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Equilibrium state of a metal slab and surface stress
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First-principles full-potential all-electron total-energy calculations on a seven-lay@oslab have found
the equilibrium state of the slab and the energies of nearby states produced by isotropic two-dimensional
(epitaxia) strain. In the slab equilibrium state, the in-plane lattice constant contracts 1.7% and the out-of-plane
lattice constant contracts 0.7% from bulk values. The energy differences of these nearby states strained from
equilibrium have been fitted to a composite elastic model of the slab which has two surface regions and a bulk
region, each with three elastic parameters. The parameters of the surface regions determined by fitting the
energy differences permit evaluation of the surface stress as 5.28 m Rigfdbht J/n3. The surface region
material is found to be less stiff than the bu[€0163-18209)13247-§

I. INTRODUCTION is then one of the fitting parameters of the surface region
used to fit the energy changes along the EBP of the slab.
First-principles total-energy full-potential calculations on Surface stress characterizes the state of stress in the sur-

metal slabs by supercell procedures can be made with suffface layers of a thick crystal. For surfaces of square symme-
cient accuracy to find energy differences per cell of a fractiorf"y It iS @ single number associated with the surface of a thick

of amRy. The total energi of anN-atom cell of arN-layer crystal. In the present work we give the surface stress an

bodv-centered-tetragonal metal slab with an in-plane lattic atomic-level description in which the average stress over a
y g ) P %pecified atomic depth is found and the surface stress is the
constanta and out-of-plane lattice constaatcan be evalu-

d ; ion of and h iibri £ th integrated stress over that depth. The tetragonal surface re-
ated as a function o& andc. The equilibrium state of the - 4ion'in which the stress occurs acquires an equilibrium in-

slab is the state with the minimum value B{a,c). plane lattice constant and an epitaxial elastic constant which
In the present work this equilibrium state of the slab hasyre poth different from the bulk values.

been found, and small energy differences from this equilib-
rium state have been evaluated for states produced by isotro- Il. FORMULATION OF THE COMPOSITE
pic epitaxial or two-dimensional strain on a seven-layer slab ELASTIC MODEL

of Mo(002), which preserves tetragonal structure. These en- . . .
ergy differences have been interpreted as linear elastic strain The slabis assume_d to havg two surfacg regions of thick-
energies, and have been fitted to the strain energy of a confi€SSts and a bulk region of thicknes as in Fig. 1. The
posite elastic model made up of two surface regions and a ty

bulk region(Fig. 1). The surface stress can then be expressed ! o o
in terms of the elastic parameters of the surface region and ‘ '
evaluated.

Previous first-principles calculations of surface stress
have found the surface energy of a slab as a difference be-
tween the slab total energy and the total energy of the same
number of atoms of the bulk crystal. The surface stress is
then found from the derivative of the surface energy with
respect to strain by calculating the change in the surface
energy when the slab is strainkdn the present work the
surface energy is not required. The energy differences be-
tween special strained states of the slab and the equilibrium
state are fitted to the composite elastic model mentioned
above. The special strained states are the states produced by 6
epitaxial strain on the slab. These states of epitaxial strain

make up the epitaxial Bain patfEBP) of the slap’ For a FIG. 1. Cross-section view of the composite elastic model of a
tetragonal material small energy changes along this path at@yen-layer M@01) slab. Seven layers of atoms are shofepen
described by a single elastic constant—to be called the epkircles; the slab thickness i ; the in-plane lattice constant &
taxial elastic constant. The material of the (@01 surface  the out-of-plane lattice constant és the thickness of each surface
regions is in general tetragonal in equilibrium, even if theregion isty; and the bulk region thicknesstg. The boundaries of
bulk equilibrium state is cubic, because of the bonding anthe surface regionédotted lineg correspond tdso=6 bohr when
isotropy produced by the surface. This single elastic constanf,=20.8 bohr(the equilibrium valug

surface region : bulk region - surface region
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thickness of the seven-layer MiD1) slab with out-of-plane
lattice constant is taken ady=7c/2, which allows for ex-

tension by half a layer spacing beyond the plane of the outer-
layer nuclei. Each region is assumed to be a homogeneous
continuum with three parameters needed to find its elastic

strain energy, i.e., for the surface regions thesetareand
asp, the equilibrium in-plane lattice constant, aid the

epitaxial elastic constant. The corresponding parameters for

the bulk region arey,, Yy, ay; Yy, anday are evaluated by
bulk total-energy calculations, ang is given by
tb+ ZtS: tN .

