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Abstract This chapter introduces thermal density functional theory, starting from
the ground-state theory and assuming a background in quantum mechanics and
statistical mechanics. We review the foundations of density functional theory (DFT)
by illustrating some of its key reformulations. The basics of DFT for thermal
ensembles are explained in this context, as are tools useful for analysis and
development of approximations. This review emphasizes thermal DFT’s strengths
as a consistent and general framework.

1 Introduction

The subject matter of high-energy-density physics is vast [1], and the various
methods for modeling it are diverse [2–4]. The field includes enormous temperature,
pressure, and density ranges, reaching regimes where the tools of plasma physics
are appropriate [5]. But, especially nowadays, interest also stretches down to warm
dense matter (WDM), where chemical details can become not just relevant, but
vital [6]. WDM, in turn, is sufficiently close to zero-temperature, ground-state
electronic structure that the methods from that field, especially Kohn-Sham density
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functional theory (KS DFT) [7, 8], provide a standard paradigm for calculating
material-specific properties with useful accuracy.

It is important to understand, from the outset, that the logic and methodology of
KS-DFT is at times foreign to other techniques of theoretical physics. The proce-
dures of KS-DFT appear simple, yet the underlying theory is surprisingly subtle.
Consequently, progress in developing useful approximations, or even writing down
formally correct expressions, has been incredibly slow. As the KS methodology
develops in WDM and beyond, it is worth taking a few moments to wrap one’s head
around its logic, as it does lead to one of the most successful paradigms of modern
electronic structure theory [9].

This chapter sketches how the methodology of KS DFT can be generalized to
warm systems, and what new features are introduced in doing so. It is primarily
designed for those unfamiliar with DFT to get a general understanding of how it
functions and what promises it holds in the domain of warm dense matter. Section 2
is a general review of the basic theorems of DFT, using the original methodology
of Hohenberg-Kohn [10] and then the more general Levy-Lieb construction [11,
12]. In Sect. 3, we discuss approximations, which are always necessary in practice,
and several important exact conditions that are used to guide their construction.
In Sect. 4, we review the thermal KS equations [13] and some relevant statistical
mechanics. Section 5 summarizes some of the most important exact conditions for
thermal ensembles [14, 15]. Last, but not least, in Sect. 6 we review some recent
results that generalize ground-state exact scaling conditions and note some of the
main differences between the finite-temperature and the ground-state formulation.

2 Density Functional Theory

A reformulation of the interacting many-electron problem in terms of the electron
density rather than the many-electron wavefunction has been attempted since the
early days of quantum mechanics [16–18]. The advantage is clear: while the wave-
function for interacting electrons depends in a complex fashion on all the particle
coordinates, the particle density is a function of only three spatial coordinates.

Initially, it was believed that formulating quantum mechanics solely in terms of
the particle density gives only an approximate solution, as in the Thomas-Fermi
method [16–18]. However, in the mid-1960s, Hohenberg and Kohn [10] showed
that, for systems of electrons in an external potential, all the properties of the
many-electron ground state are, in principle, exactly determined by the ground-state
particle density alone.

Another important approach to the many-particle problem appeared early in the
development of quantum mechanics: the single-particle approximation. Here, the
two-particle potential representing the interaction between particles is replaced by
some effective, one-particle potential. A prominent example of this approach is the
Hartree-Fock method [19, 20], which includes only exchange contributions in its
effective one-particle potential. A year after the Hohenberg-Kohn theorem had been
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proven, Kohn and Sham [21] took a giant leap forward. They took the ground state
particle density as the basic quantity and showed that both exchange and correlation
effects due to the electron-electron interaction can be treated through an effective
single-particle Schrödinger equation. Although Kohn and Sham wrote their paper
using the local density approximation, they also pointed out the exactness of that
scheme if the exact exchange-correlation functional were to be used (see Sect. 2.3).
The KS scheme is used in almost all DFT calculations of electronic structure today.
Much development in this field remains focused on improving approximations to
the exchange-correlation energy (see Sect. 3).

The Hohenberg-Kohn theorem and Kohn-Sham scheme are the basic elements
of modern density-functional theory (DFT) [9, 22, 23]. We will review the initial
formulation of DFT for non-degenerate ground states and its later extension to
degenerate ground states. Alternative and refined mathematical formulations are
then introduced.

2.1 Introduction

The non-relativistic Hamiltonian1 for N interacting electrons2 moving in a static
potential v.r/ reads (in atomic units)

OH D OT C OVee C OV WD �1

2

NX

iD1

r2
i C 1

2

NX

i;jD1

i¤j

1

jri � rj j C
NX

iD1

v.ri /: (1)

Here, OT is the total kinetic-energy operator, OVee describes the repulsion between
the electrons, and OV is a local (multiplicative) scalar operator. This includes
the interaction of the electrons with the nuclei (considered within the Born-
Oppenheimer approximation) and any other external scalar potentials.

The eigenstates, �i .r1; : : : ; rN /, of the system are obtained by solving the
eigenvalue problem

OH�i .r1; : : : ; rN / D Ei�i .r1; : : : ; rN /; (2)

with appropriate boundary conditions for the physical problem at hand. Equation (2)
is the time-independent Schrödinger equation. We are particularly interested in the
ground state, the eigenstate with lowest energy, and assume the wavefunction can
be normalized.

1See Refs. [24] or [25] for quantum mechanical background that is useful for this chapter.
2In this work, we discuss only spin-unpolarized electrons.
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Due to the interactions among the electrons, OVee, an explicit and closed solution
of the many-electron problem in Eq. (2) is, in general, not possible. But because
accurate prediction of a wide range of physical and chemical phenomena requires
inclusion of electron-electron interaction, we need a path to accurate approximate
solutions.

Once the number of electrons with Coulombic interaction is given, the
Hamiltonian is determined by specifying the external potential. For a given v.r/,
the total energy is a functional of the many-body wavefunction �.r1; : : : ; rN /:

EvŒ�� D h� j OT C OVee C OV j� i : (3)

The energy functional in Eq. (3) may be evaluated for any N -electron wavefunction,
and the Rayleigh-Ritz variational principle ensures that the ground state energy, Ev ,
is given by

Ev D inf
�

EvŒ��; (4)

where the infimum is taken over all normalized, antisymmetric wavefunctions. The
Euler-Lagrange equation expressing the minimization of the energy is

ı

ı�
fEvŒ�� � � Œh� j� i � 1�g D 0; (5)

where the functional derivative is performed over � 2 L 2.R3N / (defined as in
Ref. [26]). Relation (5) again leads to the many-body Schrödinger equation and the
Lagrangian multiplier � can be identified as the chemical potential.

We now have a procedure for finding approximate solutions by restricting the
form of the wavefunctions. In the Hartree-Fock (HF) approximation, for example,
the form of the wave-function is restricted to a single Slater determinant. Building
on the HF wavefunction, modern quantum chemical methods can produce extremely
accurate solutions to the Schrödinger equation [27]. Unfortunately, wavefunction-
based approaches that go beyond HF usually are afflicted by an impractical growth
of the numerical effort with the number of particles. Inspired by the Thomas-Fermi
approach, one might wonder if the role played by the wavefunction could be played
by the particle density, defined as

n.r/ WD h� j
NX

iD1

ı. Or � Or i /j� i D N

Z
dr2 : : :

Z
drN

ˇ̌
ˇ�.r; r2; : : : ; rN /

ˇ̌
ˇ
2

; (6)

from which
Z

d 3r n.r/ D N: (7)
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In that case, one would deal with a function of only three spatial coordinates,
regardless of the number of electrons.

