RAPID COMMUNICATIONS

PHYSICAL REVIEW A 89, 040501(R) (2014)

Electronic Schrodinger equation with nonclassical nuclei
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We present a rigorous reformulation of the quantum mechanical equations of motion for the coupled system of
electrons and nuclei that focuses on the dynamics of the electronic subsystem. Usually the description of electron
dynamics involves an electronic Schrodinger equation where the nuclear degrees of freedom appear as parameters
or as classical trajectories. Here we derive the exact Schrodinger equation for the subsystem of electrons, staying
within a full quantum treatment of the nuclei. This exact Schrodinger equation features a time-dependent potential
energy surface for electrons (e-TDPES). We demonstrate that this exact e-TDPES differs significantly from the
electrostatic potential produced by classical or quantum nuclei.
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The theoretical description of electronic motion in the
time domain is among the biggest challenges in theoretical
physics. A variety of tools has been developed to tackle
this problem, among them the Kadanoff-Baym approach [1],
time-dependent density functional theory [2], the hierarchical
equations of motion approach [3], and the multiconfiguration
time-dependent Hartree-Fock approach [4]. From the point
of view of electronic dynamics all these approaches are
formally exact as long as the nuclei are considered clamped.
However, some of the most fascinating phenomena result
from the coupling of electronic and nuclear motion, e.g.,
photovoltaics [5], processes in vision [6], photosynthesis [7],
molecular electronics [8], and strong-field processes [9]. To
properly capture electron dynamics in these phenomena, it is
essential to account for electron-nuclear (e-n) coupling.

In principle, the e-n dynamics is described by the complete
time-dependent Schrodinger equation (TDSE)

AW(r.R.1)=i0,W(.R.0), (1)
with Hamiltonian

I:I = 7Awn(g) + Vnt(R t) + HBO(r R) + vext(r t) (2)

where HBo(r R) is the traditional Born-Oppenheimer (BO)
electronic Hamiltonian,

I:IBO = 7A-‘e(g) + Wee(g) + Wen(g’g) + Wnn (g) (3)

2 N, N V]
Here 7, = — ) )" 12115 and 7, _—Zjelz—arethenuclear

and electronic kinetic energy operators, Wee, Wen, and W,m
are the electron-electron, e-n, and nuclear-nuclear interaction,
and V”t(R t) and ¢, (r,t) are time-dependent (TD) external
potentials acting on the nuclei and electrons, respectively.
Throughout this paper R and r collectively represent the
nuclear and electronic coordinates, respectively, and i = 1.
A full numerical solution of the complete e-n TDSE, Eq. (1),
is extremely hard to achieve and has been obtained only for
small systems with very few degrees of freedom, such as
H,* [10]. For larger systems, an efficient and widely used
approximation is the mixed quantum-classical description

1050-2947/2014/89(4)/040501(5)
TH-2014-16

040501-1

PACS number(s): 31.50.—x, 31.15.—p, 82.20.Gk

where the electrons are propagated quantum mechanically
according to the TDSE

[Te(0) + Wee(X) + V(X.1) + 05,(x,1)] D(x.1) = i 0, D(r, 1),
“)
which is coupled to the classical nuclear trajectories R,/(?),
determined by Ehrenfest or surface-hopping algorithms [11].

The potential V (r,t) experienced by the electrons is then given
by the classical expression

Ne N,

Vetass(0.1) = W @R@O) = =Y Y ————— (5)

p 1|r, a<r>|

where R(#) denotes the set of classical nuclear trajectories
R, (¢). A better approximation to the potential V(r,r) ex-
perienced by the electrons is the electrostatic or Hartree

expression [11]:
IX(R NI
[ o

r; — Ry’

e Na

VHartree(Evt) = —eZ, Z

j=1 a=1

where x (R,?) represents a nuclear many-body wave function
obtained, e.g., from nuclear wave packet dynamics. Clearly,
Eq. (6) reduces to the classical expression (5) in the limit
of very narrow wave packets centered around the classical
trajectories R(#). The Hartree expression (6) incorporates
the nuclear charge distribution, but the potential is still
approximate as it neglects e-n correlations.

In this paper we address the question of whether the
potential V(r,?) in the purely electronic many-body TDSE,
Eq. (4), can be chosen such that the resulting electronic
wave function ®(r,7) becomes exact. By exact we mean that
®(r,t) reproduces the true electronic N,-body density and the
true N,-body current density that would be obtained from
the full e-n wave function ‘ll(r R,7) of Eq. (1). We shall
demonstrate that the answer is yes, provided we allow for
a vector potential S(r,#) in the electronic TDSE, in addition to
the scalar potential V (r,z). We will analyze this potential for
an exciting experiment, namely, the laser-induced localization
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of the electron in the H,* molecule [12]. We find significant
differences between this exact potential and both the classical-
nuclei potential Eq. (5) and the Hartree potential Eq. (6).