1)

The epitaxial elastic constait’ of a tetragonal material
may be related to the usual two-index elastic constgnter
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where the subscrip has been used to indicate quantities
evaluated at equilibrium. In Eq48) the slab equilibrium
in-plane lattice constant has been designatgg and is a
compromise between the surface region equilibrium constant
ago and the bulk region constaat,,, since tension in the
surface region balances compression in the bulk region to
give zero net force.

tetragonal structures as follows. Start with the general eX= The second equation relating the surface region param-
pression for the strain energy for tetragonal strains around giars  comes from equating the calculated value of
tetragonal equilibrium state of volumé under the assump-  2EEBP/ 442 4t equilibrium tod?Es"da? at equilibrium from

tion of linear elastic behavidr

Cc
2 33 2
EStr:V (C11+C12)81+2C138183+ 2 €3/,

)

wheree =g, are the in-plane strains along crystal axes and
£4 is the out-of-plane strain. For an epitaxial strain, which
has the boundary condition of zero out-of-plane stress, we

have

03=C1381 1+ C138+ Ca33=0; ()

hence substituting fog; in Eq. (2) and in the equation for
o1 gives

EStr: VS%(C]_]_"‘ ClZ_ ZC%JCSQ’) EVYI 8%,

4
01=(C11tCier+Cr3e3=Y e,
For cubic structures;3=c;,, C33=Cq4 and
(c11—Cqo)(Cqyyt+2C Y
yr = o 12)(C11 12)_ 5)

Ci1 C(1-v)°

whereY is Young’s modulus ang is Poisson’s ratio.
The strain energy of a seven-atom cell of volurde
=a’ty in the composite elastic model is then

ES(a)=a?(2tsY.e2+1t,Y1ed), (6)
where the strains in the surface and bulk regions are
(a_ aso) (a_ a-bO)
gg=———, gp=E——, (7)
* aso ® Apo

respectively. The parametetrs Y., andag, will be chosen
to fit the strain energies given by E() to the calculated

slab energy differences from equilibrium. The fitting process

uses two relations among the parameters.

Eq. (6), whereEEBR(a) is the slab total energy of a seven-
atom cell under epitaxial strain. In E¢G) we first take ac-
count of the changes in along the EBP as changes by
putting

(a—ayg)
In the total-energy calculations all six layer spacings have
been kept equal to each other at angndc, i.e., relaxations

of the layer spacings have been neglectedy sa Poisson-
ratio-type quantity which is an average over the surface and
bulk regions; it is evaluated from the slab calculations. Then
the unknown surface region parametefwhich is a function

of a) can be replaced by the single quantify.

Putting Eq.(9) into Eq. (6) gives

tX:tXQ 1_’)’ , X:N,S,b. (9)

(a—ayng)

Esf(a)=a? 1—y (2tsqYiel+tuoYpen).
(10)
Differentiating Eq.(10), we can write the second derivative
of ES" at equilibrium as
(dzEs“(a)
da’

a=aNQ
+a3By . (11
where
Bo=2tsoYielot thoYhebon
B(/?EAHSQYQSSQ/aSo"‘ 2tbQYk’)st/ab0,

Bo=4tsqY/a%+ 2tyYh/ag, (12)

and the strains in surface and bulk regions are

The first relation among the three unknown parameters of

the surface regions is the force-balance equation at slab equi-
librium. Designating the in-plane stresses and strains in the

surface and bulk regions at equilibrium by.q, £sq, Tpq,
andeyq this relation becomes

