]. These algorithms
are based on the mixed quantum-classical treatment of the
electronic and nuclear dynamics using stochastic jumps
between BO surfaces. Therefore, an ensemble of classi-
cal trajectories with different initial conditions is needed
to achieve statistically reasonable outcomes. On the other
hand, the TDPES is the exact time-dependent potential that
governs the nuclear dynamics (in general together with the
vector potential) and contains the back-reaction resulting
from the exact coupling to the electronic subsystem. This
brings us to investigate how the TDPES drives the clas-
sical dynamics of point-like nuclei, in order to assess the
performance of the classical approximation for the nuclear
motion. Although a single classical trajectory will not be
able to reproduce all the details of nuclear dynamics such as
spreading of the nuclear wave packet or tunnelling, we ex-
pect it to provide a good estimate of the mean values, due to
the exact description of the coupling to the quantum system
via the TDPES. Furthermore, having access to proper clas-
sical trajectories is essential if one is to take into account the
quantum features of the nuclear dynamics quasi-classically
or semi-classically. In Section 6, we show how the deficits
of the single trajectory classical dynamics are cured when
exact equations of motion for the mean values of the nu-
clear position and momentum operators are employed, by
explicitly taking into account the spatial extension of the
nuclear wave packet.

In order to understand how the generic features of the
TDPES affect the classical nuclear dynamics, we have em-
ployed the surfaces presented in Section (4) to calculate the
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Molecular Physics 3635

Figure 8. Classical position (upper panels) and velocity (lower panels) and mean nuclear position and velocity as functions of time for
the systems in the presence of strong non-adiabatic coupling (left) and of weak non-adiabatic coupling (right). The dashed black line
represents the average nuclear values from quantum calculation, and the blue and orange lines are the positions and velocities of the
classical particle when it evolves on the exact potential and on the GI part of the potential, respectively.

forces acting on the nuclear degree of freedom. We compare
the resulting dynamics using the forces that are calculated
from the gradient of the TDPES and from the gradient of
its GI part. The classical propagation starts at the initial
position Rc = −4.0 a0 with zero initial momentum. Here,
we use the velocity-Verlet algorithm to integrate Hamilton’s
equations, ⎧⎪⎨⎪⎩

Ṙ = P

M

Ṗ = −∇Rε(R) or − ∇RεGI(R),

(46)

using the same time steps as in the quantum propagation
(δt = 2.4 × 10−3 fs). In Figure 8 (upper panels), we present
the evolution of the classical position compared to the av-
erage nuclear position from the quantum calculation, for
strong and weak couplings. In both cases, a single tra-
jectory, evolving on the exact surface (blue lines in Fig-
ure 8), is able to reproduce the mean nuclear path (dashed
black lines) fairly well. A slight deviation from the quantum

results happens only towards the end of the simulated trajec-
tories. When the classical forces are calculated from the GI
part of the TDPES, the corresponding classical trajectory
in the strong coupling case does not show a large deviation
from the exact calculation. However, in the weak coupling
case, after 20 fs, the classical trajectory deviates consider-
ably from the quantum mean path. This behaviour is also
confirmed by the pronounced increase of the velocity of the
classical particle moving on εGI, shown in Figure 8 (lower
panels).

We now have a closer look at the classical dynamics
and try to find out the source of the deviations, especially
in the weaker coupling case. Figure 9 shows the classical
positions calculated from the full TDPES (blue dots) and
the GI part of it (orange dots) together with the correspond-
ing potentials and the exact nuclear densities at the times
indicated in the plots. It can be seen in the figure that the
classical particle evolving on the GI part of the potential,
in the case of weaker coupling, at the moment of the step
formation feels an intense force, as its position is exactly in

D
ow

nl
oa

de
d 

by
 [

M
PI

 M
ax

-P
la

nc
k-

In
st

 F
ue

r 
M

ik
ro

st
ru

kt
ur

ph
ys

ik
],

 [
Fe

de
ri

ca
 A

go
st

in
i]

 a
t 0

6:
39

 2
7 

Ja
nu

ar
y 

20
14

 



