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Abstract. The surface stress, which characterizes the state of stress at the surface of a macroscopic
crystal, is calculated from first principles by two methods for Mo(001) to be 3.1 mRyd bohr−2 =
2.4 J m−2. Both methods use the energy of a fully relaxed seven-layer slab as a function of the
in-plane lattice parameter a. One method uses the slope and the other the curvature at particular
values of a. Fully relaxed energies give surface stress values 40% smaller than partially relaxed
energies which have relaxed just a single common layer spacing. The slab is divided into bulk and
surface regions with different parameters. Estimates are made of the surface region parameters
including its equilibrium in-plane lattice constant, its epitaxial elastic constant, its Poisson ratio for
in-plane strains and its thickness.

1. Introduction

Surface stress Ss at the surface of a macroscopic crystal is usually introduced as the rate of
change of energy of the crystal due to in-plane strain per unit of surface area. Then Ss depends
on the surface and the direction of strain and is in general a rank two symmetric tensor of three
components; for symmetrical surfaces such as cubic (001) or (111) Ss has just one component.
Since the bulk of a macroscopic crystal or thick slab dominates the effects of the surface, the
bulk remains in equilibrium, and that in-plane strain does not change the bulk energy to first
order in the strain.

However, Ss has been computed from the energy changes in an ultrathin slab of just a few
atomic layers, both from first principles [1, 2] and with an empirical potential [3]. In such a slab
the bulk is no longer in equilibrium and the overall equilibrium state of the slab is maintained
by a balance between the stresses in the surface regions, usually tensile, and the stresses in the
bulk region, usually compressive. It is then appropriate to give a three-dimensional description
of stress in the surface regions and to describe the surface region by different structural and
elastic parameters from the bulk. These parameters can then be used to find the surface stress
of a thick slab.

A composite elastic model made up of surface and bulk regions is applied here to a slab
of seven atomic layers of Mo(001) and used to analyse totally energy changes calculated from
first principles to determine surface region parameters and to evaluate Ss . The evaluation is
made by two methods; one uses the slope and one uses the curvature of the relaxed slab energy
as a function of in-plane lattice constant a at particular values of a. They give closely the same
value for Ss .

In a previous paper [4] slab energies were analysed that were calculated for a partially
relaxed slab in which the six layer spacings were assumed equal, and the energy was minimized
with respect to the single layer spacing. The present paper allows all layer spacings to vary in
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order to minimize the energy at a given a. The value of Ss found with this fully relaxed slab
is substantially reduced compared to the value found with the partially relaxed slab. Also the
fully relaxed results retain and enhance the significant result found in [4] that in the equilibrium
state the slab has a smaller thickness compared to seven layers of bulk as well as a smaller a.
Systematic discarding for higher-order terms in the strains simplifies the equations given here
for Ss compared to [4].

In section 2 the parameters of the composite elastic model are defined and the equations
relating the parameters at slab equilibrium are derived. Two formulas for Ss are given, both of
which use the fully relaxed energy as a function of a.

In section 3 the computational procedures are described and the values of Ss from the two
formulas are given. The surface region parameters are evaluated as functions of the thickness
of the surface regions. An estimate of the thickness of the surface regions is made.

Section 4 discusses the importance of full relaxation, the significance of the contracting
of thickness at slab equilibrium, and the necessity of first-principles calculation for Ss and
for the surface region parameters. An alternative derivation of the curvature formula for Ss is
given. The results are compared with calculations of Ss based on an empirical potential and
significant differences are noted.

2. The composite elastic model

The linear elastic approximation, which is made throughout this work, assumes that elastic
constants are independent of strain and that higher-order terms in the strains can be neglected.
Consider the states of a tetragonal crystal under epitaxial strain ε1, which corresponds to strain
ε1 in two orthogonal in-plane directions x1 and x2 and zero stress in the out-of-plane direction
x3. These states of strain define the epitaxial Bain path (EBP) of the crystal. The strain energy
along the EBP in the linear elastic approximation will be given by

EEBP = V Y ′ε2
1 (1)

and the corresponding isotropic in-plane stress is

σ1 = Y ′ε1. (2)

In (1) V is the volume of the slab, which will be the volume of an N -atom cell of surface
area A = a2 stretched across the slab thickness tN . The single elastic constant Y ′ is related to
the usual tetragonal elastic coefficients cij referred to tetragonal axes by

Y ′ = c11 + c12 − 2c2
13/c33 (3)

and will be called the epitaxial elastic constant; it is also called the biaxial modulus [3].
Equations (1), (2) and (3) are derived in [4].