2tSQUSQ: - tbQUbQ y

(ang—aso) (ang—apo)
Es0=—"—, Epo=—i—. (13
oQ aso bQ Apo
The two equations—Eq(11l) set equal to the calculated
value ofd’EFB"/da? at equilibrium, and Eq(8)—reduce the
three unknown parameters to one independent parameter.
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TABLE I. Bulk states of M@001) on the EBP. Bulk Mo under TABLE Il. States on the EBP of the seven-layer (@01) slab.
epitaxial strain in th€001) plane becomes tetragonal;is the in-  a is the in-plane lattice constartin bohn; c is the out-of-plane
plane lattice constant, anzlis the out-of-plane lattice constant of lattice constantin bohr, which is the same for all layerg is the
the two-atom body-centered-tetragonal d¢ell bohn; E is the total  total energy per seven-atom célh Ry); and AE is the energy
energy per atom of the strained crystial Ry); AE in (m Ry/atom difference from the minimurk (last-ling of the seven-atom cefin
is the energy difference per atom from the bcc structure, which ham Ry).
the minimumE.

a (bohn ¢ (bohn (E+56703) (Ry) AE (mRy)
a (bohpn  c(bohn (E+8100) (Ry/atom) AE (m Ry/atom)

5.9222 5.9120 —0.799837 1.117
5.9820 5.9820 —0.585724 0.000 5.8923 5.9293 —0.800854 0.100
5.9220 6.0500 —0.585396 0.328 5.8624 5.9549 —0.800775 0.179
5.8620 6.1000 —0.584164 1.560 5.8324 5.9789 —0.799635 1.319
5.8300 6.1098 —0.583300 2.424 5.7726 6.0491 —0.793522 7.432
5.8030 6.1300 —0.582300 3.424 5.878% 5.9406 —0.800954 0.000

aequilibrium values at the minimum d&.

I1l. CALCULATION PROCEDURES AND RESULTS

The EBP of the seven-layer slab of Mo was found by a
procedure similar to the one used for the bulk EBP, but with

The total-energy calculations were made with the all-a supercell of seven layers of Mo and six layers of vacuum.
electron full-potential linearized augmented plane waveThe number ofk points in the two-dimensional mesh was
method embodied in thevieNe7 code? The Kohn-Sham  24x 24, and the number df points in the irreducible zone
equations were solved with two corrections—the semirelawas 156. The energy cutoff of the plane waves was 14 Ry
tivistic correction (fully relativistic core and scalar- and of the kinetic energy was 196 Ry. The same convergence
relativistic valence electronsand the generalized gradient criteria were used for the slab as for the bulk calculations.
approximationGGA). Spherical harmonics up te- 10 were Some 25 slab total energies were used at five values of
used inside the muffin-tin sphere and ud te4 in the inter-  The first minimization at each with respect toc gave the
stitial region. The muffin-tin radius of Mo atoms was chosenslab EBP points in Table Il. The second minimization with

A. Bulk and slab calculations

to be 2.40 bohr in both bulk and slab calculations. respect toa along the EBP gave the slab properties in the
Bulk calculations were carried out with a bcc cell of Mo equilibrium ~ state: aNQ_s 8785 bohr, tyo=3.5x5.94

to find ayo the equilibrium lattice constant and, the epi-  =20.8 bohr, andi?’EF®"/da?= 1201 m Ry/bohf.

taxial elastic constant of bulk Mo. Total energie®f states The equilibrium state of the slab compared to bulk shows

along the EBP of bulk Mo were found by choosing a setof thata decreased by 1.7% amddecreased by 0.7%. Table Il
values aroun@y,q, and at eacla the value ofc was varied to  also shows that amdecreases along the EBPincreases, so
find the minimum ofE at thata. The values ofa andc at  that y=—[(dc/c)/(sal/a)]=0.907.

each minimum gave a point on the EBP of bulk Mo, and are
listed in Table I. A second minimization & along the bulk
EBP gave the bulk equilibrium point and the valueagf.
The minimizations were done by fitting a cubic to the values If the slab is considered to be a single homogeneous te-
of EFB™(a) and finding where the first derivative 857(a) tragonal crystal, but with a different epitaxial elastic constant
vanished. The second derivative of the cubicimwas then due to the rebonding caused by the surfaces, we can find the

fitted to the EBP points to giv¥},, since, from Eq(4), effective epitaxial elastic constant’. From Eq. (4) the
strain energy of the homogeneous seven-atom celsis

=tya?Y'[(a— aNQ)/aNQ] hence ata=ayo we have
; (14 dZES"/daZ—th Then Y'=1201/(20.8& 2)

=28. 9mRy/boI?F?, which is less than the bulk theoretical
hence value Y;=36.2 m Ry/boht.