3636 F. Agostini et al.

Figure 9. Upper panels: strong coupling results. Lower panels: weak coupling results. The figure shows classical positions (dots) at
different times, as indicated in the plots, with the corresponding potentials, εGI(R, t) (orange lines) and ε(R, t) (blue lines). The nuclear
density (dashed black line) is plotted as reference, along with the mean position (black arrows).

the region of the step (see t = 23.71 fs in Figure 9). This
happens also in the case of the strong coupling (see the
blue line referring to the velocity in Figure 8, left plot), to a
lesser extent and the velocity of the classical particle does
not show a strong peak. The evolution of the classical parti-
cle on the GI part, in the case of the strong coupling, shows
that the step forms in the direction of larger nuclear den-
sity (see plot at t = 22.25 fs); hence, the classical particle
correctly follows the step and its position is approximately
the mean nuclear position. However, in the case of weaker
coupling, the step forms in the direction of smaller nuclear
density and the classical particle cannot move ‘up the hill’
to follow the nuclear mean path, leading to a large devia-
tion of the classical position from the quantum mean value.
The intense force felt by the classical particle drives it to an
unphysical region, where the nuclear density is very small.
The presence of the GD part of the TDPES is responsible
for the decrease (or even the inversion) of the ‘energy gap’
in the GI part, thus producing a better agreement between
classical and quantum results.

By comparing the classical and quantum dynamics
shown in Figure 9, we observe that in the strong coupling

case (upper panel), at t = 4.84 and 11.37 fs, the nuclear
wave packet has not yet crossed the avoided crossing, thus
the GD part of the TDPES is a constant. Therefore, the
classical force calculated from the TDPES is identical with
the one calculated from its GI part. At these times, the
classical positions of the nuclei evolving on the GI part
of the potential (orange dots in the figure) and on the full
TDPES (blue dots) coincide with the mean position of the
nuclear wave packet (black arrows). On the other hand, in
the weaker coupling case (lower panels), a similar behaviour
is seen only before the wave packet splitting, at t = 7.26 and
12.09 fs. At later times, namely t = 22.25 fs for the strong
coupling case and t = 23.71 fs for the weaker coupling case,
the steps develop in εGI and the classical particle evolving
on this potential follows the direction in which the step is
forming: in the case of strong coupling, this region coin-
cides with the region associated with larger nuclear density,
whereas this is not the case for the weaker coupling case. As
discussed above, this feature explains why the positions of
the particles on ε and on εGI, for the system in the presence
of strong non-adiabatic coupling, are close to each other
also at later times (t = 29.03 fs in Figure 9), whereas they
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Molecular Physics 3637

deviate in the weaker coupling regime as clearly shown in
the figure at time t = 31.45 fs.

The results presented in this section offer interesting
insights into possible ways of modelling non-adiabatic pro-
cesses, within a mixed quantum-classical treatment. On one
hand, the gradient of the GI part of the exact potential is
the force that drives the classical nuclear motion and we
have shown that such force is ‘adiabatic’ in the sense that,
far from the step, it is produced by a single BOPES. On
the other hand, the GD part does not affect such force, but
contributes in diminishing the energy separation between
the two sides of the step. This energy barrier almost dis-
appears in the full TDPES, but the difference in slopes
indeed persists. If a gauge is chosen such that εGD(R, t) ≡
0, the non-zero vector potential compensates the effect of
the energy step in the GI part of the TDPES by adding a
kinetic energy contribution (the vector potential appears in
the kinetic term of the nuclear Hamiltonian in Equation (8)).
Such contribution would energetically favour the transfer
of classical point particles from one side of the step to the
other. Once again, the comparison with TSH is inevitable:
in the latter, different adiabatic surfaces are energetically
accessible by the classical nuclei because of the stochastic
jumps and the subsequent momentum rescaling (in order
to impose energy conservation); in the scheme based on
the exact TDPES, depending on the gauge, either the GD
part of the potential is responsible for bringing ‘energeti-
cally closer’ different BOPES or the vector potential gives
the necessary kinetic energy contribution. So far, we have
described where the steps appear, how they form and how
they affect nuclear motion. From these observations, we
expect that rigorous mixed quantum-classical schemes for
dealing with non-adiabatic processes can be deduced in a
systematic way from the classical forces associated with the
exact TDPES and the exact vector potential.