Under the isotropic in-plane stress σ1 the condition σ3 = 0 leads to the strain ratio for
tetragonal structures

ε3

ε1
= −2c13

c33
≡ −γ. (4)

For a cubic structure c13 = c12 and c33 = c11 and

γ = 2c12

c11
= 2ν

1 − ν (5)

where ν is the Poisson ration. The quantity γ for tetragonal structures under isotropic in-plane
stress, also called epitaxial stress, is analogous to the Poisson ratio for uniaxial stress; it will
be called the epitaxial Poisson ratio. To compare with the usual uniaxial Poisson ratio ν the
quantity γ /(γ + 2) will be used.
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The thickness tN of an N -layer slab is divided between two surface regions of thickness
ts and a bulk region of thickness tb so that

tN = 2ts + tb. (6)

Each region will be treated as a homogeneous unit.
The EBP of a bulk tetragonal crystal requires relaxation of the single value of c at given a

to minimize the strain energy. The EBP of a slab requires relaxation of each layer spacing at
given a to minimize the strain energy, which we call full relaxation. Applying (1) separately
to the surface and bulk regions of a fully relaxedN -layer slab gives the strain energy along the
EBP of an N -atom cell with surface area a2 in the form

EEBP (a) = a2(2tsY
′
sε

2
s + tbY

′
bε

2
b). (7)

In (7) the in-plane strains in the surface and bulk regions are

εs(a) = a − as0
as0

εb(a) = a − ab0

ab0
(8)

where as0 is the equilibrium in-plane lattice parameter of isolated surface region material and
as0 is the bulk equilibrium lattice parameter.

The analysis here makes use of the strain energy (7) to evaluate all energy changes due
to slab lattice changes. These strain energy changes are of magnitude 1–2 mRyd per surface
atom in Mo(001), which are just small changes in the surface energy of magnitude 150 mRyd
per surface atom due to rebonding of the surface layers.

To define the surface stress Ss consider a cubic (001) slab with any thickness great enough
that the surface regions are separated by a bulk region and strained from equilibrium along
the EBP to make a = ab0. Then in-plane strains around ab0 produce energy changes in EEBP
which are only in the surface regions, since the bulk region of the slab is in bulk equilibrium.
Hence we can define Ss by

Ss ≡ 1

4A

(
dEEBP (a)

dεs

)
a=ab0

≈ 1

4ab0

(
dEEBP (a)

da

)
a=ab0

. (9)

In (9) we have put the surface area A = a2 and dεs = da/as0 ≈ da/ab0. The factor of four
allows for two surfaces and simultaneous strains in two orthogonal in-plane directions x1 and
x2; higher-order terms in the strains have been discarded. One method of evaluating Ss from
slab energies on the EBP as a function of a uses (9); it will be called the slope method.

A second method of calculating Ss relates Ss to the surface region parameters. From
(7)–(9) Ss is given by

Ss = tsY ′
sεs(ab0) εs(ab0) = ab0 − as0

as0
. (10)

In (10) higher-order terms in the strains have been discarded and the bulk term in (7) makes
no contribution because εb(ab0) = 0. Then (10) shows that Ss is the product of the surface
region thickness ts and the average surface-region in-plane stress at a = ab0, which from (2)
is σs = Y ′

sεs(ab0).
Two relations among the surface region parameters can now be used to evaluate Ss in (10)

from EEBP (a). One relation is from the second derivative of EEBP (a) in (7)(
d2EEBP

da2

)
a=aQ

= 4tsY
′
s + 2tbY

′
b (11)

where aQ is the value of a at slab equilibrium, which lies between as0 and ab0; higher-order
terms in the strains have been discarded.
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The second relation among the surface region parameters is given by the force balance
equation at slab equilibrium

2tsY
′
sεs(aQ) = −tbY ′

bεb(aQ) (12)

which balances the forces (e.g., due to tensions) in the surface regions against the force (e.g.,
due to compression) in the bulk region.