A value of the effective Poisson ratio of the homoge-
J2EEB neous slab can also be found, since along the EBP for cubic
7 apoYp
=a,

B. Fitting the slab EBP to an elastic model

((a—abo) 2
apo

E®Ha)=VY,

5 (15 structuresy is related tov by’ y=2v/(1—v). Hencey
da a=ay =0.907 givesv=0.31, which is larger than the theoretical
bulk value 0.29 obtained similarly from the bulk EBthe
This procedure gavay,,=5.9820 bohr, 0.6% larger than the experimental value of is 0.26.

experimental valle5.946 bohr, andy},=36.21 mRy/boht These average elastic properties of the slab—smilller
=5.33Mbar, 8.8% larger than the experimental v&loé  and largerv than the bulk—indicate that the average effect
4.90 Mbar. of the surfaces on the slab is to make the slab less stiff than

For the bulk calculations more than 30R(oints in the  bulk. However, the seven-layer slab is thick enough to show
Brillouin zone were used. Convergence was achieved whethe inhomogeneous effects of the surfaces, which should af-
on successive iterations the total energy difference was legect only a few atomic layers at each surface. These layers
than 5<10 °Ry, and charge differences were less than 1should then be affected more strongly than the average ef-
X 10™ *e/bohr. fects obtained when the slab is treated homogeneously.



PRB 60 EQUILIBRIUM STATE OF A METAL SLAB AND SURFACE . .. 16 091

590 IR PR UL AN \_ ’30 10 :1 1T TTTT TTTT k\ TTT ] T !II T TTT I’ T 1T TTTT TTT I:
-4 : : . ]
5.80 —: 27 9 X ' —]
B o ! . ]
B r | ! ]
5.70 — 24 8- | , E
i r 1 ' h
i - | ' -
5.60 e 21 s v E
7 Y{mRy/bohr?) 1v, . v .
w | — I . —
#5507 18 _°F o 1
g . & [ ]
% E ] E 51 vy -]
$540 15 = f p 1
B E Y \L .
580 o ——e——o———0-——o——3 k ¥ /]
N Sy(mRy/bohr?) . 3 N\ /3
520 |- J9 E i \ /7
B ] 2 ! // —
510 =k Eo 1 /]
L ] 1= , : / -
5.00 oo b by b b b1 T 3 ., | / 7
4 5 6 7 8 9 10 R NS R d EREEEA N sl

tsq (bohr) 565 570 575 580 58 59 595 600 6.05 6.10

a {bohr)

FIG. 2. Variation of the parameters of the surface region with
equilibrium thickness of the surface regiong, in bohr; ag, is the FIG. 3. Strain energ of the seven-atom cell along the slab
equilibrium in-plane lattice constant of the surface region materiagpitaxial Bain path vs in-plane lattice constar(solid line) in bohr
in bohr (solid line); Y, is the epitaxial elastic constant of the surface at tso=6 bohr; the minimum energy is set to zero; calculated total
region material in m Ry/bofilong dashes, scale on the riyt, is energies of the seven-atom cell on the EBP in m Ry are referred to
the surface stress in m Ry/bdhilong dashes and a,, is the in-  zero at the minimuntopen circleg the total strain energy in the
plane lattice constant of the slab with minimum strain energy intwo surface regiongsmall dashes and the strain energy in the bulk
bohr (short dashes region (long dashes The vertical line is at the minimum of the

strain energy af,,=5.8754 bohr.

