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Equilibrium state of a metal slab and surface stress
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IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598

Xianghong Qian and Wolfgang Hu¨bner
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~Received 3 June 1999!

First-principles full-potential all-electron total-energy calculations on a seven-layer Mo~001! slab have found
the equilibrium state of the slab and the energies of nearby states produced by isotropic two-dimensional
~epitaxial! strain. In the slab equilibrium state, the in-plane lattice constant contracts 1.7% and the out-of-plane
lattice constant contracts 0.7% from bulk values. The energy differences of these nearby states strained from
equilibrium have been fitted to a composite elastic model of the slab which has two surface regions and a bulk
region, each with three elastic parameters. The parameters of the surface regions determined by fitting the
energy differences permit evaluation of the surface stress as 5.28 m Ry/bohr254.11 J/m2. The surface region
material is found to be less stiff than the bulk.@S0163-1829~99!13247-8#
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I. INTRODUCTION

First-principles total-energy full-potential calculations o
metal slabs by supercell procedures can be made with s
cient accuracy to find energy differences per cell of a fract
of a m Ry. The total energyE of anN-atom cell of anN-layer
body-centered-tetragonal metal slab with an in-plane lat
constanta and out-of-plane lattice constantc can be evalu-
ated as a function ofa and c. The equilibrium state of the
slab is the state with the minimum value ofE(a,c).

In the present work this equilibrium state of the slab h
been found, and small energy differences from this equi
rium state have been evaluated for states produced by is
pic epitaxial or two-dimensional strain on a seven-layer s
of Mo~001!, which preserves tetragonal structure. These
ergy differences have been interpreted as linear elastic s
energies, and have been fitted to the strain energy of a c
posite elastic model made up of two surface regions an
bulk region~Fig. 1!. The surface stress can then be expres
in terms of the elastic parameters of the surface region
evaluated.

Previous first-principles calculations of surface stre
have found the surface energy of a slab as a difference
tween the slab total energy and the total energy of the s
number of atoms of the bulk crystal. The surface stres
then found from the derivative of the surface energy w
respect to strain by calculating the change in the surf
energy when the slab is strained.1 In the present work the
surface energy is not required. The energy differences
tween special strained states of the slab and the equilibr
state are fitted to the composite elastic model mentio
above. The special strained states are the states produc
epitaxial strain on the slab. These states of epitaxial st
make up the epitaxial Bain path~EBP! of the slab.2 For a
tetragonal material small energy changes along this path
described by a single elastic constant—to be called the
taxial elastic constant. The material of the Mo~001! surface
regions is in general tetragonal in equilibrium, even if t
bulk equilibrium state is cubic, because of the bonding
isotropy produced by the surface. This single elastic cons
PRB 600163-1829/99/60~23!/16088~6!/$15.00
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is then one of the fitting parameters of the surface reg
used to fit the energy changes along the EBP of the slab

Surface stress characterizes the state of stress in the
face layers of a thick crystal. For surfaces of square sym
try it is a single number associated with the surface of a th
crystal. In the present work we give the surface stress
atomic-level description in which the average stress ove
specified atomic depth is found and the surface stress is
integrated stress over that depth. The tetragonal surface
gion in which the stress occurs acquires an equilibrium
plane lattice constant and an epitaxial elastic constant wh
are both different from the bulk values.

II. FORMULATION OF THE COMPOSITE
ELASTIC MODEL

The slab is assumed to have two surface regions of th
nessts and a bulk region of thicknesstb as in Fig. 1. The