From (10)–(12) it follows that

Ss = (ab0 − aQ)
4aQ

(
d2EEBP

da2

)
a=aQ

≈ −εb(aQ)
4

(
d2EEBP

da2

)
a=aQ

(13)

where the equality is an exact consequence of (10)–(12), but the approximate form comes
from discarding higher-order terms in the strains. In (13) εb(aq) = (aQ − ab0)/ab0 is the
negative in-plane strain in going from the bulk equilibrium in-plane lattice constant to the slab
equilibrium in-plane lattice constant. The curvature method finds Ss from (13), which uses the
curvature of EEBP (a) at aQ, but does not depend on the surface region parameters as0, ts and
Y ′
s or on the value of Y ′

b.
In addition to determining Ss by transforming (10) into (13), equations (11) and (12)

combined with (6) also determine as0 and Y ′
s as functions of ts for given ab0, Y ′

b and tN , as
was illustrated in [4]. But in [4] the approximation is made that all layer spacings are equal,
whereas here the slab is assumed to be fully relaxed. Full relaxation is the correct physical
condition at the free surface and makes as0 and Y ′

s different functions of ts than for partial
relaxation.

An additional elastic constant of the surface regions can be found as a function of ts from
the decrease in thickness of the slab at equilibrium tNQ compared to the thickness of seven
layers of bulk tNb. This decrease is

�tN = tNQ − tNb = tNQ − 3.5ab0. (14)

In (14) the change in thickness is found from the change in the distance between the first and
seventh atomic layers; the half layer extension beyond the outer atom planes is assumed to be
unchanged by relaxation. The slab thickness change is the sum of thickness changes in the
surface and bulk regions

�tN = 2�ts +�tb
�ts = −γstsεs(aQ) (15)

�tb = −γbtbεb(aQ).
In (15) the epitaxial Poisson ratios γs and γb have been introduced and (4) has been used. From
(15) values of γs as a function of ts can be found using the calculated values of �tN and aQ
with the known values of the bulk parameters ab0, γb and the value of as0 at given ts from (11)
and (12).

3. Numerical procedures and results

As in [4] the total energy calculations were made with the all-electron full-potential WIEN97
code [5], but in addition use was made of the capability of that code to compute forces on the
atoms, including Pulay corrections. The use of forces to prescribe the structure at each iteration
made the determination of the fully relaxed structure not much lengthier than the energy
minimization with just a single layer spacing used in [4]. Typically ten structural changes
were required to reach the global energy minimum. The semi-relativistic and generalized
gradient corrections were used as in [4].
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Table 1. Lattice parameters and energies of fully relaxed slabs of Mo(001). In-plane lattice
constants a and layer spacings dij (in bohr) and total energies E (in Ryd) for a seven-atom cell of
fully relaxed slabs of seven atomic layers of Mo(001); d̄ is the average layer spacing, �E is the
energy relative to the minimum (in mRyd).

a d̄ d12 d23 d34 E + 56703 �E

6.0020 2.881 2.633 3.046 2.965 −0.808 765 3.867
5.9820 2.893 2.647 3.054 2.979 −0.810 272 2.360
5.9620 2.901 2.663 3.055 2.984 −0.811 404 0.928
5.9222 2.931 2.712 3.066 3.016 −0.812 587 0.045
5.8923 2.932 2.710 3.074 3.012 −0.812 397 0.235
5.8624 2.952 2.745 3.079 3.031 −0.811 213 1.419
5.8324 2.966 2.768 3.085 3.046 −0.808 831 3.801
5.9124a 2.931 2.712 3.069 3.015 −0.812 632 0.000

−9.3%b +2.6% +0.8%

a Equilibrium values at the minimum of E.
b Percentage relaxation of slab equilibrium spacings from bulk spacings.

A supercell which added six vacuum layers to the seven-layer slab was used to separate the
slabs and reduce interaction between them. Charge accumulation on the surfaces was avoided
because the slabs were symmetric with respect to the central layer. Inversion symmetry made
the wavefunctions real. The muffin-tin radius was 2.4 bohr; spherical harmonics were used to
I = 10 inside the muffin tin and to I = 4 in the interstitial region. Convergence was achieved
when on successive iterations the energy difference was less than 5×10−5 Ryd, charge density
differences were less than 1×10−4 e bohr−3 and forces were less than 1 mRyd bohr−1 on each
atom. The k-point mesh was 18 × 18 × 3; the number of k-points in the irreducible part of the
Brillouin zone (one-quarter of the zone) was 90. The plane-wave cutoff corresponding to the
largest k-vector in the plane-wave expansion was 14.06 Ryd. The kinetic energy corresponding
to the largest reciprocal lattice vector in the potential expansion was 196 Ryd.