2.2 Hohenberg-Kohn Theorem

Happily, the two-part Hohenberg-Kohn (HK) Theorem assures us that the electronic
density alone is enough to determine all observable quantities of the systems. These
proofs cleverly connect specific sets of densities, wavefunctions, and potentials,
exposing a new framework for the interacting many-body problem.

Let P be the set of external potentials leading to a non-degenerate ground state
for N electrons. For a given potential, the corresponding ground state, � , is obtained
through the solution of the Schrödinger equation:

v �! �; with v 2 P: (8)

Wavefunctions obtained this way are called interacting v-representable. We collect
these ground state wavefunctions in the set W. The corresponding particle densities
can be computed using definition (6):

� �! n; with � 2 W: (9)

Ground state particle densities obtained this way are also called interacting
v-representable. We denote the set of these densities as D.

2.2.1 First Part

Given a density n 2 D, the first part of the Hohenberg-Kohn theorem states that the
wavefunction � 2 W leading to n is unique, apart from a constant phase factor. The
proof is carried out by reductio ad absurdum and is illustrated in Fig. 1.

Consider two different wavefunctions in W, �1 and �2, that differ by more than a
constant phase factor. Next, let n1 and n2 be the corresponding densities computed
by Eq. (6). Since, by construction, we are restricting ourselves to non-degenerate
ground states, �1 and �2 must come from two different potentials. Name these v1

and v2, respectively.
Assume that these different wavefunctions yield the same density:

�1 ¤ �2 but n1.r/ D n2.r/: (10)

Application of the Rayleigh-Ritz variational principle yields the inequality

h�1j OH1j�1i < h�2j OH1j�2i; (11)
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Fig. 1 The Hohenberg-Kohn Theorem proves the one-to-one mappings between potentials and
ground-state wavefunctions and between ground-state wavefunctions and ground-state densities.
The dotted lines indicated by question marks show the two-to-one mappings disproved by
Hohenberg and Kohn [26, 28]

from which we obtain

E1 < h�2j OH2 C . OV1 � OV2/j�2i D E2 C
Z

d 3r n1.r/ Œv1.r/ � v2.r/� : (12)

Reversing the role of systems 1 and 2 in the derivation, we find

E2 < h�1j OH1 C . OV2 � OV1/j�1i D E1 C
Z

d 3r n2.r/ Œv2.r/ � v1.r/� : (13)

The assumption that the two densities are equal, n1.r/ D n2.r/, and addition of the
inequalities (12) and (13) yields

E1 C E2 < E1 C E2; (14)

which is a contradiction. We conclude that the foregoing hypothesis (10) was
wrong, so n1 ¤ n2. Thus each density is the ground-state density of, at most, one
wavefunction. This mapping between the density and wavefunction is written

n �! �; with n 2 D and � 2 W: (15)

2.2.2 Second Part

Having specified the correspondence between density and wavefunction, Hohenberg
and Kohn then consider the potential. By explicitly inverting the Schrödinger
equation,
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NX

iD1

v.ri / D E �
� OT C OVee

�
�.r1; r2; : : : ; rN /

�.r1; r2; : : : ; rN /
; (16)

they show the elements � of W also determine the elements v of P, apart from an
additive constant.

We summarize this second result by writing

� �! v; with � 2 W and v 2 P: (17)

2.2.3 Consequences

Together, the first and second parts of the theorem yield

n �! v C const; with n 2 D and v 2 P; (18)

that the ground state particle density determines the external potential up to a trivial
additive constant. This is the first HK theorem.

Moreover, from the first part of the theorem it follows that any ground-state
observable is a functional of the ground-state particle density. Using the one-to-one
dependence of the wavefunction, �Œn�, on the particle density,

h� j OOj� i D h�Œn�j OO j�Œn�i D OŒn�: (19)

For example, the following functional can be defined:

Ev;HKŒn� WD h�Œn�j OT C OVee C OV j�Œn�i D FHKŒn� C
Z

d 3r n.r/v.r/; (20)

where v is a given external potential and n can be any density in D. Note that

FHKŒn� WD h�Œn�j OT C OVeej�Œn�i (21)

is independent of v. The second HK theorem is simply that FHKŒn� is independent
of v.r/. This is therefore a universal functional of the ground-state particle density.
We use the subscript, HK, to emphasize that this is the original density functional
of Hohenberg and Kohn.

Let n0 be the ground-state particle density of the potential v0. The Rayleigh-Ritz
variational principle (4) immediately tells us

Ev0 D min
n2D

Ev0;HKŒn� D Ev0;HKŒn0�: (22)

We have finally obtained a variational principle based on the particle density instead
of the computationally expensive wavefunction.
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Fig. 2 The mappings between sets of potentials, wavefunctions, and densities can be extended
to include potentials with degenerate ground states. This is seen in the one-to-many mappings
between P and W. Note also the many-to-one mappings from W to D caused by this degener-
acy [28, 30]

2.2.4 Extension to Degenerate Ground States

The Hohenberg-Kohn theorem can be generalized by allowing P to include local
potentials having degenerate ground states [11, 28, 29]. This means an entire sub-
space of wavefunctions can correspond to the lowest eigenvalue of the Schrödinger
equation (2). The sets W and D are enlarged accordingly, to include all the additional
ground-state wavefunctions and particle densities.

In contrast to the non-degenerate case, the solution of the Schrödinger equa-
tion (2) now establishes a mapping from P to W which is one-to-many (see Fig. 2).
Moreover, different degenerate wavefunctions can have the same particle density.
Equation (6), therefore, establishes a mapping from W to D that is many-to-one.
However, any one of the degenerate ground-state densities still determines the
potential uniquely.

The first part of the HK theorem needs to be modified in light of this alteration
of the mapping between wavefunctions and densities. To begin, note that two
degenerate subspaces, sets of ground states of two different potentials, are disjoint.
Assuming that a common eigenstate � can be found, subtraction of one Schrödinger
equation from the other yields

. OV1 � OV2/� D .E1 � E2/�: (23)

For this identity to be true, the eigenstate � must vanish in the region where the
two potentials differ by more than an additive constant. This region has measure
greater than zero. Eigenfunctions of potentials in P, however, vanish only on sets of
measure zero [31]. This contradiction lets us conclude that v1 and v2 cannot have
common eigenstates. We then show that ground states from two different potentials
always have different particle densities using the Rayleigh-Ritz variational principle
as in the non-degenerate case.



Thermal Density Functional Theory in Context 33

However, two or more degenerate ground state wavefunctions can have the
same particle density. As a consequence, neither the wavefunctions nor a generic
ground state property can be determined uniquely from knowledge of the ground
state particle density alone. This demands reconsideration of the definition of the
universal FHK as well. Below, we verify that the definition of FHK does not rely
upon one-to-one correspondence among ground state wavefunctions and particle
densities.

The second part of the HK theorem in this case proceeds as in the original proof,
with each ground state in a degenerate level determining the external potential up
to an additive constant. Combining the first and second parts of the proof again
confirms that any element of D determines an element of P, up to an additive
constant. In particular, any one of the degenerate densities determines the external
potential. Using this fact and that the total energy is the same for all wavefunctions
in a given degenerate level, we define FHK:

FHKŒn� WD E ŒvŒn�� �
Z

d 3r vŒn�.r/n.r/: (24)

This implies that the value of

FHKŒn� D h�0 ! nj OT C OVeej�0 ! ni (25)

is the same for all degenerate ground-state wavefunctions that have the same
particle density. The variational principle based on the particle density can then be
formulated as before in Eq. (22).

