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Abstract
In this paper I give a detailed account of an ab initio methodology for describing strong
electronic correlations in nanoscale devices hosting transition metal atoms with open d- or
f -shells. The method combines Kohn–Sham density functional theory for treating the weakly
interacting electrons on a static mean-field level with non-perturbative many-body methods for
the strongly interacting electrons in the open d- and f -shells. An effective description of the
strongly interacting electrons in terms of a multi-orbital Anderson impurity model is obtained
by projection onto the strongly correlated subspace properly taking into account the
non-orthogonality of the atomic basis set. A special focus lies on the ab initio calculation of
the effective screened interaction matrix U for the Anderson model. Solution of the effective
Anderson model with the one-crossing approximation or other impurity solver techniques
yields the dynamic correlations within the strongly correlated subspace giving rise e.g. to the
Kondo effect. As an example the method is applied to the case of a Co adatom on the Cu(0 0 1)
surface. The calculated low-bias tunnel spectra show Fano–Kondo lineshapes similar to those
measured in experiments. The exact shape of the Fano–Kondo feature as well as its width
depend quite strongly on the filling of the Co 3d-shell. Although this somewhat hampers
accurate quantitative predictions regarding lineshapes and Kondo temperatures, the overall
physical situation can be predicted quite reliably.
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1. Introduction

Modern experimental techniques now allow one to reliably
create, manipulate and control nanoscale devices with atomic
precision in the lab, thus bringing the dream of molecular
electronics or nanoelectronics to create ultimately miniaturized
electronic devices from single molecules closer to reality [1–4].
Prospective building blocks for molecular electronic circuits
such as molecular rectifiers [5–8] and field-effect transistors
[9–11] have already been demonstrated in experiments. The
use of magnetic atoms or molecules promises to further
enhance the functionality of molecular devices by exploiting
the spin-degree of freedom of the electron in addition to its
charge. Such devices could serve e.g. as basic building blocks
for nanoscale spintronics applications [12, 13] or as ultimately
miniaturized magnetic information storage devices [14].

Naturally, quantum effects play a crucial role in electronic
devices of such tiny dimensions. Consequently, experiments
with atomic- and molecular-scale devices have produced
a wealth of quantum phenomena such as conductance
quantization [15], quantum interference [16–19], or quantum
phase transitions [20]. On the other hand, details of the
atomic structure also play an important role for determining
the electronic properties of nanoscale devices, especially
regarding the contact between molecule and metal leads
[21–23]. Also the coupling to the leads can significantly
alter the electronic and magnetic properties of nanoscale
devices by broadening and shifting of energy levels, as well
as screening effects. Hence a proper theoretical description
of nanoelectronic devices needs to take into account all of the
following: quantum effects, the actual atomic structure of the
device and the coupling to the leads.
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The now standard approach for the description of
molecular electronic devices is to combine density functional
theory (DFT) calculations with the Landauer transport theory
or with the non-equilibrium Green’s function formalism
(NEGF) [24–27]. The DFT based transport approach yields an
effective mean-field description for the electronic structure and
transport properties of molecular devices, taking into account
quantum effects, as well as the actual atomic structure of the
device, and the coupling of the device to the metallic leads.
The approach works quite well for the description of metallic
nanocontacts, nanowires and carbon nanotubes [21, 26, 28].
On the other hand, it was realized quite early on that
this approach often overestimates conductances of molecules
attached to metal leads by orders of magnitude. The origin of
this was a matter of debate for about a decade [29–31]. It is
now understood that this problem is largely due to DFT based
transport calculations failing to produce the correct positions
of the molecular energy levels by not properly capturing
renormalization of molecular levels at the metal-molecule
interface [32–37].

Moreover, nanoscale devices comprising magnetic atoms
or molecules often display phenomena induced by so-called
strong dynamic correlations that arise when the effective
Coulomb interaction between the electrons exceeds their
kinetic energies. Dynamic correlations can have a profound
impact on the electronic and magnetic structure and the
transport properties of the system. One of the most intriguing
phenomena induced by dynamic correlations in nanoscale
devices is probably the Kondo effect [38, 39]: Below a
critical temperature characteristic of the system, the Kondo
temperature TK , the atomic or molecular spin forms a many-
body singlet state with the nearby conduction electrons,
thereby screening the magnetic moment of the device. The
correlations usually originate from the strongly interacting
open 3d- or 4f -shells of transition metal atoms. But also
molecular orbitals of purely organic molecules only weakly
coupled to the leads can give rise to strong correlations. This
is corroborated by the fact that the Kondo effect is not only
frequently observed in molecular devices comprising transition
metal atoms [40–51], but also for devices made from purely
organic molecules [42, 52–56]. By construction the DFT based
transport method being a static mean-field approach cannot
capture the dynamic correlations that lead e.g. to the Kondo
effect in nanoscale devices1.