The values of bulk energies against a tabulated in [4] gave ab0 = 5.9820 bohr, tNb =
20.94 bohr and Y ′

b = 36.21 mRyd bohr−3. The partially relaxed energies of the slab gave
aQ = 5.8785 bohr and (d2E/da2)a=aQ = 1.20 × 103 mRyd bohr−3. Extension of the energies
to points around a = ab0 and application of (9) gave Ss = 5.14 mRyd bohr−2. Application of
(13) gave Ss = 5.28 mRyd bohr−2. Both of these evaluations of Ss are in error because the
slab is not fully relaxed. The two methods are affected in different ways, but their difference
is much smaller than the effect of full relaxation.

Fully relaxed energies are tabulated in table 1; fully and partially relaxed energies are
plotted in figure 1 on the same energy scale. The fully relaxed energies give aQ = 5.9124 bohr
and (d2E/da2)a=aQ = 1.07 × 103 mRyd bohr−3. The 11% decrease in (d2E/da2)a=aQ and
the 33% decrease in the strain εb(aQ) from the partially relaxed values reduces Ss by 40% to
3.15 mRyd bohr−2. The values of as0 and Y ′

s as functions of ts determined by (11) and (12)
are plotted in figures 2(b) and 2(c) for both the fully and partially relaxed cases. Application
of (9) with the slope of the tangent at a = a = ab0, shown in figure 1 as a dashed line on the
lower curve, gives Ss = 3.07 mRyd bohr−2. This value of Ss by the slope method agrees with
the value from the curvature method within the uncertainty of the second derivative evaluation,
estimated at 1–2% from the fitting error to the cubic used to calculate the derivative.

The fully relaxed values of aQ = 5.9124 bohr and tNQ = 20.58 bohr (table 1) are 1.2
and 1.7% less than bulk values respectively. The partially relaxed values of aQ = 5.8785 bohr
and tNQ = 20.8 bohr [4] are 1.7 and 0.7% less than bulk values respectively. Inserting these
values in (15) along with the value γb = 0.817, which corresponds to the theoretical value for
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Figure 1. Total energy EEBP (a) along the epitaxial Bain path (EBP) of a seven-atom cell of
Mo(001) as a function of in-plane lattice constant a for a fully relaxed seven-layer slab (lower
curve) and for a partially relaxed slab (upper curve). Vertical line (a) is at the equilibrium value of
a for the partially relaxed slab; line (b) is at the equilibrium value for the fully relaxed slab; line (c)
is at the bulk value of a. The upper dashed line is tangent at a = ab0 with slope 123 mRyd bohr−1

used in the slope method to calculate the partially relaxed Ss . The lower dashed line also tangent
at a = ab0 with slope 73.5 mRyd bohr−1 gives the fully relaxed Ss .

bulk Mo, νb = 0.29 from [4], gives the values of νs ≡ γs/(γs + 2) plotted in figure 2(a) as a
function of ts for both the fully and partially relaxed slabs.

A bounded estimate of ts can in fact be made from the detailed layer-by-layer relaxations.
The layer spacings in table 1 give the out-of-plane displacements of the layers from their bulk
positions; the displacements are plotted in figure 3 against their bulk positions as filled circles
connected by full lines. The middle layer is fixed at the origin and positive displacements
mean movement toward the surface.