2.3 Kohn-Sham Scheme

The exact expressions defining FHK in the previous section are only formal ones.
In practice, FHK must be approximated. Finding approximations that yield usefully
accurate results turns out to be an extremely difficult task, so much so that
pure, orbital-free approximations for FHK are not pursued in most modern DFT
calculations. Instead, efficient approximations can be constructed by introducing
the Kohn-Sham scheme, in which a useful decomposition of FHK in terms of
other density functionals is introduced. In fact, the Kohn-Sham decomposition is
so effective that effort on orbital-free DFT utilizes the Kohn-Sham structure, but not
its explicitly orbital-dependent expressions.

Consider the Hamiltonian of N non-interacting electrons

OHs D OT C OV WD �1

2

NX

iD1

r2
i C

NX

iD1

v.ri /: (26)
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Mimicking our procedure with the interacting system, we group external local
potentials in the set P. The corresponding non-interacting ground state wavefunc-
tions �s are then grouped in the set Ws, and their particle densities ns are grouped
in Ds. We can then apply the HK theorem and define the non-interacting analog of
FHK, which is simply the kinetic energy:

TsŒns � WD E ŒvŒns �� �
Z

d 3r vŒns �.r/ns.r/: (27)

Restricting ourselves to non-degenerate ground states, the expression in Eq. (27)
can be rewritten to stress the one-to-one correspondence among densities and
wavefunctions:

TsŒns� D h�sŒns�j OT j�sŒns�i : (28)

We now introduce a fundamental assumption: for each element n of D, a potential vs

in Ps exists, with corresponding ground-state particle density ns D n. We call vs the
Kohn-Sham potential. In other words, interacting v-representable densities are also
assumed to be non-interacting v-representable. This maps the interacting problem
onto a non-interacting one.

Assuming the existence of vs , the HK theorem applied to the class of non-
interacting systems ensures that vs is unique up to an additive constant. As a result,
we find the particle density of the interacting system by solving the non-interacting
eigenvalue problem, which is called the Kohn-Sham equation:

OHs˚ D E˚: (29)

For non-degenerate ground states, the Kohn-Sham ground-state wavefunction is a
single Slater determinant. In general, when considering degenerate ground states,
the Kohn-Sham wavefunction can be expressed as a linear combination of several
Slater determinants [12, 32]. There also exist interacting ground states with particle
densities that can only be represented by an ensemble of non-interacting particle
densities [33–37]. We will come back to this point in Sect. 2.5.

Here we continue by considering the simplest cases of non-degenerate ground
states. Equation (29) can be rewritten in terms of the single-particle orbitals as
follows:

�
�1

2
r2 C vs.r/

�
'i.r/ D �i 'i .r/ : (30)

The single-particle orbitals 'i.r/ are called Kohn-Sham orbitals and Kohn-Sham
wavefunctions are Slater determinants of these orbitals. Via the Kohn-Sham
equations, the orbitals are implicit functionals of n.r/. We emphasize that –
although in DFT the particle density is the only basic variable – the Kohn-Sham
orbitals are proper fermionic single-particle states. The ground-state Kohn-Sham
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wavefunction is obtained by occupying the N eigenstates with lowest eigenvalues.
The corresponding density is

n.r/ D
NX

iD1

ni j'i .r/j2; (31)

with ni the i th occupation number.
In the next section, we consider the consequences of introducing the Kohn-Sham

system in DFT.

2.3.1 Exchange-Correlation Energy Functional

A large fraction of FHKŒn� can be expressed in terms of kinetic and electrostatic
energy. This decomposition is given by

FHKŒn� D TsŒn� C U Œn� C ExcŒn� : (32)

The first term is the kinetic energy of the Kohn-Sham system,

TsŒn� D �1

2

NX

iD1

Z
d3r '�

i .r/r2'i .r/ : (33)

The second is the Hartree energy (a.k.a. electrostatic self-energy, a.k.a. Coulomb
energy),

U Œn� D 1

2

Z Z
d 3rd 3r 0 n.r/n.r0/

jr � r0j : (34)

The remainder is defined as the exchange-correlation energy,

ExcŒn� WD FHKŒn� � TsŒn� � U Œn� : (35)

For systems having more than one particle, Exc accounts for exchange and corre-
lation energy contributions. Comparing Eqs. (32) and (20), the total energy density
functional is

Ev;HKŒn� D TsŒn� C U Œn� C ExcŒn� C
Z

d 3r n.r/v.r/: (36)

Consider now the Euler equations for the interacting and non-interacting system.
Assuming the differentiability of the functionals (see Sect. 2.5), these necessary
conditions for having energy minima are
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ıFHK

ın.r/
C v.r/ D 0 (37)

and

ıTs

ın.r/
C vs.r/ D 0; (38)

respectively. With definition (32), from Eqs. (37) and (38), we obtain

vs.r/ D vH Œn�.r/ C vxcŒn�.r/ C v.r/: (39)

Here, v.r/ is the external potential acting upon the interacting electrons, vH Œn�.r/ is
the Hartree potential,

vH Œn�.r/ D
Z

d 3r 0 n.r0/
jr � r0j D ıU

ın.r/
; (40)

and vxcŒn�.r/ is the exchange-correlation potential,

vxcŒn�.r/ D ıExcŒn�

ın.r/
: (41)

Through the decomposition in Eq. (32), a significant part of FHK is in the explicit
form of TsŒn� C U Œn� without approximation. Though often small, the Exc density
functional still represents an important part of the total energy. Its exact functional
form is unknown, and it therefore must be approximated in practice. However, good
and surprisingly efficient approximations exist for Exc.

We next consider reformulations of DFT, which allow analysis and solution of
some important technical questions at the heart of DFT. They also have a long
history of influencing the analysis of properties of the exact functionals.

2.4 Levy’s Formulation

An important consequence of the HK theorem is that the Rayleigh-Ritz variational
principle based on the wavefunction can be replaced by a variational principle based
on the particle density. The latter is valid for all densities in the set D, the set of
v-representable densities. Unfortunately, v-representability is a condition which is
not easily verified for a given function n.r/. Hence it is highly desirable to formulate
the variational principle over a set of densities characterized by simpler conditions.
This was provided by Levy [11] and later reformulated and extended by Lieb [12].
In this and the sections that follow, Lebesgue and Sobolev spaces are defined in the
usual way [26, 38].
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Fig. 3 This diagram shows the two-step minimization of Levy’s constrained search. The first
infimum search is over all wavefunctions corresponding to a certain density ni . The second search
runs over all of the densities [30, 40]

First, the set W is enlarged to WN, which includes all possible antisymmetric
and normalized N -particle wavefunctions � . The set WN now also contains
N -particle wavefunctions which are not necessarily ground-state wavefunctions to
some external potential v, though it remains in the same Sobolev space [26] as W:
H 1.R3N /. Correspondingly, the set D is replaced by the set DN. DN contains the
densities generated from the N -particle antisymmetric wavefunctions in WN using
Eq. (6):

DN D
�

n j n.r/ � 0;

Z
d 3r n.r/ D N; n1=2.r/ 2 H 1.R3/

�
: (42)

The densities of DN are therefore called N -representable. Harriman’s explicit
construction [39] shows that any integrable and positive function n.r/ is
N -representable.