6. Ehrenfest theorem for the nuclear wave function

In Section 5, we studied the classical nuclear dynamics on
the TDPES. However, we did not provide any argument on
how that study can be associated with a classical limit of the
nuclear motion that is able to, approximately, reproduce the
expectation values of the nuclear position and momentum
of the complete electron-nuclear system. Here, using the
Ehrenfest theorem, we show how the nuclear position and
momentum calculated from Equation (46) can be linked to
the expectation values of the nuclear position and momen-
tum of the complete electron-nuclear system.

The Ehrenfest theorem [15] relates the time derivative of
the expectation value of a quantum-mechanical operator Ô

to the expectation value of the commutator of that operator
with the Hamiltonian, i.e.

d

dt
〈Ô(t)〉 = 1

i�
〈[Ô(t), Ĥ ]〉 + 〈∂t Ô(t)〉. (47)

The second term on the RHS refers to the explicit time
dependence of Ô. In particular, the theorem leads to the
classical-like equations of motion for the mean value of
position and momentum operators. For a system of electrons
and nuclei, described by the Hamiltonian in Equation (1)
and the wave function �(r, R, t), the mean values of the

νth nuclear position R̂ν and momentum P̂ν operators evolve
according to the classical Hamilton’s equations

d

dt
〈R̂ν〉� = 1

i�
〈[R̂ν, Ĥ (r, R)]〉� = 〈P̂ν〉�

Mν

(48)

d

dt
〈P̂ν〉� = 1

i�
〈[P̂ν, Ĥ (r, R)]〉�

= 〈−∇ν

(
V̂en(r, R) + Ŵnn(R)

)〉�. (49)

Here, the operators do not depend explicitly on time and
we indicate the integration over the full wave function
(electronic and nuclear coordinates) by 〈 · 〉� . On the other
hand, the nuclear equation (8) is a Schrödinger equation
that contains a time-dependent vector potential and a time-
dependent scalar potential. Therefore, the Ehrenfest theo-
rem for the nuclear subsystem reads

d

dt
〈R̂ν〉χ = 1

i�
〈[R̂ν, Ĥn(R)]〉χ (50)

d

dt
〈 ˆ̃Pν〉χ = 1

i�
〈[ ˆ̃Pν, Ĥn(R)]〉χ + 〈∂tAν(R, t)〉χ , (51)

where [20]

ˆ̃Pν = −i�∇ν + Aν(R, t) (52)

is the expression of the nuclear canonical momentum oper-
ator in position representation, and

Ĥn(R) =
Nn∑
ν=1

[−i�∇ν + Aν(R, t)]2

2Mν

+ ε(R, t) (53)

is the nuclear Hamiltonian from Equation (8). Note that
the average operation is performed only on the nuclear
wave function as indicated by 〈 · 〉χ . An explicit time depen-
dence appears in the expression of the momentum operator,
due to the presence of the vector potential. This depen-
dence is accounted for in the second term on the RHS of
Equation (51). While Equation (50) is easily obtained from
Equation (48) by performing the integration over the elec-
tronic part of full wave function, Equation (51) is more
involved and will be proved in detail in Appendix A.

Equations (50) and (51) prove the Ehrenfest theorem
for the nuclear wave function and nuclear Hamiltonian,
deriving exact relations for the evolution of the mean val-
ues of nuclear position and momentum operators over the
complete system. This outcome is consistent with the in-
terpretation of χ (R, t) as the proper nuclear wave function
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3638 F. Agostini et al.