The displacements of the surface and bulk material in the composite elastic model are
continuous straight lines given by (15) at every point and are plotted as the dashed line
in figure 3; there is a discontinuity in slope at depth ts . Two features of the calculated
displacements permit an estimate of ts . One is that the slope of the expansion between the
third and fourth layers obtained from the calculated relaxations agrees closely with the slope
for the elastic model calculated from (15) as γbεb(aQ), which does not depend on knowing
ts . We conclude that the bulk region includes the spacings d34 and d45, which are expanded
by the Poisson ratio of bulk material under the compressive strain which reduces ab0 to aQ.
The second feature is that the strong contraction between the first and second layers indicates
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Figure 2. (a) Variation of νs ≡ γs/(γs + 2) as a function of the thickness of the surface region ts ,
where γs is the epitaxial Poisson ratio of the surface region of a Mo(001) seven-layer slab. The full
lines are for the fully relaxed slab; the dashed lines are for the partially relaxed slab. (b) Variation
of the epitaxial elastic constant of the surface region Y ′

s with ts . (c) Variation of the equilibrium
in-plane lattice constant as0 of the isolated surface region with ts .

that the spacing d12 is included in the surface region. Thus the transition from the surface
region to the bulk region takes place between the second and third layers. A third feature is
the increased positive slope of the displacement between the second and third layers, which
indicates a weakening of the bonds between those layers and an increase in the Poisson ratio
between those layers.

In the absence of more precise information we assume the surface region extends to
halfway between the second and third layers to give ts = 6 bohr with an uncertainty of
±1.5 bohr; ts = 6 bohr in figure 3. This value of ts permits estimates of the average in-plane
stress in the surface region as σs = 44 kbar and in the bulk region as σb = −62 kbar in
the seven layer slab (using (2) and as0 and Y ′

s from figure 2). Then in a thick Mo slab at
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Figure 3. Cross section of seven-layer Mo(001) slab showing out-of-plane displacements in
bohr due to relaxations at slab equilibrium (table 1) plotted against bulk position in bohr. The
layer displacements are filled dots connected by full lines. With the central layer fixed the third,
second, and first layers displace 0.024, 0.102, and −0.177 bohr respectively; a positive sign means
movement toward the surface. The dashed line is the calculated displacement of the bulk and
surface regions in the composite elastic model when ts = 6 bohr.

ts = 6 bohr σs = 77 kbar with σb much smaller in magnitude. Also from figure 2(a) νs = 0.53
at ts = 6 bohr, which suggests that the surface region is near instability. However since the
surface region is not cubic, a value of νs greater than 0.5 is not necessarily unstable.

Note that the uncertainty in ts does not affect the value of Ss , which is given by (13).
Also note that the energy calculation for a thin film must not assume the bulk region has
bulk layer spacing and just relax the first few layer spacings, because the stresses expand
the bulk region significantly. The full relaxation picks up that expansion of d34 and d45

(table 1).

4. Discussion

Comparison of the fully relaxed results with the partially relaxed results shows that at
equilibrium the strain energy of the seven-atom cell has been lowered by 12 mRyd and the
decrease in curvature and in-plane strain at equilibrium has lowered Ss by 40%. The effects
of relaxation are probably larger for Mo(001) than most metal surfaces, since the relaxations
are large, but clearly relaxation of individual layer spacings can be important. A reduction of
surface stress of this magnitude by full relaxation has been observed before [6]. The seven-
layer slab used in the calculation appears to be about thick enough for the complete surface
relaxation from bulk to occur without interference from the other surface, since the third and
fourth spacings behave like bulk material.

The contraction of the thickness of the slab from its bulk value immediately indicates an
unusual elastic situation, since the in-plane lattice constant is also contracted. Tensions must
be present in the surface region producing thickness contractions that more than compensate
the expansion of the bulk region thickness produced by the contraction of a. By assigning
thickness and elastic constants to the surface region, the calculated contraction of that region
can be used to estimate the Poisson ratio of that region. In addition fitting the composite elastic
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model to the fully relaxed slab energies has given plausible estimates of ts and other surface
region parameters.

The surprising simplicity of the formula for Ss in (13), which is independent of the
surface region parameters as0, ts and Y ′

s , suggest that the formula is more fundamental than the
composite elastic model, which assumes average uniform strains and stresses in each region.
We can in fact justify (13) by a more general argument which does not assume uniformity as
follows. Consider the slab as a whole as a tetragonal object of in-plane lattice constant a and
thickness t . ThenEEBP (a), the energy of a cell of volume V = ta2 for the completely relaxed
slab as a function of a, generates an epitaxial elastic constant for the slab by (1)

Y ′ = a2

2V

d2EEBP

da2
. (16)

The equilibrium value of a = aQ is determined by the minimum of EEBP (a). At a = aQ
the average in-plane stress vanishes, but if the slab is strained to a = ab0 an average in-plane
stress σ̄ is produced by the strain −εb(aQ) = (ab0 − aQ)/ab0. Then from (2)