References [13,14] proved that the exact solution of the
complete molecular TDSE Eq. (1) can be written as a single
product

W(r.R.1) = Or(r.)x R.1) @)

of a nuclear wave function x(R,?), and an electronic wave
function parametrized by the nuclear coordinates Dg(x,1),
which satisfies the partial normalization condition (PNC)
f d[|d>g(£,t)|2 = 1. Here we instead consider the reverse
factorization,

W(r.R.1) = xRODE.). 8)

It is straightforward to see that the formalism presented in
Ref. [13] follows through simply with a switch of the role of
electronic and nuclear coordinates. In particular, we have the
following:

(1) The exact solution of the TDSE may be written as Eq. (8),
where x:(R,?) satisfies the PNC [ dR|x:(R, HI> = 1.

(ii) The nuclear wave function Xr(R t) satisfies

[Hn(gagvt) - 6e(£J)]X£(§»t) = lath(gJ), (9)
with the nuclear Hamiltonian
ﬁn(g»gvt) = ’fn(g) + Wee(g) + Wen(gvg) + Wnn@_{)

+ 08 (x0) + VER.0)

Ne 1 T[=iV; —S;xn]?
+ —[ L

n ("qu) + Sj(g,t))[—ivj - SJ(EJ)]]
(10)

The electronic wave function CD(g,t) satisfies the TDSE
Ne
D5 SV 4 SEOP + e | S = id, S ).
=1 M
(11)

Here the exact TD potential energy surface for electrons
(e-TDPES) €,(r,t) and the exact electronic TD vector potential
S, (r,1) are defined as

() = (O HRED — ik, (12)

;0.0 = (xe(O] — iV xe (D). (13)

where (---|---]---)r denotes a matrix element integrating
over all nuclear variables only.

(iii))  Equations  (9)—(11) are form  invariant

under  the  gaugelike  transformation  xr(R.r) —

Ze(R.1) = explif(r,)] xR, 1), D(r,1) - d(r,r) =
exp[—i Q(E,t)]cb(g,?), while the potentials transform as
ee(g_,t)+ B,G(E_J). The wave functions Xg(T:{,t) and @(g,t)
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yielding a given solution W(r,R,7) of Eq. (1) are unique up to
this (r,#)-dependent phase transformation.

(iv) The wave functions x.(R,t) and ®(r,r) are inter-
preted as nuclear and electronic wave functions: |D(r,0)|> =
f |W(r,R,1)>dR is the probability density of ﬁnd_ing the
electronic conEguration r at time ¢, and | Xr(R D =

|W(r,R,1)%/ |CI>(r 1)|? is the conditional probability of finding
the nuclei at R, given that the electronic configuration is r. The
exact electronic N,-body current density can be obtained from
Im(®*V; d) + |(r,1)[*S;.

We can regard Eq. (11) as the exact electronic TDSE: The
time evolution of ®(r,¢) is completely determined by the exact
e-TDPES €,(r,t) and the vector potential S;(r,t). Moreover,
these potentials are unigue up to within a gauge transformation
(iii, above). In other words, if one requires a purely electronic
TDSE (11) with solution ®(r,¢) to yield the true electron
(N,-body) density and current density of the full e-n problem,
then the potentials appearing in this TDSE are (up to within a
gauge transformation) uniquely given by Egs. (12) and (13).

A formalism in which the nuclear wave function is
conditionally dependent on the electronic coordinates, rather
than the other way around, may appear somewhat nonintuitive.
However, in many nonadiabatic processes, the nuclear and
electronic speeds are comparable, and, in some cases, such
as highly excited Rydberg molecules, nuclei may even move
faster than electrons [15]. We shall show in the following that
the present factorization is useful for interpreting the dynamics
of attosecond electron localization, and that it gives direct
insight into how the e-n coupling affects nonadiabatic electron
dynamics. For this purpose it is useful to rewrite the exact
e-TDPES as

€o(L,1) = €N, 1) + Ae(r,1), (14)
where
€PPX(E,1) = (Xe(OIWee ) + Wen (& R) + Won(R)
+ 06y (0,0 + VSR DI xR (15)
and