The composite elastic model of Sec. Il can be applied tg .

the EBP of the slab by using E¢®) to expressY. in terms :E?]Q> 10.4 bohi the slab would be all _surface region. Hence
o ) e value S;=5.28+0.01 m Ry/boht is well-determined.

of ag Zans?,tSQz’ and thereby ellmlnate(s from Eq. (1D). Howeverag, and Y vary substantially withtso, but at all
Thend"E ?/ da”ata=aq from Eq.(11) is equated t0 1201 _ ‘e valye ofy, lies below both the bulk value and the
m Ry/boh ,the.curvature of the EBP at eqwhbnum, relates homogeneous slab value. A, approaches 10.4 bohr,
30 10 Lso. At given tso the complete elastic description of \nore’the pulk region vanishe¥, approaches the homoge-
the slab can now be found. This description includes th

$eous slab value anal, approachesy
. . . Q .
values of the stresses, in the surface region and, in the A plausible value ot is 6 bohr, which lies between the

bulk region, the value o, and the value of the surface second and third atomic layefas shown in Fig. 1L since the
stressS;. These elastic properties are given by rebonding should occur principally in the first two layers.
The values of the elastic parameters will be illustrated for
tso=6 bohr. In Fig. 3 the strain energy &= 6 bohr is
plotted (solid line) along with the calculated slab EBP ener-

Os= Y;(aNQ_ aso)/aso,

b= Yp(ang— apo)/apo. (16) gies(open circleg as functions ofa. The separate strain en-
) ergies in the two surface regiorishort dashesand in the
Ss=t5qYs(apo—aso)/aso- bulk region (long dashesare also plotted; their sum has a

The surface stress is given in Eq46) as the stress in the minimum ata, (vertical ling and the sum is shifted down
by 7.01 m Ry to have the same zero value as has been given

surface region of a thick crystal times the thickness of th . L
surface region. Note that the stress in the surface region ofe[é) the calculated EBP points at the minimum. That 7.01

thick crystal is greater than in the surface region of a thin " R¥ IS N fac';]the Iocked'-m sr:ram e?ergy of _the slab n
crystal, such as the seven-layer slab used here, because & u;'grlllém' T de' strr]ess IL” the sur_aiegzrgglj(lgns T‘?ﬁ
surface region is stretched froa, to a,g, not just toayg. N f' ar, an k:nt € tu rltlaglor: 5= f 1'90/ ar. the
The strain energy can also be found as a functioa fstbm surtace region has a tensiie strain of 1.5% WH%.
Eq. (10), anda,,, the value ofa at the energy minimum can =6 bohr gnd.th.e bulk region has a compressive strain of
be determined. 1.7%, which is mdepen/dent dfy. At tso=6 bohr Whe.re
Carrying out the procedure in the preceding paragrapﬁ50:5'7658 bohr andYs=_23.48mRy/boh’r, the t_ensne
gives Fig. 2, which plots,, Y., andS;, andap Vs to. stre:ss in the surface region of a thick crystal will bg
First note thae,, is very close teayo=5.8785bohr, so that ~ ¥¢(@po—as0)/aso=0.880 m Ry/botit=130 kbar.
we cannot fix the bedt by the closest fit o&,, to ayg . But
note thatS; is almost independent ¢f, over the reasonable
range oftsq, i.e., fortso<<2.5bohr there is no solution of the Finding the slab equilibrium state by a double minimiza-
equation which equates E€L1) to 1201 m Ry/botrand for  tion of the energy with respect to firstand thena assumed

IV. DISCUSSION
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the accuracy of the Kohn-Sham equations of densityfix the thickness of the surface regiby,, the surface stress
functional theory with the nonlocal GGA and the semirela-Sg was well determined at 5.28 m Ry/béhThis value ofSg
tivistic corrections. Also assumed was the equality of the sixnay be compared with the published vélfier Mo(001) of
slab layer spacings at amyandc. The accuracy of the first 2.241 J/m=2.88 m Ry/boht calculated by empirical poten-
assumption for nonmagnetic Mo is shown by the good agreetials of uncertain reliability. The first-principles value is 83%
ment noted in Sec. lllA of theory with the experimental higher. However, note that in two cases in which both first-
values of the bulk lattice constant and the bulk epitaxial elasprinciples results and empirical-method results have been
tic constant. The second assumption remains to be tested Iyade for the same surface, the same discrepancy &xists,
further calculations in which relaxation is allowed and thethe first principles result for Pt11) is 96% higher and for
effect on the surface stress is determined. Note that the efu(111) is 83% higher.

fects both of relaxation of layer spacings and of the addition It should be possible to fix the value 6fy with total-

of adsorbed layers are immediately described by the preseehergy calculations on a thicker slab, say witk=9. Then
composite elastic model with surface regions and a bulk reassuming the surface parameteys, Y, andag, are about
gion. The surface regions then comprise all layers that diffethe same for both slabs, which must be true for sufficiently
from bulk, and the fitted parameters give the average elastigjck slabs, dsq is sought for whichag, and Y/ are the same
properties over the surface region. for both slabs.