Recent efforts to go beyond the DFT based transport
approach are to combine time-dependent DFT (TDDFT) with
the NEGF [58, 59] or the GW approximation with NEGF
[60–62]. A problem of the TDDFT approach is that the
standard approximations for TDDFT functionals in connection
with an adiabatic exchange correlation kernel does not yield
an improvement for the description of correlation effects with
respect to the static DFT approach. Some progress has been

1 Recently it has been shown by Bergfield et al that the exact exchange
correlation functional yields the exact transmission at the Fermi level in the
case of the simple Anderson impurity model. However, even the exact Kohn–
Sham spectrum does not yield a correct description of the spectral function
and transmission outside the Fermi level. Hence the renormalization of the
Kondo peak by the interactions cannot be captured by Kohn–Sham DFT based
transport calculations [57].

made recently in that direction by finding a non-adiabatic
exchange-correlation kernel for strongly correlated systems
but only in the context of simplified models such as the
Hubbard or Anderson model [63, 64]. The GW based transport
approach on the other hand has been implemented in a fully ab
initio way and has been applied to realistic molecular devices.
GW yields an energy-dependent self-energy for describing the
electronic interactions and thus captures dynamic correlation
effects to some extend. Importantly, the afore mentioned
problem of overestimating molecular conductances in DFT
based transport calculations is solved in GW as it takes into
account dynamical screening at the metal-molecule interface
which leads to a proper renormalization of molecular energy
levels [35]. However, GW, being perturbative in nature, does
not properly account for strong electronic correlations such as
those leading to the Kondo effect or the Mott–Hubbard metal–
insulator transition.

Here I give a detailed account of a different ab initio
approach for the description of strongly correlated molecular
conductors which has been developed, successively refined and
extended in previous work [65–69]. In this approach only the
strongly interacting part of the electronic spectrum is described
by advanced many-body methods in order to capture dynamic
correlations effects. The weakly to moderately interacting part
of the electronic system is still treated on a static mean-field
level by standard Kohn–Sham DFT (KSDFT). This approach is
basically an adaption of the DFT+dynamical mean-field theory
(DFT+DMFT) approach [70–73], which has been developed
for the realistic description of strongly correlated solids, to the
special situation of nanoscale conductors. Similar approaches
for treating strong correlations in molecular devices have
recently appeared in the literature [74–79].

This paper is organized as follows: in section 2 a detailed
account of the so far developed methodology is presented. In
section 3 the methodology is applied to the case of a Co adatom
at the Cu(0 0 1) surface which has been studied extensively in
the recent past [80–83] and thus presents an ideal testbed for
the theory. In section 4, I draw conclusions from comparison of
the results to the experiments and other theoretical methods.
I also discuss some of the caveats of the developed theory
and possible solutions to these problems as well as future
directions.

2. Methodology

The typical situations encountered in experiments with atomic
and molecular devices are depicted in figure 1: (a) a magnetic
molecule suspended between the tips of a metal nanocontact
and (b) a magnetic atom or molecule deposited on a metallic
surface probed by an STM tip. The magnetism and hence
the strong correlations of the molecule are here assumed to
stem from a single transition metal atom at its center. But
the approach can be easily generalized to the case of multiple
magnetic atoms by adaption of the dynamical mean-field
theory (DMFT) to the case of molecular conductors [67]. Both
situations depicted in figures 1(a) and (b) can be described by
the model depicted schematically in figure 1(c): the central
region, called device region D, contains the molecule or atom
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Figure 1. Typical situations encountered in molecular electronics/spintronics: (a) A magnetic molecule bridging the tips of a nanocontact.
(b) A magnetic molecule on a metal surface probed by an STM tip. (c) Schematic sketch of model that captures both situations shown in (a)
and (b). A central atom or molecule (turquoise) hosting strongly correlated levels C (red) is connected to two metal leads L and R (yellow).
The device region D (blue) contains the central atom/molecule and part of the leads. The polarization region P (magenta) extends over that
part of the atom/molecule and the lead(s) in close proximity to C.

and part of the leads, and will be described on the level of
KSDFT. Within the atom or molecule the correlated subspace
C yields the strongly interacting levels of the atom/molecule
that will be treated by advanced many-body techniques in order
to capture the strong dynamic correlations. The polarization
region P where the polarizability is calculated in order to
compute the screened interaction U of the strongly correlated
subspace on the other hand extends over that part of the
molecule and/or leads in immediate vicinity of the correlated
subspace C. This approach can in principle also be applied
directly to the case of purely organic molecules. In that case
one has to identify the molecular orbitals responsible for the
strong correlations [84].