Levy reformulated the variational principle in a constrained-search fashion (see
Fig. 3):

Ev D inf
n2DN

�
inf

�!nj�2WN

h� j OT C OVeej� i C
Z

d 3r n.r/v.r/

�
: (43)

In this formulation, the search inside the braces is constrained to those wavefunc-
tions which yield a given density n – therefore the name “constrained search”. The
minimum is then found by the outer search over all densities. The potential v.r/ acts
like a Lagrangian multiplier to satisfy the constraint on the density at each point in
space. In this formulation, FHK is replaced by

FLLŒn� WD inf
�!n

h� j OT C OVeej� i; with � 2 WN and n 2 DN : (44)
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The functional EHK can then be replaced by

Ev;LLŒn� WD FLLŒn� C
Z

d 3r n.r/v.r/; with n 2 DN: (45)

If, for a given v0, the corresponding ground-state particle density, n0, is inserted,
then

Ev0;LLŒn0� D Ev0;HKŒn0� D Ev0 ; (46)

from which

FLLŒn� D FHKŒn�; for all n 2 D : (47)

Furthermore, if any other particle density is inserted, we obtain

Ev0;LLŒn� � Ev0 ; for n ¤ n0 and n 2 DN: (48)

In this approach, the degenerate case does not require particular care. In fact, the
correspondences between potentials, wavefunctions and densities are not explicitly
employed as they were in the previous Hohenberg-Kohn formulation. However, the
N -representability is of secondary importance in the context of the Kohn-Sham
scheme. There, it is still necessary to assume that the densities of the interacting
electrons are non-interacting v-representable as well. We discuss this point in more
detail in the next section.

Though it can be shown that the FLLŒn� infimum is a minimum [12], the func-
tional’s lack of convexity causes a serious problem in proving the differentiability
of FLL [12]. Differentiability is needed to define an Euler equation for finding n.r/

self-consistently. This is somewhat alleviated by the Lieb formulation of DFT (see
below).

2.5 Ensemble-DFT and Lieb’s Formulation

In the remainder of this section, we are summarizing more extensive and peda-
gogical reviews that can be found in Refs. [26, 28], and [41]. Differentiability of
functionals is, essentially, related to the convexity of the functionals. Levy and Lieb
showed that the set D is not convex [12]. In fact, there exist combinations of the
form

n.r/ D
MX

kD1

�knk.r/; �k D 1 .0 � �k � 1/; (49)
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where nk is the density corresponding to degenerate ground state �k , that are not in
D [12, 42].

A convex set can be obtained by looking at ensembles. The density of an
ensemble can be defined through the (statistical, or von Neumann) density operator

OD D
MX

kD1

�kj�kih�kj; with
MX

kD1

�k D 1 .0 � �k � 1/ : (50)

The expectation value of an operator OO on an ensemble is defined as

O WD Tr
n OD OO

o
; (51)

where the symbol “Tr” stands for the trace taken over an arbitrary, complete set of
orthonormal N -particle states

Trf OD OOg WD
X

k

h˚kj. OD OO/j˚ki: (52)

The trace is invariant under unitary transformations of the complete set for the
ground-state manifold of the Hamiltonian OH (see Eq.(50)). Since

Tr
n OD OO

o
D

MX

kD1

�kh�kj OOj�ki; (53)

the energy obtained from a density matrix of the form (50) is the total ground-state
energy of the system.

Densities of the form (49) are called ensemble v-representable densities, or
E-V-densities. We denote this set of densities as DEV. Densities that can be obtained
from a single wavefunction are said to be pure-state (PS) v-representable, or
PS-V-densities. The functional FHK can then be extended as [43]

FEHKŒn� WD Tr
n OD

� OT C OVee

�o
; with n 2 DEV (54)

where OD has the form (50) and is any density matrix giving the density n. However,
the set DEV, just like D, is difficult to characterize. Moreover, as for FHK and FLL,
a proof of the differentiability of FEHK (and for the non-interacting versions of the
same functional) is not available.

In the Lieb formulation, however, differentiability can be addressed to some
extent [12,44,45] . In the work of Lieb, P is restricted to P D L 3=2.R3/CL 1.R3/

and wavefunctions are required to be in

WN D f� j jj� jj D 1; T Œ�� � 1g : (55)
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The universal functional is defined as

FLŒn� WD inf
OD!n2DN

Tr
n OD

� OT C OVee

�o
; (56)

and it can be shown that the infimum is a minimum [12]. Note that in definition (56),
OD is a generic density matrix of the form

OD D
X

k

�kj�kih�kj; with
X

k

�k D 1 .0 � �k � 1/ ; (57)

where �k 2 WN. The sum is not restricted to a finite number of degenerate ground
states as in Eq. (50). This minimization over a larger, less restricted set leads to the
statements

FLŒn� � FLLŒn�; for n 2 DN; (58)

and

FLŒn� D FLLŒn� D FHKŒn�; for n 2 D : (59)

FLŒn� is defined on a convex set, and it is a convex functional. This implies that FLŒn�

is differentiable at any ensemble v-representable densities and nowhere else [12].
Minimizing the functional

ELŒn� WD FLŒn� C
Z

d 3r n.r/v.r/ (60)

with respect to the elements of DEV by the Euler-Lagrange equation

ıFL

ın.r/
C v.r/ D 0 (61)

is therefore well-defined on the set DEV and generates a valid energy minimum.
We finally address, although only briefly, some important points about the

Kohn-Sham scheme and its rigorous justification. The results for FL carry over to
TLŒn�. That is, the functional

TLŒn� D inf
OD!n

Tr
n OD OT

o
; with n 2 DN (62)

is differentiable at any non-interacting ensemble v-representable densities and
nowhere else. We can gather all these densities in the set Ds

EV. Then, the
Euler-Lagrange equation
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ıTL

ın.r/
C vs.r/ D 0 (63)

is well defined on the set Ds
EV only. One can then redefine the exchange-correlation

functional as

Exc;LŒn� D FLŒn� � TLŒn� � U Œn�; (64)

and observe that the differentiability of FLŒn� and TLŒn� implies the differentiability
of ExcŒn� only on DEV \ Ds

EV. The question as to the size of the latter set remains.
For densities defined on a discrete lattice (finite or infinite) it is known [46] that
DEV D Ds

EV. Moreover, in the continuum limit, DE and Ds
E can be shown to be

dense with respect to one another [12,44,45]. This implies that any element of DEV

can be approximated, with an arbitrary accuracy, by an element of Ds
EV. Whether or

not the two sets coincide remains an open question.

3 Functional Approximations

Numerous approximations to Exc exist, each with its own successes and failures [9].
The simplest is the local density approximation (LDA), which had early success
with solids[21]. LDA assumes that the exchange-correlation energy density can be
approximated locally with that of the uniform gas. DFT’s popularity in the chemistry
community skyrocketed upon development of the generalized gradient approxima-
tion (GGA) [47]. Inclusion of density gradient dependence generated sufficiently
accurate results to be useful in many chemical and materials applications.

Today, many scientists use hybrid functionals, which substitute a fraction of
single-determinant exchange for part of the GGA exchange [48–50]. More recent
developments in functional approximations include meta-GGAs [51], which include
dependence on the kinetic energy density, and hyper-GGAs [51], which include
exact exchange as input to the functional. Inclusion of occupied and then unoccupied
orbitals as inputs to functionals increases their complexity and computational cost;
the idea that this increase is coupled with an increase in accuracy was compared to
Jacob’s Ladder [51]. The best approximations are based on the exchange-correlation
hole, such as the real space cutoff of the LDA hole that ultimately led to the GGA
called PBE [52, 53]. An introduction to this and some other exact properties of the
functionals follows in the remainder of this section.