A€ (r,1) = (Xg(t)lfn(BNXg(f))g + O] —

(DY) xe Ne
Z jX (t)| jXr (l‘)g Z . (16)

j=1 j=1

iaz|Xg(t)>§

If the nuclear density is approximated as a 6 function at R(#),

then ;"™ reduces to the electronic potential used in the

traditional mixed quantum-classical approximations:
e (r,1) = Wee(r) + Wen (£, R(1)) + W, (R(1))
+ 05, (. 0) + V2 R()). (17)

This approximation not only neglects the width of the
nuclear wavefunction but also misses the contribution to
the potential from Ae,(r,t), Eq. (16). Methods that retain
a quantum description of the nuclei (e.g., the TD Hartree
approach [11]) approximate Eq. (15), although without the
parametric dependence of the nuclear wave function on r,
and still miss the contribution from Eq. (16). In the following
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example, we will show the significance of the e-n correlation
represented in the term Ae,.

Among the many charge-transfer processes accompanying
nuclear motion mentioned earlier, here we study attosecond
electron localization dynamics in the dissociation of the Hp™
molecule achieved by time-delayed coherent ultrashort laser
pulses [12]. In the experiment, first an ultraviolet (UV) pulse
excites H, to the dissociative 2po, state of H,™ while a
second time-delayed infrared (IR) pulse induces electron
transfer between the dissociating atoms. This relatively recent
technique has gathered increasing attention since it is expected
to eventually lead to the direct control of chemical reactions via
the control of electron dynamics. Extensive theoretical studies
have led to progress in understanding the mechanism [12], and
highlight the important role of e-n correlated motion. Here we
study the exact e-n coupling terms by computing the exact
e-TDPES Egq. (12).

We consider a one-dimensional Ho* model, starting the
dynamics after the excitation by the UV pulse: the wave
packet starts at r =0 on the first excited state (2pa,
state) of Hy™ as a Frank-Condon projection of the wave
function of the ground state, and then is exposed to the
IR laser pulse. The Hamiltonian is given by Eq. (2), with
R — R, the internuclear distance, and r — z, the elec-
tronic coordinate as measured from the nuclear center of

mass [16]. The kinetic energy terms are Tn(R) = _ﬁaa_;z
2

and fe(z) = —ﬁ;—b respectively, where the reduced mass

Z
of the nuclei is given by w, = My/2, and the reduced
electronic mass is given by u, = (My is the proton

1

2My
My +1
mass). The interactions are soft Coulomb: W,,,(R) =

N «/0.0,\3+R2 ’
and W,,(z,R) = ! ! (and W,, =

C J10t@—R/2? J10tGHR2?
0). The IR pulse is taken into account using the dipole
approximation and length gauge, as 0¢,,(z,¢) = E(t)g.z, where
E(t) = Egexp[—(*=2)*] cos[w(t — Ar)], and the reduced

charge g, = %%:ﬁ The wavelength is 800 nm and the peak

intensity Iy = E3 = 3.0 x 10'> W/cm?. The pulse duration is
7 = 4.8 fs and At is the time delay between the UV and IR
pulses. Here we show the results for Ar = 7 fs. We propagate
the full TDSE (1) numerically exactly to obtain the full
molecular wave function W(z,R,t), and from it we calculate
the probabilities of directional localization of the electron,
Py, which are defined as Py = [._ _,dz [dR|¥(z,R,1)|*.
These are shown as the black solid (P-) and dashed (P.) lines
inFig. 1. Itis evident from this figure that considerable electron
localization occurs, with the electron density predominantly
localized on the left (negative z axis).

We now propagate the electrons under the traditional
potential Eq. (17), employing the exact TD mean nu-
clear position R(¢) obtained from W(z,R,t) by R(t) =
(W(z,R,1)|R|W(z,R,1)), and calculate the electron localiza-
tion probabilities, shown as red (or dark gray) solid line
(negative region) and dashed line (positive region) in Fig. 1.
Comparing the red (or dark gray) and black lines in Fig. 1, we
find that the traditional potential yields the correct dynamics
until around 5 fs, but then becomes less accurate: finally it
predicts the electron to be almost perfectly localized on the left
nucleus, while the exact calculation still gives some probability
of finding the electron on the right.
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FIG. 1. (Color online) Electron localization probabilities along
the negative (solid line) and the positive (dashed line) z axes as a
function of time, obtained from exact dynamics (black), dynamics
on the traditional potential €™ evaluated at the exact mean nuclear
position (red or dark gray), and dynamics on the approximate potential
€2PPX (green or light gray). The field is shown in the top panel.