FIG. 1. Cross-section view of the composite elastic model o
seven-layer Mo~001! slab. Seven layers of atoms are shown~open
circles!; the slab thickness istN ; the in-plane lattice constant isa;
the out-of-plane lattice constant isc; the thickness of each surfac
region ists ; and the bulk region thickness istb . The boundaries of
the surface regions~dotted lines! correspond totsQ56 bohr when
tN520.8 bohr~the equilibrium value!.
16 088 ©1999 The American Physical Society
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PRB 60 16 089EQUILIBRIUM STATE OF A METAL SLAB AND SURFACE . . .
thickness of the seven-layer Mo~001! slab with out-of-plane
lattice constantc is taken astN57c/2, which allows for ex-
tension by half a layer spacing beyond the plane of the ou
layer nuclei. Each region is assumed to be a homogene
continuum with three parameters needed to find its ela
strain energy, i.e., for the surface regions these arets , and
as0 , the equilibrium in-plane lattice constant, andYs8 the
epitaxial elastic constant. The corresponding parameters
the bulk region aretb , Yb8 , ab0 ; Yb8 andab0 are evaluated by
bulk total-energy calculations, andtb is given by

tb12ts5tN . ~1!

The epitaxial elastic constantY8 of a tetragonal materia
may be related to the usual two-index elastic constantsci j for
tetragonal structures as follows. Start with the general
pression for the strain energy for tetragonal strains aroun
tetragonal equilibrium state of volumeV, under the assump
tion of linear elastic behavior3

Estr5VF ~c111c12!«1
212c13«1«31

c33

2
«3

2G , ~2!

where«15«2 are the in-plane strains along crystal axes a
«3 is the out-of-plane strain. For an epitaxial strain, whi
has the boundary condition of zero out-of-plane stress,
have

s35c13«11c13«21c33«350; ~3!

hence substituting for«3 in Eq. ~2! and in the equation for
s1 gives

Estr5V«1
2~c111c1222c13

2 /c33![VY8«1
2,

~4!
s15~c111c12!«11c13«35Y8«1 .

For cubic structuresc135c12, c335c11 and

Y85
~c112c12!~c1112c12!

c11
5

Y

~12v !
. ~5!

whereY is Young’s modulus andv is Poisson’s ratio.
The strain energy of a seven-atom cell of volumeV

5a2tN in the composite elastic model is then

Estr~a!5a2~2tsYs8«s
21tbYb8«b

2!, ~6!

where the strains in the surface and bulk regions are

«s[
~a2as0!

as0
, «b[

~a2ab0!

ab0
, ~7!

respectively. The parametersts , Ys8 , andas0 will be chosen
to fit the strain energies given by Eq.~6! to the calculated
slab energy differences from equilibrium. The fitting proce
uses two relations among the parameters.

The first relation among the three unknown parameter
the surface regions is the force-balance equation at slab e
librium. Designating the in-plane stresses and strains in
surface and bulk regions at equilibrium byssQ , «sQ , sbQ ,
and«bQ this relation becomes

2tsQssQ52tbQsbQ ,
r-
us
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ssQ5Ys8«sQ[Ys8
~aNQ2as0!

as0
,

~8!

sbQ5Yb8«bQ[Yb8
~aNQ2ab0!

ab0
,

tbQ5tNQ22tsQ ,

where the subscriptQ has been used to indicate quantiti
evaluated at equilibrium. In Eqs.~8! the slab equilibrium
in-plane lattice constant has been designatedaNQ and is a
compromise between the surface region equilibrium cons
as0 and the bulk region constantab0 , since tension in the
surface region balances compression in the bulk region
give zero net force.

The second equation relating the surface region par
eters comes from equating the calculated value
d2EEBP/da2 at equilibrium tod2Estr/da2 at equilibrium from
Eq. ~6!, whereEEBP(a) is the slab total energy of a seven
atom cell under epitaxial strain. In Eq.~6! we first take ac-
count of the changes inc along the EBP asa changes by
putting

tX5tXQF12g
~a2aNQ!

aNQ
G , X5N,s,b. ~9!

In the total-energy calculations all six layer spacings ha
been kept equal to each other at anya andc, i.e., relaxations
of the layer spacings have been neglected, sog is a Poisson-
ratio-type quantity which is an average over the surface
bulk regions; it is evaluated from the slab calculations. Th
the unknown surface region parameterts ~which is a function
of a! can be replaced by the single quantitytsQ .