Another area of functional development of particular importance to the warm
dense matter community is focused on orbital-free functionals [28, 54–57]. These
approximations bypass solution of the Kohn-Sham equations by directly approxi-
mating the non-interacting kinetic energy. In this way, they recall the original, pure
DFT of Thomas-Fermi theory [16–18]. While many approaches have been tried over
the decades, including fitting techniques from computer science [58], no general-
purpose solution of sufficient accuracy has been found yet.
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3.1 Exact Conditions

Though we do not know the exact functional form for the universal functional,
we do know some facts about its behavior and the relationships between its
components. Collections of these facts are called exact conditions. Some can be
found by inspection of the formal definitions of the functionals and their variational
properties. The correlation energy and its constituents are differences between
functionals evaluated on the true and Kohn-Sham systems. As an example, consider
the kinetic correlation:

TcŒn� D T Œn� � TsŒn�: (65)

Since the Kohn-Sham kinetic energy is the lowest kinetic energy of any wave-
function with density n.r/, we know Tc must be non-negative. Other inequalities
follow similarly, as well as one from noting that the exchange functional is (by
construction) never positive [22]:

Ex � 0; Ec � 0; Uc � 0; Tc � 0: (66)

Some further useful exact conditions are found by uniform coordinate scal-
ing [59]. In the ground state, this procedure requires scaling all the coordinates of
the wavefunction3 by a positive constant � , while preserving normalization to N

particles:

��.r1; r2; : : : ; rN/ D �3N=2�.�r1; �r2; : : : ; �rN/; (67)

which has a scaled density defined as

n� .r/ D �3n.�r/: (68)

Scaling by a factor larger than one can be thought of as squeezing the density, while
scaling by � < 1 spreads the density out. For more details on the many conditions
that can be extracted using this technique and how they can be used in functional
approximations, see Ref. [22].

Of greatest interest in our context are conditions involving exchange-correlation
and other components of the universal functional. Through application of the
foregoing definition of uniform scaling, we can write down some simple uniform
scaling equalities. Scaling the density yields

TsŒn� � D �2TsŒn� (69)

3Here and in the remainder of the chapter, we restrict ourselves to square-integrable wavefunctions
over the domain R

3N .
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for the non-interacting kinetic energy and

ExŒn� � D � ExŒn� (70)

for the exchange energy. Such simple conditions arise because these functionals are
defined on the non-interacting Kohn-Sham Slater determinant. On the other hand,
although the density from a scaled interacting wavefunction is the scaled density,
the scaled wavefunction is not the ground-state wavefunction of the scaled density.
This means correlation scales less simply and only inequalities can be derived for it.

Another type of scaling that is simply related to coordinate scaling is interaction
scaling, the adiabatic change of the interaction strength [60]. In the latter, the
electron-electron interaction in the Hamiltonian, Vee, is multiplied by a factor, �

between 0 and 1, while holding n fixed. When � D 0, interaction vanishes. At
� D 1, we return to the Hamiltonian for the fully interacting system. Due to the
simple, linear scaling of Vee with coordinate scaling, we can relate it to scaling of
interaction strength. Combining this idea with some of the simple equalities above
leads to one of the most powerful relations in ground-state functional development,
the adiabatic connection formula [61, 62]:

ExcŒn� D
Z 1

0

d�UxcŒn�.�/; (71)

where

UxcŒn�.�/ D VeeŒ�
�Œn�� � U Œn� (72)

and � �Œn� is the ground-state wavefunction of density n for a given � and

� �Œn�.r1; r2; : : : ; rN/ D �3N=2�Œn1=��.�r1; �r2; : : : ; �rN/: (73)

Interaction scaling also leads to some of the most important exact conditions
for construction of functional approximations, the best of which are based on the
exchange-correlation hole. The exchange-correlation hole represents an important
effect of an electron sitting at a given position. All other electrons will be kept away
from this position by exchange and correlation effects, due to the antisymmetry
requirement and the Coulomb repulsion, respectively. This representation allows us
to calculate Vee, the electron-electron repulsion, in terms of an electron distribution
function.4

To define the hole distribution function, we need first to introduce the pair density
function. The pair density, P.r; r0/ describes the distribution of the electron pairs.
This is proportional to the the probability of finding an electron in a volume d 3r

around position r and a second electron in the volume d 3r 0 around r0. In terms of

4For a more extended discussion of these topics, see Ref. [60].
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the electronic wavefunction, it is written as follows

P.r; r0/ D N.N � 1/

Z
d 3r3 : : :

Z
d 3rN j�.r; r0; : : : ; rN /j2: (74)

We then can define the conditional probability density of finding an electron in d 3r 0
after having already found one at r, which we will denote n2.r; r0/. Thus

n2.r; r0/ D P.r; r0/=n.r/: (75)

If the positions of the electrons were truly independent of one another (no electron-
electron interaction and no antisymmetry requirement for the wavefunction) this
would be just n.r0/, independent of r. But this cannot be, as

Z
d 3r 0 n2.r; r0/ D N � 1: (76)

The conditional density integrates to one fewer electron, since one electron is at the
reference point. We therefore define a “hole” density:

n2.r; r0/ D n.r0/ C nhole.r; r0/: (77)

which is typically negative and integrates to �1 [60]:

Z
d 3r 0 nhole.r; r0/ D �1: (78)

The exchange-correlation hole in DFT is given by the coupling-constant average:

nxc.r; r0/ D
Z 1

0

d� n�
hole.r; r0/; (79)

where n�
hole is the hole in � �. So, via the adiabatic connection formula (Eq. 71), the

exchange-correlation energy can be written as a double integral over the exchange-
correlation hole:

Exc D 1

2

Z
d 3r n.r/

Z
d 3r 0 nxc.r; r0/

jr � r0j : (80)

By definition, the exchange hole is given by nx D n�D0
hole and the correlation

hole, nc , is everything not in nx . The exchange hole may be readily obtained from
the (ground-state) pair-correlation function of the Kohn-Sham system. Moreover
nx.r; r/ D 0, nx.r; r0/ � 0, and for one particle systems nx.r; r0/ D �n.r0/. If the
Kohn-Sham state is a single Slater determinant, then the exchange energy assumes
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the form of the Fock integral evaluated with occupied Kohn-Sham orbitals. It is
straightforward to verify that the exchange-hole satisfies the sum rule

Z
d 3r 0 nx.r; r0/ D �1 I (81)

and thus
Z

d 3r 0 nc.r; r0/ D 0 : (82)

The correlation hole is a more complicated quantity, and its contributions oscillate
from negative to positive in sign. Both the exchange and the correlation hole decay
to zero at large distances from the reference position r.

These and other conditions on the exact hole are used to constrain exchange-
correlation functional approximations. The seemingly unreasonable reliability of
the simple LDA has been explained as the result of the “correctness” of the LDA
exchange-correlation hole [63, 64]. Since the LDA is constructed from the uniform
gas, which has many realistic properties, its hole satisfies many mathematical
conditions on this quantity [65]. Many of the most popular improvements on
LDA, including the PBE generalized gradient approximation, are based on models
of the exchange-correlation hole, not just fits of exact conditions or empirical
data [52]. In fact, the most successful approximations usually are based on models
for the exchange-correlation hole, which can be explicitly tested [66]. Unfortunately,
insights about the ground-state exchange-correlation hole do not simply generalize
as temperatures increase, as will be discussed later.

4 Thermal DFT

Thermal DFT deals with statistical ensembles of quantum states describing the
thermodynamical equilibrium of many-electron systems. The grand canonical
ensemble is particularly convenient to deal with the symmetry of identical particles.
In the limit of vanishing temperature, thermal DFT reduces to an equiensemble
ground state DFT description [67], which, in turn, reduces to the standard pure-state
approach for non-degenerate cases.