To understand the error in the dynamics determined by the
traditional surface, we compute the exact e-TDPES (12) in the
gauge where the vector potential S(z,7) is zero [18]. In the
upper panel of Fig. 2, the exact €, [Eq. (12)] is plotted (black
line) at three times [19], and compared with the traditional
potential [Eq. (17)] € (red or gray line) evaluated at the
exact mean nuclear position. In the lower panel, the electron
densities calculated from dynamics on the respective potentials
are plotted.

A notable difference between ¢, and €™ is an additional
interatomic barrier which appears in the exact potential, and
a steplike feature that shifts one well with respect to the
other. These additional features arise from the coupling terms
contained in A€, and are responsible for the correct dynamics,
which is evident from the green (or light gray) curve in Fig. 1:
this shows the results predicted by propagating the electrons
on €,"""*, The result is close to that of the red (or dark gray)
traditional curve, and the potentials (not shown for figure
clarity) are also close to the red (or gray) potentials shown

t=6.531fs t=8221fs

t=5321s

Electron density Potential [a.u.]

O 1

z[a.u.] z[a.u.]

0
z[a.u.]

FIG. 2. (Color online) Top panel: Electronic potentials at the
times indicated: exact ¢, (black), and traditional e:,"“d evaluated at
the exact mean nuclear position (red or gray). Lower panel: Electron
densities obtained from dynamics on the electronic potentials shown
at the indicated times in the top panel.
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in Fig. 2. A TD Hartree treatment is also close to the results
from propagating on €. An examination of the different
components in Eq. (16) shows that the additional interatomic
barrier arises from the term ﬁ(a"—“ XZ'i% Xz)r, While the first
two terms in Eq. (16) yield the step.

The current understanding of the mechanism for electron
localization is that as the molecule dissociates, there is a
rising interatomic barrier from W,,, which, when it reaches
the energy level of the excited electronic state largely shuts
off electron transfer between the ions [12]. The electron
distribution is almost frozen after this point, as the electron
can only tunnel between the nuclei. The additional barrier
we see in the exact e-TDPES leads to an earlier localization
time and ultimately smaller localization asymmetry. However,
each of the three terms in Eq. (16) for A€ plays an important
role in the dynamics: if the electronic system is evolved
adding only the barrier correction to e;”™* the localization
asymmetry is somewhat reduced compared to evolving on
€PP"% alone, but far more so when all three terms of Ae are
included.

In conclusion, we have shown that it is possible to describe
the electronic subsystem coupled to nuclei and external
fields via a TDSE, and given the exact form of the potentials
appearing in this equation. The complete molecular wave
function is factorized into electronic and nuclear wave func-
tions W(r,R,1) = x(R,1)®(r,r), where the electronic wave
function ®(r,?) satisfies an electronic TDSE, and the nuclear
wave function is conditionally dependent on the electronic
coordinates. This is complementary to the factorization of
Refs. [13,14,20], W(r,R,1) = x(R,1)PR(r,?), where instead
the nuclear wave function satisfies a TDSE while the electronic
wave function does not. The exact e-TDPES and exact TD
vector potential acting on the electrons were uniquely defined
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and compared with the traditional potentials used in studying
localization dynamics in a model of the H,™ molecular ion.
The importance of the exact e-n correlation in the e-TDPES in
reproducing the correct electron dynamics was demonstrated.
Further studies on this and other model systems will lead to
insight into how e-n correlation affects electron dynamics in
nonadiabatic processes, an insight that can never be gained
from the classical electrostatic potentials caused by the point
charges of the clamped nucleus nor the charge distributions
of the exact nuclear density. Preliminary studies using the
Shin-Metiu model [21] of field-free electronic dynamics in
the presence of strong nonadiabatic couplings show that peak
and shift structures in the exact e-TDPES, similar to those in
the localization problem discussed here, appear typically after
nonadiabatic transitions. Finally, we expect that the insight
gained from the formalism and its analysis will lead to the
derivation of approximate e-n coupling potentials to be used in
the development of practical and accurate electronic dynamics
simulations. The exact TD electronic potentials defined in this
study, together with the exact TD nuclear potentials derived
in [13,14], establish the exact potential functionals of TD
multicomponent density functional theory [17,22]. The study
of these potentials may ultimately lead to approximate density
functionals for use in this theory, which holds promise for the
description of real-time coupled e-n dynamics in real systems.
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CRONOS), and the US Department of Energy, Office of Basic
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