Putting Eq.~9! into Eq. ~6! gives

Estr~a!5a2F12g
~a2aNQ!

aNQ
G~2tsQYs8«s

21tbQYb8«b
2!.

~10!

Differentiating Eq.~10!, we can write the second derivativ
of Estr at equilibrium as

S d2Estr~a!

da2 D
a5aNQ

52BQ~122g!12aNQBQ8 ~22g!

1aNQ
2 BQ9 , ~11!

where

BQ[2tsQYs8«sQ
2 1tbQYb8«bQ

2 ,

BQ8 [4tsQYs8«sQ /as012tbQYb8«bQ /ab0 ,

BQ9 [4tsQYs8/as0
2 12tbQYb8/ab0

2 , ~12!

and the strains in surface and bulk regions are

«sQ[
~aNQ2as0!

as0
, «bQ[

~aNQ2ab0!

ab0
. ~13!

The two equations—Eq.~11! set equal to the calculate
value ofd2EEBP/da2 at equilibrium, and Eq.~8!—reduce the
three unknown parameters to one independent paramete
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III. CALCULATION PROCEDURES AND RESULTS

A. Bulk and slab calculations

The total-energy calculations were made with the a
electron full-potential linearized augmented plane wa
method embodied in theWIEN97 code.4 The Kohn-Sham
equations were solved with two corrections—the semire
tivistic correction ~fully relativistic core and scalar
relativistic valence electrons! and the generalized gradien
approximation~GGA!. Spherical harmonics up tol 510 were
used inside the muffin-tin sphere and up tol 54 in the inter-
stitial region. The muffin-tin radius of Mo atoms was chos
to be 2.40 bohr in both bulk and slab calculations.

Bulk calculations were carried out with a bcc cell of M
to find ab0 the equilibrium lattice constant andYb8 the epi-
taxial elastic constant of bulk Mo. Total energiesE of states
along the EBP of bulk Mo were found by choosing a set oa
values aroundab0 , and at eacha the value ofc was varied to
find the minimum ofE at thata. The values ofa and c at
each minimum gave a point on the EBP of bulk Mo, and
listed in Table I. A second minimization ofE along the bulk
EBP gave the bulk equilibrium point and the value ofab0 .
The minimizations were done by fitting a cubic to the valu
of EEBP(a) and finding where the first derivative ofEEBP(a)
vanished. The second derivative of the cubic ina was then
fitted to the EBP points to giveYb8 , since, from Eq.~4!,

EEBP~a!5VYb8S ~a2ab0!

ab0
D 2

; ~14!

hence

S d2EEBP

da2 D
a5ab0

5ab0Yb8 . ~15!

This procedure gaveab055.9820 bohr, 0.6% larger than th
experimental value5 5.946 bohr, andYb8536.21 mRy/bohr3

55.33 Mbar, 8.8% larger than the experimental value6 of
4.90 Mbar.

For the bulk calculations more than 3000k points in the
Brillouin zone were used. Convergence was achieved w
on successive iterations the total energy difference was
than 531025 Ry, and charge differences were less than
31024e/bohr3.

TABLE I. Bulk states of Mo~001! on the EBP. Bulk Mo under
epitaxial strain in the~001! plane becomes tetragonal;a is the in-
plane lattice constant, andc is the out-of-plane lattice constant o
the two-atom body-centered-tetragonal cell~in bohr!; E is the total
energy per atom of the strained crystal~in Ry!; DE in ~m Ry/atom!
is the energy difference per atom from the bcc structure, which
the minimumE.

a ~bohr! c ~bohr! (E18100) (Ry/atom) DE (m Ry/atom)

5.9820 5.9820 20.585 724 0.000
5.9220 6.0500 20.585 396 0.328
5.8620 6.1000 20.584 164 1.560
5.8300 6.1098 20.583 300 2.424
5.8030 6.1300 20.582 300 3.424
-
e

-

e

s

n
ss

The EBP of the seven-layer slab of Mo was found by
procedure similar to the one used for the bulk EBP, but w
a supercell of seven layers of Mo and six layers of vacuu
The number ofk points in the two-dimensional mesh wa
24324, and the number ofk points in the irreducible zone
was 156. The energy cutoff of the plane waves was 14
and of the kinetic energy was 196 Ry. The same converge
criteria were used for the slab as for the bulk calculation

Some 25 slab total energies were used at five values oa.
The first minimization at eacha with respect toc gave the
slab EBP points in Table II. The second minimization wi
respect toa along the EBP gave the slab properties in t
equilibrium state: aNQ55.8785 bohr, tNQ53.535.94
520.8 bohr, andd2EEBP/da251201 m Ry/bohr2.