Figure 10. Left: nuclear position as a function of time. Right: nuclear velocity as a function of time. The average position and velocity
calculated from the quantum-mechanical (QM) propagation are shown as dotted red (strong coupling) and dotted green (weak coupling)
lines. The long-dashed (strong coupling) and short-dashed (weak coupling) black lines are the results of classical propagation driven by
the average force (AV) as in Equations (54) and (55).

that reproduces the nuclear density and current density of
the complete system (see the discussion in Section 3).

In the one-dimensional system studied here, the gauge
is chosen such that A(R, t) = 0; therefore, the Ehrenfest
equations become

d

dt
〈R̂〉χ = 1

i�
〈[R̂, Ĥn]〉χ = 〈P̂ 〉χ

M
(54)

d

dt
〈P̂ 〉χ = 1

i�
〈[P̂ , Ĥn]〉χ = 〈−∇Rε(R, t)〉χ , (55)

where the mean force generating the classical-like evolu-
tion is determined as the expectation value, on the nuclear
wave function, of the gradient of the TDPES. If we replace
the nuclear wave function in Equations (54) and (55) by a
delta-function centred at the classical position, we obtain
Equations (46) that was used in Section 5 to generate clas-
sical dynamics on the exact PES. That is why the classical
nuclear dynamics on the TDPES could actually approxi-
mate the mean nuclear position and momentum.

We have numerically simulated classical dynamics un-
der the following equations of motion:⎧⎪⎨⎪⎩

Ṙ = P

M

Ṗ = 〈−∇Rε(R, t)〉χ ,

(56)

where ε(R, t) is obtained from the solution of the TDSE
with Hamiltonian (17), for both sets of parameters produc-
ing strong and weak non-adiabatic couplings between the
two lowest BO surfaces. The initial conditions for the classi-
cal evolution are exactly the initial mean position and mean
velocity of the quantum particle. The results are shown in
Figure 10, where we plot the mean position (left) and veloc-
ity (right) as functions of time from quantum-mechanical

calculations, compared to the values of position and ve-
locity of a classical particle moving according to the av-
erage force 〈 − ∇Rε(R, t)〉χ . As expected by the proof of
the Ehrenfest theorem involving the nuclear wave function
χ (R, t) and the nuclear Hamiltonian Ĥn presented in this
section, the classical trajectory perfectly follows the evolu-
tion of the quantum mean values.

7. Conclusion

In a system of interacting electrons and nuclei, the nu-
clear dynamics is fully determined by the TDPES and the
time-dependent vector potential defined in the framework
of the exact decomposition of the electronic and nuclear
motions, as presented in this paper. We investigated some
situations in which the vector potential can be gauged away,
thus making the TDPES responsible for the nuclear evolu-
tion. This time-dependent scalar potential presents distinct
and general features that can be analysed in terms of its
GI and GD components. The GI part, (i) in the region of
an avoided crossing, has a pronounced diabatic character,
smoothly connecting different BOPESs along the direc-
tion of the nuclear wave packet’s motion, and, (ii) further
away from the avoided crossing, it presents dynamical steps
between regions in which it coincides with one or the other
BOPES. The GD part is either constant, if the nuclear wave
packet does not split, or stepwise constant, with the step at
the same position, and with opposite slope, as in the GI part
of the TDPES. We have analysed in detail these features
and discussed the connections with a classical picture of
the nuclear evolution. To this end, we calculated the clas-
sical forces from the TDPES and from its GI component
and performed classical nuclear dynamics driven by those
forces. The importance of the GD part of the potential is ev-
ident as it improves the agreement of classical results with
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the quantum-mechanical calculations. We conclude that, if
the exact TDPES is available, a single classical trajectory
is able to reproduce quantum results fairly well, as long
as quantum nuclear effects, such as tunnelling or splitting
of the nuclear wave packet, are negligible. We have seen,
in the example presented in the paper, that the splitting of
the nuclear wave function at the avoided crossing that can-
not be captured in the classical study is responsible for the
deviation of the classical results from the expected quan-
tum behaviour. Further analysis involving the propagation
of multiple independent trajectories on the exact TDPES
is envisaged. Such a multi-trajectory approach should be
able to reproduce non-adiabatic effects, as those described
above.