While in the ground-state problem the focus is on the ground state energy, in the
statistical mechanical framework the focus is on the grand canonical potential. Here,
the grand canonical Hamiltonian plays an analogous role as the one played by the
Hamiltonian for the ground-state problem. The former is written

Ő D OH � � OS � � ON ; (83)
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where OH , OS , and ON are the Hamiltonian, entropy, and particle-number operators.
The crucial quantity by which the Hamiltonian differs from its grand-canonical
version is the entropy operator5:

OS D � kB ln O	 ; (84)

where

O	 D
X

N;i

wN;i j�N;i ih�N;i j : (85)

j�N;i i are orthonormal N -particle states (that are not necessarily eigenstates in
general) and wN;i are normalized statistical weights satisfying

P
N;i wN;i D 1. O	

allows us to describe the thermal ensembles of interest.
Observables are obtained from the statistical average of Hermitian operators

OŒ O	 � D Tr f O	 OOg D
X

N

X

i

wN;i h�N;i j OOj�N;i i : (86)

These expressions are similar to Eq. (53), but here the trace is not restricted to the
ground-state manifold.

In particular, consider the average of the Ő , ˝Œ O	 �, and search for its minimum
at a given temperature, � , and chemical potential, �. The quantum version of the
Gibbs Principle ensures that the minimum exists and is unique (we shall not discuss
the possible complications introduced by the occurrence of phase transitions).
The minimizing statistical operator is the grand-canonical statistical operator, with
statistical weights given by

w0
N;i D expŒ�ˇ.E0

N;i � �N /�
P

N;i expŒ�ˇ.E0
N;i � �N /�

: (87)

E0
N;i are the eigenvalues of N -particle eigenstates. It can be verified that ˝Œ O	 � may

be written in the usual form

˝ D E � �S � �N D �kB� ln ZG; (88)

where ZG is the grand canonical partition function; which is defined by

ZG D
X

N

X

j

e�ˇ.E0
N;i ��N / : (89)

5Note that, we eventually choose to work in a system of units such that the Boltzmann constant is
kB D 1, that is, temperature is measured in energy units.
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The statistical description we have outlined so far is the standard one. Now, we
wish to switch to a density-based description and thereby enjoy the same benefits as
in the ground-state problem. To this end, the minimization of ˝ can be written as
follows:

˝�
v�� D min

n

�
F � Œn� C

Z
d 3r n.r/.v.r/ � �/

�
(90)

with n.r/ an ensemble N -representable density and

F � Œn� WD min
O	 !n

F � Œ O	 � D min
O	 !n

n
T Œ O	 � C VeeŒ O	 � � �SŒ O	 �

o
: (91)

This is the constrained-search analog of the Levy functional [11, 40], Eq. (44). It
replaces the functional originally defined by Mermin [13] in the same way that
Eq. (44) replaces Eq. (21) in the ground-state theory.6

Equation (91) defines the thermal universal functional. Universality of this
quantity means that it does not depend explicitly on the external potential nor
on �. This is very appealing, as it hints at the possibility of widely applicable
approximations.

We identify 	 � Œn� as the minimizing statistical operator in Eq. (91). We can then
define other interacting density functionals at a given temperature by taking the trace
over the given minimizing statistical operator. For example, we have:

T � Œn� WD T Œ O	 � Œn�� (92)

V �
eeŒn� WD VeeŒ O	 � Œn�� (93)

S� Œn� WD SŒ O	 � Œn��: (94)

In order to introduce the thermal Kohn-Sham system, we proceed analogously
as in the zero-temperature case. We assume that there exists an ensemble of non-
interacting systems with same average particle density and temperature of the
interacting ensemble. Ultimately, this determines the one-body Kohn-Sham poten-
tial, which includes the corresponding chemical potential. Thus, the noninteracting
(or Kohn-Sham) universal functional is defined as

F �
s Œn� WD min

O	 !n

K�Œ O	 � D K�Œ O	 �
s Œn�� D K�

s Œn�; (95)

where O	 �
s Œn� is a statistical operator that describes the Kohn-Sham ensemble and

K�Œ O	 � WD T Œ O	 � � �SŒ O	 � is a combination we have chosen to call the kentropy.

6The interested reader may find the extension of the Hohenberg-Kohn theorem to the thermal
framework in Mermin’s paper.
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We can also write the corresponding Kohn-Sham equations at non-zero
temperature, which are analogous to Eqs. (30) and (39) [21]:

�
�1

2
r2 C vs.r/

�
'i .r/ D ��

i 'i .r/ (96)

vs.r/ D vH Œn�.r/ C vxcŒn�.r/ C v.r/: (97)

The accompanying density formula is

n.r/ D
X

i

fi j'i.r/j2; (98)

where

fi D
�
1 C e.��

i ��/=�
��1

: (99)

Equations (96) and (97) look strikingly similar to the case of non-interacting
Fermions. However, the Kohn-Sham weights, fi , are not simply the familiar Fermi
functions, due to the temperature dependence of the Kohn-Sham eigenvalues.

Through the series of equalities in Eq. (95), we see that the non-interacting
universal density functional is obtained by evaluating the kentropy on a non-
interacting, minimizing statistical operator which, at temperature � , yields the
average particle density n. The seemingly simple notation of Eq. (95) reduces
the kentropy first introduced as a functional of the statistical operator to a finite-
temperature functional of the density. From the same expression, we see that the
kentropy plays a role in this framework analogous to that of the kinetic energy within
ground-state DFT. Finally, we spell-out the components of F �

s Œn�:

F �
s Œn� D T �

s Œn� � �S�
s Œn� ; (100)

where T �
s Œn� WD T Œ O	 �

s Œn�� and S�
s Œn� WD SŒ O	 �

s Œn��.
Now we identify other fundamental thermal DFT quantities. First, consider the

decomposition of the interacting grand-canonical potential as a functional of the
density given by

˝�
v��Œn� D F �

s Œn� C U Œn� C F �
xcŒn� C

Z
d 3r n.r/ .v.r/ � �/ : (101)

Here, U Œn� is the Hartree energy having the form in Eq. (34). The adopted
notation stresses that temperature dependence of U Œn� enters only through the
input equilibrium density. The exchange-correlation free-energy density functional
is given by

F �
xcŒn� D F � Œn� � F �

s Œn� � U Œn� : (102)



Thermal Density Functional Theory in Context 49

It is also useful to introduce a further decomposition:

F �
xcŒn� WD F �

x Œn� C F �
c Œn� : (103)

This lets us analyze the two terms on the right hand side along with their
components.

The exchange contribution is

F �
x Œn� D VeeŒ	

�
s Œn�� � U Œn� : (104)

Note that the average on the right hand side is taken with respect to the Kohn-Sham
ensemble and that kinetic and entropic contributions do not contribute to exchange
effects explicitly. Interaction enters in Eq. (104) in a fashion that is reminiscent of
(but not the same as) finite-temperature Hartree-Fock theory. In fact, F �

x Œn� may
be expressed in terms of the square modulus of the finite-temperature Kohn-Sham
one-body density matrix. Thus F �

x Œn� has an explicit, known expression, just as
does F �

s Œn�. For the sake of practical calculations, however, approximations are still
needed.

The fundamental theorems of density functional theory were proven for any
ensemble with monotonically decreasing weights [68] and were applied to extract
excitations [69–71]. But simple approximations to the exchange for such ensembles
are corrupted by ghost interactions [72] contained in the ensemble Hartree term.
The Hartree energy defined in Eq. (34) is defined as the electrostatic self-energy
of the density, both for ground-state DFT and at non-zero temperatures. But
the physical ensemble of Hartree energies is in fact the Hartree energy of each
ensemble member’s density, added together with the weights of the ensembles.
Because the Hartree energy is quadratic in the density, it therefore contains ghost
interactions [72], i.e., cross terms, that are unphysical. These must be canceled by
the exchange energy, which must therefore contain a contribution:


EGI
X D

X

i

wi U Œni � � U

"
X

i

wi ni

#
: (105)

Such terms appear only when the temperature is non-zero and so are missed by any
ground-state approximation to Ex .