The equilibrium state of the slab compared to bulk sho
that a decreased by 1.7% andc decreased by 0.7%. Table
also shows that asa decreases along the EBP,c increases, so
that g[2@(dc/c)/(da/a)#50.907.

B. Fitting the slab EBP to an elastic model

If the slab is considered to be a single homogeneous
tragonal crystal, but with a different epitaxial elastic consta
due to the rebonding caused by the surfaces, we can find
effective epitaxial elastic constantY8. From Eq. ~4! the
strain energy of the homogeneous seven-atom cell isEstr

5tNa2Y8@(a2aNQ)/aNQ#2, hence at a5aNQ we have
d2Estr/da252tNQY8. Then Y851201/(20.832)
528.9 m Ry/bohr3, which is less than the bulk theoretica
valueYb8536.2 m Ry/bohr3.

A value of the effective Poisson ratiov of the homoge-
neous slab can also be found, since along the EBP for c
structuresg is related tov by7 g52v/(12v). Hence g
50.907 givesv50.31, which is larger than the theoretic
bulk value 0.29 obtained similarly from the bulk EBP~the
experimental value ofv is 0.26!.

These average elastic properties of the slab—smallerY8
and largerv than the bulk—indicate that the average effe
of the surfaces on the slab is to make the slab less stiff t
bulk. However, the seven-layer slab is thick enough to sh
the inhomogeneous effects of the surfaces, which should
fect only a few atomic layers at each surface. These lay
should then be affected more strongly than the average
fects obtained when the slab is treated homogeneously.

s

TABLE II. States on the EBP of the seven-layer Mo~001! slab.
a is the in-plane lattice constant~in bohr!; c is the out-of-plane
lattice constant~in bohr!, which is the same for all layers;E is the
total energy per seven-atom cell~in Ry!; and DE is the energy
difference from the minimumE ~last-line! of the seven-atom cell~in
m Ry!.

a ~bohr! c ~bohr! (E156703) (Ry) DE (m Ry)

5.9222 5.9120 20.799837 1.117
5.8923 5.9293 20.800854 0.100
5.8624 5.9549 20.800775 0.179
5.8324 5.9789 20.799635 1.319
5.7726 6.0491 20.793522 7.432
5.8785a 5.9400a 20.800954a 0.000

aEquilibrium values at the minimum ofE.
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The composite elastic model of Sec. II can be applied
the EBP of the slab by using Eq.~8! to expressYs8 in terms
of as0 and tsQ , and thereby eliminateYs8 from Eq. ~11!.
Thend2Estr/da2 at a5aNQ from Eq.~11! is equated to 1201
m Ry/bohr2, the curvature of the EBP at equilibrium, relat
as0 to tsQ . At given tsQ the complete elastic description o
the slab can now be found. This description includes
values of the stressesss in the surface region andsb in the
bulk region, the value ofYs8 , and the value of the surfac
stressSs . These elastic properties are given by

ss5Ys8~aNQ2as0!/as0 ,

sb5Yb8~aNQ2ab0!/ab0 , ~16!

Ss5tsQYs8~ab02as0!/as0 .

The surface stress is given in Eqs.~16! as the stress in the
surface region of a thick crystal times the thickness of
surface region. Note that the stress in the surface region
thick crystal is greater than in the surface region of a t
crystal, such as the seven-layer slab used here, becaus
surface region is stretched fromas0 to ab0 , not just toaNQ .
The strain energy can also be found as a function ofa from
Eq. ~10!, andam , the value ofa at the energy minimum can
be determined.