σ̄ = −Y ′εb(aQ) = − 1

2t

d2EEBP

da2
εb(aQ). (17)

But the bulk of the completely relaxed slab is in bulk equilibrium and all the stress is in the
two surface regions, hence

Ss ≡ 1

2

∫ t

0
σs(x3) dx3 = 1

2
t σ̄ = −1

4

d2EEBP

da2
εb(aQ) (18)

which is the curvature formula (13).
The curvature formula depends only on the total energy function EEBP (a) at and near

equilibrium, since only the slab equilibrium values of the in-plane lattice constant and of the
curvature enter. The curvature method is then as direct as the slope method, which depends
just on the slope of EEBP (a) at a = ab0. However the curvature method provides additional
information about the surface region material, such as the values of the parameters shown in
figure 2, e.g., the values of νs in figure 2(a) are greater than νb at all values of ts indicating that
the surface region is softer for out-of-plane layer displacements than bulk. The parameters are
bracketed by the argument of section 3 that 4.5 < ts < 7.5 bohr.

A comparison of the results of this first-principles evaluation of as0 with the results of
[3] is revealing. In [3] an elastic model of a metal slab is introduced which includes surface
stress. The total strain energy, consisting of volume strain energy plus surface strain energy,
the epitaxial elastic constant, the Poisson ratio and the surface stress are all expanded in power
series in the in-plane strain produced by reducing a from its bulk value. The coefficients of the
power series, which go beyond linear elastic behaviour, are determined by fitting molecular
dynamic calculations of the equilibrium state and its changes of energies and structure under
small stresses. The molecular dynamics calculation uses an empirical potential, an embedded
atom potential. The negative in-plane strain at slab equilibrium ε∗ is determined for the (001)
and (111) surfaces of Cu, Ni, Ag and Au, but not for Mo(001). We can compare our results for
Mo(001) to the results in [3] for Ni(001), which were ε∗ = −0.005 at a thickness of 20.9 bohr,
to compare with −0.012 for Mo(001) at the same thickness (from εb(aQ)); the surface stress
of Ni(001) is 0.047 eV Å−2 = 0.97 mRyd bohr−2 to be compared to 3.15 mRyd bohr−2 for
Mo(001).

However there are some significant discrepancies. The calculation in [3] found that the
bulk Poisson ratio determined the thickness under in-plane strain. Hence the thickness of slab
increased at slab equilibrium over the bulk value, whereas we find a decrease in thickness at
slab equilibrium in Mo(001). This decrease had important consequences in section 3, where it
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pointed to large tension and large Poisson ratio in the surface region. The discrepancy with [3]
is presumably due to use of an empirical potential adjusted to fit bulk conditions, which may
not be reliable in the very different environment of the surface. First-principles calculations
should be equally reliable in the two situations.

An additional discrepancy concerns the strain dependence of the bulk epitaxial elastic
constant Y ′

b, which is found in [3] to increase under in-plane compression, e.g., for Ni(001)
at thickness 20.9 bohr Y ′

b increased by 5% at in-plane strain ε∗. Although we did not
consider nonlinear elastic behaviour in our analysis, the calculated slab energy values include
all nonlinear effects and show that Y ′

b of bulk Mo will decrease from its bulk value under
compression in the (001) plane that reduces the in-plane lattice constant from ab0 toward aQ.
This decrease in Y ′

b happens generally for the biaxial compression of a bulk equilibrium phase,
since the energy is approaching a maximum, as can be seen in theEEBP (a) curve for vanadium
in figure 2 of [7]. This behaviour is in contrast to the behaviour of the bulk modulus under
volume compression, which always increases.

In summary a three-dimensional model of the stresses in the surface region of a metal
crystal has led to a new formula for the surface stress. The new formula gives the surface
stress as proportional to both the curvature of the fully relaxed totally energy as a function of
the in-plane lattice constant and to the in-plane tensile strain when the slab is strained from the
slab equilibrium in-plane lattice constant to the bulk equilibrium lattice constant. The surface
stress is shown to be the integrated in-plane stress over the thickness of the surface region
and information about the structure and elastic properties of the surface region is obtained.
Discrepancies with surface stress calculations based on empirical potentials are revealed.
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