Consider, now, thermal DFT correlations. We may expect correctly that these
will be obtained as differences between interacting averages and the noninteracting
ones. The kinetic correlation energy density functional is

T �
c Œn� WD T � Œn� � T �

s Œn�; (106)

and similar forms apply to S�
c Œn� and K�

c Œn�. Another important quantity is the
correlation potential density functional. At finite-temperature, this is defined by

U �
c Œn� WD VeeŒ	

� Œn�� � VeeŒ	
�

s Œn�� : (107)
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Finally, we can write the correlation free energy as follows

F �
c Œn� D K�

c Œn� C U �
c Œn� D E�

c Œn� � �S�
c Œn� (108)

where

K�
c Œn� D T �

c Œn� � �S�
c Œn� (109)

is the correlation kentropy density functional and

E�
c Œn� WD T �

c Œn� C U �
c Œn� (110)

generalizes the expression of the correlation energy to finite temperature. Above,
we have noticed that entropic contributions do not enter explicitly in the definition
of F �

x Œn�. From Eq. (108), on the other hand, we see that the correlation entropy
is essential for determining F �

c Œn�. Further, it may be grouped together with the
kinetic contributions (as in the first identity) or separately (as in the second identity),
depending on the context of the current analysis.

In the next section, we consider finite-temperature analogs of the exact conditions
described earlier for the ground state functionals. This allow us to gain additional
insights about the quantities identified so far.

5 Exact Conditions at Non-Zero Temperature

In the following, we review several properties of the basic energy components of
thermal Kohn-Sham DFT [14, 15].

We start with some of the most elementary properties, their signs [14]:

F �
x Œn� � 0; F �

c Œn� � 0; U �
c Œn� � 0; K�

c Œn� � 0: (111)

The sign of F �
x Œn� is evident from the definition given in terms of the Kohn-Sham

one-body reduced density matrix [26]. The others may be understood in terms of
their variational properties. For example, let us consider the case for K�

c Œn�. We
know that the Kohn-Sham statistical operator minimizes the kentropy

K�
s Œn� D K�Œ O	 �

s Œn�� : (112)

Thus, we also know that K�
s Œn� must be less than K�Œn� D K�Œ	 � Œn��, where 	 � Œn�

is the equilibrium statistical operator. This readily implies that

K�
c Œn� D K�Œ O	 � Œn�� � K�Œ O	 �

s Œn�� � 0: (113)
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An approximation for K�
c Œn� that does not respect this inequality will not simply

have the “wrong” sign. Much worse is that results from such an approximation will
suffer from improper variational character.

A set of remarkable and useful properties are the scaling relationships. What fol-
lows mirrors the zero-temperature case, but an important and intriguing difference
is the relationship between coordinate and temperature scaling.

We first introduce the concept of uniform scaling of statistical ensembles in terms
of a particular scaling of the corresponding statistical operators.7 Wavefunctions of
each state in the ensemble can be scaled as in Eq. (67). At the same time, we require
that the statistical mixing is not affected, so the statistical weights are held fixed
under scaling (we shall return to this point in Sect. 6.1). In summary, the scaled
statistical operator is

O	� WD
X

N

X

i

wN;i j��;N;i ih��;N;i j; (114)

where (the representation free) Hilbert space element j�� i is such that
��.r1; : : : ; rN / D hr1; : : : ; rN j��i. For sake of simplicity, we restrict ourselves
to states of the type typically considered in the ground-state formalism.

Equation (114) leads directly to scaling relationships for any observable. For
instance, we find

N Œ O	� � D N Œ O	 �; (115)

T Œ O	� � D �2T Œ O	 �; and (116)

SŒ O	� � D SŒ O	 � : (117)

Combining these, we find

O	 �
s Œn� � D O	 �=�2

�;s Œn� and F �
s Œn� � D �2F �=�2

s Œn�: (118)

Equation (118) states that the value of the non-interacting universal functional
evaluated at a scaled density is related to the value of the same functional evaluated
on the unscaled density at a scaled temperature. Equation (118) constitutes a
powerful statement, which becomes more apparent by rewriting it as follows [14]:

F � 0

s Œn� D � 0

�
F �

s Œnp
�=� 0 �: (119)

This means that, if we know F �
s Œn� at some non-zero temperature � , we can find its

value at any other temperature by scaling its argument.

7Uniform coordinate scaling may be considered as (very) careful dimensional analysis applied to
density functionals. Dufty and Trickey analyze non-interacting functionals in this way in Ref. [15].
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Scaling arguments allow us to extract other properties of the functionals, such
as some of their limiting behaviors. For instance, we can show that in the “high-
density” limit, the kinetic term dominates [14]:

T 1
s Œn� D lim

�!C1 FsŒn� �=�2 (120)

while in the “low-density” limit, the entropic term dominates:

S1
s Œn� D lim

�!0
FsŒn� ��: (121)

Also, we may consider the interacting universal functional for a system with
coupling strength equal to �

F �;�Œn� D min
O	 !n

n
T Œ O	 � C �VeeŒ O	 � � �SŒ O	 �

o
; (122)

and note that in general,

O	 �;�Œn� ¤ O	 � Œn�: (123)

We can relate these two statistical operators [14]. In fact, one can prove

O	 �;�Œn� D O	 �=�2

� Œn1=�� and F �;�Œn� D �2F �=�2

Œn1=��: (124)

In the expressions above, a single superscript implies full interaction [14]. Equa-
tion (124) demands scaling of the coordinates, the temperature, and the strength of
the interaction at once. This procedure connects one equilibrium state to another
equilibrium state, that of a “scaled” system. Equation (124) may be used to state
other relations similar to those discussed above for the non-interacting case.

Scaling relations combined with the Hellmann-Feynman theorem allow us to
generate the thermal analog of one of the most important statements of ground-state
DFT, the adiabatic connection formula [14]:

F �
xcŒn� D

Z 1

0

d� U �
xcŒn�.�/; (125)

where

U �
xcŒn�.�/ D VeeŒ O	 �;�Œn�� � U Œn� (126)

and a superscript � implies an electron-electron interaction strength equal to �.
The interaction strength runs between zero, corresponding to the noninteracting
Kohn-Sham system, and one, which gives the fully interacting system. All this must
be done while keeping the density constant. In thermal DFT, an expression like
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Eq. (125) offers the appealing possibility of defining an approximation for F �
xcŒn�

without having to deal with kentropic contributions explicitly.
Another interesting relation generated by scaling connects the exchange-

correlation to the exchange-only free energy [14]:

F �
x Œn� D lim

�!1F �2�
xc Œn� �=�: (127)

This may be considered the definition of the exchange contribution in an xc
functional, and so Eq. (127) may also be used to extract an approximation for the
exchange free energy, if an approximation for the exchange-correlation free energy
as a whole is given (for example, if obtained from Eq. (125)).

Despite decades of research [73–76], thermal exchange-correlation GGAs have
not been fully developed. The majority of the applications in the literature have
adopted two practical methods: one uses plain finite-temperature LDA, the other
uses ground-state GGAs within the thermal Kohn-Sham scheme. This latter method
ignores any modification to the exchange-correlation free energy functional due to
its non-trivial temperature dependence. As new approximations are developed, exact
conditions such as those above are needed to define consistent and reliable thermal
approximations.

6 Discussion

In this section, we discuss several aspects that may not have been fully clarified by
the previous, relatively abstract sections. First, by making use of a simple example,
we will illustrate in more detail the tie between temperature and coordinate scaling.
Then, with the help of another example, we will show how scaling and other
exact properties of the functionals can guide development and understanding of
approximations. The last subsection notes some complications in importing tools
directly from ground-state methods to thermal DFT.