Carrying out the procedure in the preceding paragr
gives Fig. 2, which plotsas0 , Ys8 , andSs , andam vs tsQ .
First note thatam is very close toaNQ55.8785 bohr, so tha
we cannot fix the besttsQ by the closest fit ofam to aNQ . But
note thatSs is almost independent oftsQ over the reasonable
range oftsQ , i.e., for tsQ,2.5 bohr there is no solution of th
equation which equates Eq.~11! to 1201 m Ry/bohr2 and for

FIG. 2. Variation of the parameters of the surface region w
equilibrium thickness of the surface regionstsQ in bohr; as0 is the
equilibrium in-plane lattice constant of the surface region mate
in bohr~solid line!; Ys8 is the epitaxial elastic constant of the surfa
region material in m Ry/bohr3 ~long dashes, scale on the right!; Ss is
the surface stress in m Ry/bohr2 ~long dashes!; and am is the in-
plane lattice constant of the slab with minimum strain energy
bohr ~short dashes!.
o

e

e
f a
n
the

h

tsQ.10.4 bohr the slab would be all surface region. Hen
the value Ss55.2860.01 m Ry/bohr2 is well-determined.
Howeveras0 and Ys8 vary substantially withtsQ , but at all
tsQ the value ofYs8 lies below both the bulk value and th
homogeneous slab value. AstsQ approaches 10.4 bohr
where the bulk region vanishes,Ys8 approaches the homoge
neous slab value andas0 approachesaNQ .

A plausible value oftsQ is 6 bohr, which lies between th
second and third atomic layers~as shown in Fig. 1!, since the
rebonding should occur principally in the first two layer
The values of the elastic parameters will be illustrated
tsQ56 bohr. In Fig. 3 the strain energy attsQ56 bohr is
plotted ~solid line! along with the calculated slab EBP ene
gies ~open circles! as functions ofa. The separate strain en
ergies in the two surface regions~short dashes! and in the
bulk region ~long dashes! are also plotted; their sum has
minimum atam ~vertical line! and the sum is shifted down
by 7.01 m Ry to have the same zero value as has been g
to the calculated EBP points at the minimum. That 7.
m Ry is in fact the locked-in strain energy of the slab
equilibrium. The stress in the surface regions isss
567.5 kbar, and in the bulk region issb5292.2 kbar. The
surface region has a tensile strain of 1.9% whentsQ
56 bohr and the bulk region has a compressive strain
1.7%, which is independent oftsQ . At tsQ56 bohr where
as055.7658 bohr andYs8523.48 m Ry/bohr3, the tensile
stress in the surface region of a thick crystal will bess

5Ys8(ab02as0)/as050.880 m Ry/bohr35130 kbar.

IV. DISCUSSION

Finding the slab equilibrium state by a double minimiz
tion of the energy with respect to firstc and thena assumed

l

n

FIG. 3. Strain energyE of the seven-atom cell along the sla
epitaxial Bain path vs in-plane lattice constanta ~solid line! in bohr
at tsQ56 bohr; the minimum energy is set to zero; calculated to
energies of the seven-atom cell on the EBP in m Ry are referre
zero at the minimum~open circles!; the total strain energy in the
two surface regions~small dashes!; and the strain energy in the bul
region ~long dashes!. The vertical line is at the minimum of the
strain energy atam55.8754 bohr.
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the accuracy of the Kohn-Sham equations of dens
functional theory with the nonlocal GGA and the semire
tivistic corrections. Also assumed was the equality of the
slab layer spacings at anya andc. The accuracy of the firs
assumption for nonmagnetic Mo is shown by the good ag
ment noted in Sec. III A of theory with the experiment
values of the bulk lattice constant and the bulk epitaxial e
tic constant. The second assumption remains to be teste
further calculations in which relaxation is allowed and t
effect on the surface stress is determined. Note that the
fects both of relaxation of layer spacings and of the addit
of adsorbed layers are immediately described by the pre
composite elastic model with surface regions and a bulk
gion. The surface regions then comprise all layers that di
from bulk, and the fitted parameters give the average ela
properties over the surface region.