The application of the composite elastic model made the  Finally note that the surface energy of the seven-layer
further approximation of linear elastic behavior, i.e., that thefjjm can be found from the difference between the total en-
values ofY’ are independent of strain. For strains less thargrgy of the seven-atom cell when=ay,,=5.982 bohr(and
about 2%(as is the case fot;o=6 bohy nonlinear effects the pulk region is not straingdwhich is —56 703.795 151
are smalf One test of the linear approximation is provided Ry, and the total energy of seven atoms of bulk in equilib-
by the fit of the parabolic strain energgolid line in Fig. 3 rjym, which is —7x8100.585 724 Ry. The energy of the
to the EBP points over a range &of +2% from equilib-  gjah seven-atom cell is 304.9 mRy higher, which is much
rium. The elastic strain enerd$) assumed that each region |arger than the strain energies of the slab seven-atom cell in
followed its individual EBP as changed. However, the con- Tapje || of a few m Ry. This surface energy of the cell is not
straint of constant forced each region to adopteaslightly  strain energy, but corresponds to the changes in cohesive
different from the value along its EBP. Nevertheless, W'th'”energy of the rebonded slab. The surface energy per unit area
the linear elastic assumption these deviations from the indipy, each face of the slab is then 304.9(2.982)
vidual EBP's due to out-of-plane stress will not affect the — 4 26 m Ry/boh#=3.32 J/m}, which is comparable to the
value of d?E**"/da’ given by the slab EBP at equilibrium, syrface stress of 5.28 m Ry/b8hiThis surface energy may
and used with _Eq(ll) to fix the surface region parameters. pe compared with the value for N@01) in Ref. 9 of 3.52

The equilibrium state and its parameters were needed beyn?. The value in Ref. 9 includes relaxation of the first layer
cause the two equations relating the three unknown surfacpacing not considered here, but does not include the GGA
region parameterssg, as and Y¢ applied at equilibrium.  and semirelativistic corrections used here. Also, the surface
The contraction ofa at equilibrium from the bulk value is energy found here is the difference of two energies calcu-
then explained byyq being a compromise betweer, and  |ated with different unit cells and is not as accurate as the
apo- The net contraction of the single valuewdver the slab  strain energies for small changesarandc calculated with
can be understood by the dominance of toatractionof ¢ the same unit cell.
due to in-plane tension in the surface region ogpansion
of ¢ due to in-plane compression in the bulk region on aver-
agingc over the slab. The dominance of the surface region is
due to an increase of the Poisson ratio of the surface-region The authors thank J. Kirschner and D. Sander of the Mik-
material compared to bulk. An estimate of the value of therostrukturphysik Institut, Halle, Germany for advice and en-
surface-region Poisson ratiq can be made from the calcu- couragement. P.M.M. thanks M. Scheffler of the Fritz-Haber
lated contraction of the thickness of the slab compared tdnstitut of the MPG, Berlin, Germany for hospitality during
seven layers of bulk. That contraction is 0.15 bohr, and athe writing of this paper, and thanks J. Kirschner for the
tso="6 bohr with v,,=0.29 (the theoretical valuewe must invitation to the Symposium at the Mikrostrukturphysik In-
havev,=0.37 to achieve that net contraction. That value ofstitut in June, 1998 on “Stress and Strain on Surfaces,”
Vs is well above the bulk value, and also above the valuavhich stimulated this work. P.M.M. also thanks IBM for
0.31 found when the slab is treated homogeneously. providing facilities as an Emeritus member of the Thomas J.

Although the calculations on the seven-layer slab did notWWatson Research Laboratory.
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