The development of mixed quantum-classical schemes
to treat the non-adiabatic coupled electron-nuclear dynam-
ics is still a challenging topic in physics and chemistry.
Investigating the properties of the exact potential that in-
corporates the effects of the electronic quantum dynam-
ics on the nuclei is a first step towards understanding the
key features of approximated potentials and algorithms.
We did not consider here cases where the vector potential
cannot be gauged away. This will be the subject of future
investigations.

In the final part of the paper, we have shown that the
Ehrenfest theorem applied to calculate the mean nuclear po-
sition and momentum based on the nuclear equation alone
reproduces the mean values calculated from the complete
electron-nuclear system.
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Notes

1. The PNC is inserted in the calculation of the stationary varia-
tions of the quantum mechanical action by means of Lagrange
multipliers.

2. We reintroduce the bold-double underlined symbols for elec-
tronic and nuclear positions whenever the statements have
general validity.

3. It can be easily proven that ε̃GI(R, t) = εGI(R, t) and
ε̃GD(R, t) = εGD(R, t) + ∂t θ (R, t) under the transformations
in Equations (6).
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Appendix A. Time evolution of the mean nuclear
momentum operator

This appendix shows a detailed derivation of Equation (51), the
evolution equation for the mean value of the nuclear momentum
operator P̂ν given in terms of the nuclear wave function χ (R, t)
and Hamiltonian Ĥn. We rewrite the LHS of Equation (49) as

d

dt
〈P̂ν〉� =

∫
drdR

[
�∗

R(r, t)∂tχ
∗(R, t) + χ∗(R, t)∂t�

∗
R(r, t)

]
× P̂νχ (R, t)�R(r, t)

+
∫

drdR χ∗(R, t)�∗
R(r, t)P̂ν

[
�R(r, t)∂tχ (R, t)

+ χ (R, t)∂t�R(r, t)
]
. (A1)

P̂ν being a differential operator in position representation, its
action on the factorised wave function is

P̂νχ (R, t)�R(r, t) = (P̂νχ (R, t))�R(r, t)

+ χ (R, t)(P̂ν�R(r, t)). (A2)

Then we use the nuclear equation (8) for

∂tχ (R, t) = 1

i�
Ĥn(R)χ (R, t) (A3)
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and its complex-conjugated (Ĥn(R) is Hermitian), the definition
of the (real) vector potential

Aν(R, t) =
∫

dr �∗
R(r, t)P̂ν�R(r, t) (A4)

and the PNC, to derive

d

dt
〈P̂ν〉� = 1

i�

∫
dR χ∗(R, t)( ˆ̃PνĤn(R) − Ĥn(R) ˆ̃Pν)χ (R, t)

+
∫

dR|χ (R, t)|2
∫

dr
[(

∂t�
∗
R(r, t)

)
P̂ν�R(r, t)

+ �∗
R(r, t)P̂ν∂t�R(r, t)

]
(A5)

with ˆ̃Pν = P̂ν + Aν(R, t). Using the relation

(∂t�
∗
R(r, t))P̂ν�R(r, t) = ∂t

(
�∗

R(r, t)P̂ν�R(r, t)
)

− �∗
R(r, t)P̂ν∂t�R(r, t), (A6)

for the term in the square brackets, leads to

d

dt
〈P̂ν〉� =

∫
dR χ∗(R, t)

(
1

i�
[ ˆ̃Pν, Ĥn(R)]

+ ∂tAν(R, t)

)
χ (R, t), (A7)

recovering the term on the RHS of Equation (51). A similar pro-
cedure [20] yields the relation

〈P̂ν〉� =
∫

drdR �∗
R(r, t)χ∗(R, t)[(P̂νχ (R, t))�R(r, t)

+ χ (R, t)P̂ν�R(r, t)]

=
∫

dR χ∗(R, t)[P̂ν + Aν(R, t)]χ (R, t) = 〈 ˆ̃Pν〉χ ,

(A8)

which proves the identity of the LHSs of Equations (49) and (51).
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