6.1 Temperature and Coordinate Scaling

Here we give an illustration of how the scaling of the statistical operators intro-
duced in the previous section is applicable to thermal ensembles. Our argument
applies – with proper modifications and additions, such as the scaling of the
interaction strength – to all Coulomb-interacting systems with all one-body external
potentials. For sake of simplicity, we shall restrict ourselves to non-interacting
fermions in a one-dimensional harmonic oscillator at thermodynamic equilibrium.

Let us start from the general expression of the Fermi occupation numbers

ni .�; �; �i / D �
1 C eˇ.�i ��/

	�1
; (128)
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where �i is the i th eigenvalue of the harmonic oscillator, �i D !.i C 1=2/. For our
system, the (time-independent) Schrödinger equation is:

�
�1

2

d 2

dx2
C v.x/

�
�i .x/ D �i �i .x/ : (129)

Now, we multiply the x-coordinates by �

�
� 1

2�2

d 2

dx2
C v.�x/

�
�i .�x/ D �i �i .�x/: (130)

We then multiply both sides by �2:

�
�1

2

d 2

dx2
C �2v.�x/

�
�i.�x/ D �2�i �i .�x/: (131)

Substituting Qv.x/ D �2v.�x/, Q�i.x/ D p
��i.�x/ (to maintain normalization), and

Q�i D �2�i yields

�
�1

2

d 2

dx2
C Qv.x/

�
Q�i .x/ D Q�i

Q�i .x/: (132)

The latter may be interpreted as the Schrödinger equation for a “scaled” system. In
the special case of the harmonic oscillator,

�2v.�x/ D �4v.x/; (133)

the frequency scales quadratically, consistent with the scaling of the energies
described just above. Now, let us look at the occupation numbers for the “scaled”
system

ni .�; Q�; Q�i / D
�
1 C eˇ.Q�i � Q�/

��1

; (134)

where Q� D �2� (in this way, the average number of particle is kept fixed too). These
occupation numbers are equal to those of the original system at a temperature �=�2,

ni .�; Q�; Q�i / D ni .�=�2; �; �i /: (135)

Thus the statistical weights of the scaled system are precisely those of the original
system, at a suitably scaled temperature.
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6.2 Thermal-LDA for Exchange Energies

In ground-state DFT, uniform coordinate scaling of the exchange has been used
to constrain the form of the exchange-enhancement factor in GGAs. In thermal
DFT, a “reduction” factor, Rx, enters already in the expression of a LDA for the
exchange energies. This lets us capture the reduction in exchange with increasing
temperature, while keeping the zero-temperature contribution well-separated from
the modification entirely due to non-vanishing temperatures.

The behavior of Rx can be understood using the basic scaling relation for the
exchange free energy. Observe that, from the scaling of O	s

�
, U , and VeeŒ	

�
s Œn��, one

readily arrives at

F �
x Œn� � D �F �=�2

x Œn�: (136)

Since

F LDA;�
x Œn� D

Z
d 3r f �

x .n.r//; (137)

Eq. (136) implies that a thermal-LDA exchange free energy density must have the
form [14]

f unif;�
x .n/ D eunif

x .n/Rx.�/; (138)

where eunif
x .n/ D �Axn4=3, Ax D .3=4/.32/1=3, and Rx can only depend on �

and n through the electron degeneracy � D 2�=.32n.r//2=3.
The LDA is exact for the uniform electron gas and so automatically satisfies

many conditions. As such, it also reduces to the ground-state LDA as temperature
drops to zero:

Rx ! 1 as � ! 0: (139)

Moreover, for fixed n, we expect

F �
x =U ! 0 as � ! 1 (140)

because the effect of the Pauli exclusion principle drops off as the behavior of the
system becomes more classical. Moreover, since U Œn� does not depend explicitly on
the temperature, fixing n also fixes U . We conclude that, the reduction factor must
drop to zero:

Rx ! 0 as � ! 1: (141)
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Fig. 4 Perrot and
Dharma-Wardana’s
parameterization [74] of the
thermal reduction factor for
the exchange free energy for
the uniform gas is plotted
versus the electron
degeneracy parameter

Now, let us consider the parameterization of Rx for the uniform gas by Perrot
and Dharma-Wardana [74]:

Runif
x .�/ �



4

3

�
0:75 C 3:04363�2 � 0:092270�3 C 1:70350�4

1 C 8:31051�2 C 5:1105�4
tanh ��1 ;

(142)

Here, � D �=�F D 2�=k2
F and kF is the Fermi wavevector. Note the factor of 4=3

that is not present in their original paper, which arises because we include a factor
of 3=4 in Ax they do not. Figure 4 shows the plot of this reduction factor. From both
Fig. 4 and Eq. (142), it is apparent that the parametrization satisfies all the exact
behaviors discussed just above.

6.3 Exchange-Correlation Hole at Non-Zero Temperature

Previously, we have emphasized that in ground-state DFT, the exchange-correlation
hole function was vital for constructing reliable approximations. Therefore, it is
important to reconsider this quantity in the context of thermal DFT. As we show
below, this does not come without surprises.

In the grand canonical ensemble, the pair correlation function is a sum over
statistically weighted pair correlation functions of each of the states in the ensemble
labeled with collective index, � (in this section, we follow notation and convention
of Refs. [77] and [78]). A state ��;� has particle number N� , energy E� , and
corresponds to �-scaled interaction. If its weight in the ensemble is denoted as

w�;� D e�ˇ.E�;���N� /

P
� e�ˇ.E�;���N� /

; (143)
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the ensemble average of the exchange-correlation hole density is

˝
n�

xc.r; r0/
˛ D

X

�

w�;�n�
xc;�.r; r0/: (144)

However, the exchange-correlation hole function used to obtain F �
xc through a �

integration requires the addition of more complicated terms [78]:

n�
xc.r; r0/ D ˝

n�
xc.r; r0/

˛ C
X

�

w�;�

Œn�;� .r/ � n.r/�

n.r/
Œn�;�.r0/ C n�

xc;�.r; r0/�; (145)

where n�
xc;� is the usual exchange-correlation hole corresponding to ��;� with

particle density n�;� .
Thus, the sum rule stated in the ground state gets modified as follows [79]

Z
d 3r 0 n�

xc.r; r0/ D �1 C
X

�

w�;�

n�;�.r/

n.r/
ŒN� � hN i�: (146)

The last expression shows that the sum rule for the thermal exchange-correlation
hole accounts for an additional term due to particle number fluctuations. Worse
still, this term carries along with it state-dependent, and therefore system-dependent,
quantities. This is an important warning that standard methodologies for producing
reliable ground-state functional approximations must be properly revised for use in
the thermal context.

7 Conclusion

Thermal density functional theory is an area ripe for development in both funda-
mental theory and the construction of approximations because of rapidly expanding
applications in many areas. Projects underway in the scientific community include
construction of temperature-dependent GGAs, exact exchange methods for non-
zero temperatures [80], orbital-free approaches at non-zero temperatures [81],
and continued examination of the exact conditions that may guide both of these
developments. In the world of warm dense matter, simulations are being performed,
often very successfully [82], generating new insights into both materials science and
the quality of our current approximations. As discussed above, techniques honed
for zero-temperature systems should be carefully considered before being applied
to thermal problems. Studying exact properties of functionals may guide efficient
progress in application to warm dense matter. In context, thermal DFT emerges as
as a clear and solid framework that provides users and developers practical and
formal tools of general fundamental relevance.
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