The application of the composite elastic model made
further approximation of linear elastic behavior, i.e., that
values ofY8 are independent of strain. For strains less th
about 2%~as is the case fortsQ56 bohr! nonlinear effects
are small.3 One test of the linear approximation is provide
by the fit of the parabolic strain energy~solid line in Fig. 3!
to the EBP points over a range ina of 62% from equilib-
rium. The elastic strain energy~6! assumed that each regio
followed its individual EBP asa changed. However, the con
straint of constantc forced each region to adopt ac slightly
different from the value along its EBP. Nevertheless, with
the linear elastic assumption these deviations from the i
vidual EBP’s due to out-of-plane stress will not affect t
value ofd2EEBP/da2 given by the slab EBP at equilibrium
and used with Eq.~11! to fix the surface region parameter

The equilibrium state and its parameters were needed
cause the two equations relating the three unknown surf
region parameterstsQ , as0 and Ys8 applied at equilibrium.
The contraction ofa at equilibrium from the bulk value is
then explained byaNQ being a compromise betweenas0 and
ab0 . The net contraction of the single value ofc over the slab
can be understood by the dominance of thecontractionof c
due to in-plane tension in the surface region overexpansion
of c due to in-plane compression in the bulk region on av
agingc over the slab. The dominance of the surface regio
due to an increase of the Poisson ratio of the surface-re
material compared to bulk. An estimate of the value of
surface-region Poisson ratiovs can be made from the calcu
lated contraction of the thickness of the slab compared
seven layers of bulk. That contraction is 0.15 bohr, and
tsQ56 bohr with vb50.29 ~the theoretical value! we must
havevs50.37 to achieve that net contraction. That value
vs is well above the bulk value, and also above the va
0.31 found when the slab is treated homogeneously.

Although the calculations on the seven-layer slab did
v.
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fix the thickness of the surface regiontsQ , the surface stress
Ss was well determined at 5.28 m Ry/bohr2. This value ofSs
may be compared with the published value8 for Mo~001! of
2.241 J/m252.88 m Ry/bohr2 calculated by empirical poten
tials of uncertain reliability. The first-principles value is 83
higher. However, note that in two cases in which both fir
principles results and empirical-method results have b
made for the same surface, the same discrepancy exists,8 i.e.,
the first principles result for Pt~111! is 96% higher and for
Au~111! is 83% higher.

It should be possible to fix the value oftsQ with total-
energy calculations on a thicker slab, say withN59. Then
assuming the surface parameterstsQ , Ys8 , andas0 are about
the same for both slabs, which must be true for sufficien
thick slabs, atsQ is sought for whichas0 andYs8 are the same
for both slabs.

Finally note that the surface energy of the seven-la
film can be found from the difference between the total e
ergy of the seven-atom cell whena5ab055.982 bohr~and
the bulk region is not strained!, which is 256 703.795 151
Ry, and the total energy of seven atoms of bulk in equil
rium, which is 2738100.585 724 Ry. The energy of th
slab seven-atom cell is 304.9 m Ry higher, which is mu
larger than the strain energies of the slab seven-atom ce
Table II of a few m Ry. This surface energy of the cell is n
strain energy, but corresponds to the changes in cohe
energy of the rebonded slab. The surface energy per unit
on each face of the slab is then 304.9/(235.9822)
54.26 m Ry/bohr253.32 J/m2, which is comparable to the
surface stress of 5.28 m Ry/bohr2. This surface energy may
be compared with the value for Mo~001! in Ref. 9 of 3.52
J/m2. The value in Ref. 9 includes relaxation of the first lay
spacing not considered here, but does not include the G
and semirelativistic corrections used here. Also, the surf
energy found here is the difference of two energies cal
lated with different unit cells and is not as accurate as
strain energies for small changes ina andc calculated with
the same unit cell.
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