The approach has been implemented within the ANT.G
package [85] which interfaces the Gaussian quantum
chemistry code [86] in order to implement the DFT based ab
initio transport methodology for molecular conductors. The
Gaussian code makes use of Gaussian atomic orbitals as basis
sets for performing quantum chemistry and DFT calculations
of finite clusters and molecules. The ANT.G package embeds
the finite cluster representing the device region into bulk
electrodes in order to model the transport situation depicted
in figure 1. However, the formalism developed below is not
specific to Gaussian basis sets. It can directly be applied to any
atomic basis set, as for example the Fireball orbitals used in the
SIESTA code [87]. Even more general, the formalism might
be applied to any basis set as long as the different subspaces
(D, P and C) can be defined in a meaningful way.

2.1. Non-orthogonal basis sets and projection onto a
subspace

We now have to carefully define the projections onto the
different subspaces taking into account the non-orthogonality
of the atomic basis set. The choice of projection strongly
influences physical quantities associated with the subspace
such as the density and electronic occupancy of the subspace
as has been shown recently by Soriano and Palacios [88].

We assume that the Hilbert space H of our system is
spanned by a (finite) set of non-orthogonal orbitals H = {|α〉},
i.e. H = span(H), and 〈α|β〉 = Sαβ �= 0 for |α〉, |β〉 ∈ H .
We now want to project onto a subspace M of H spanned by a
subset M = {|m〉} of the orbitals |α〉 ∈ H , i.e. M ⊂ H . Due to

the non-orthogonality of the orbitals |α〉 ∈ H , subspace M will
in general have a finite overlap with the subspace R spanned by
the rest of the orbitals |r〉 ∈ R ≡ H \M , i.e. Smr = 〈m|r〉 �= 0
for |m〉 ∈ M and |r〉 ∈ R. Hence the question arises how to
define a proper projection P̂M onto that subspace. We note that
there has actually been some controversy about this question
in the literature (see e.g. [89] and references therein).

It turns out that the proper choice for P̂M is actually quite
obvious: Let us first consider the simplest case of the subspace
M being spanned by a single orbital |m〉. By definition, the
projection operator for a single state is simply P̂m = |m〉〈m|.
This definition is independent of how (in which basis) the
Hilbert space of the entire system is defined; i.e. it does not
matter whether |m〉 forms part of the basis set spanning the
entire Hilbert space or not; or in case it does whether it has
some overlap with the Hilbert space R spanned by the rest of
the basis set.

Hence it is clear that the projection P̂M for the subspace
M can be written in an orthonormal basis set M⊥ = {|m⊥〉}
spanning the subspace M as P̂M = ∑

m⊥∈M⊥ |m⊥〉〈m⊥|.
Such an orthonormal set can always be found by Löwdin
orthogonalization of the original non-orthogonal set spanning
M: |m⊥〉 = ∑

m(S−1/2
M )mm⊥|m〉 where SM is the overlap matrix

between the basis set elements of M only and S−1/2
M is an

abbreviation for (SM)−1/2, i.e. the matrix power −1/2 of the
matrix SM. Hence we find for the projection operator:

P̂M =
∑

m⊥∈M⊥
|m⊥〉〈m⊥|

=
∑

m,n∈M

∑
m⊥∈M⊥

(S−1/2
M )mm⊥(S−1/2

M )m⊥n|m〉〈n|

=
∑

m,n∈M

|m〉(S−1
M )mn〈n| (1)

which is nothing but the identity operator for the subspace M
written in the non-orthogonal basis set. It has been argued
on more formal grounds that this choice for the projection is
actually the only physical reasonable one as it is the only one
that leads to a tensorial consistent occupancy matrix which
generates a Hermitian potential [89]. Note that the subspace
projection P̂M defined here corresponds to the projector with
regard to the � metric denoted by P̂ �

M in [88].
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Also note that in general we cannot write the identity
operator for the entire system as the sum of the projection
onto subspace M and subspace R spanned by the rest of the
basis set if there is some overlap between the two subspaces,
i.e. Î �= P̂M + P̂R. Rather we have to correct for the overlap
between the two subspaces:

Î =
∑

α,β∈H

|α〉(S−1)αβ〈β| = P̂M + P̂R + Ô (2)

where S−1 is the inverse of the overlap matrix for the entire
system. Ô is an operator correcting the sum of projections by
the overlap between the two subspaces M and R. P̂M̄ ≡ P̂R +Ô

defines the projection onto a new subspace M̄ which is actually
orthogonal to subspace M. The projection P̂M̄ thus defines an
orthogonalization scheme which orthogonalizes R with respect
to subspace M preserving the latter.

Now let us have a look at how an operator Â acting on the
full Hilbert space is projected onto the subspace M:

ÂM ≡ P̂MÂP̂M

=
∑

m,m′,n,n′∈M

|m〉(S−1
M )mm′ 〈m′|Â|n′〉(S−1

M )n′n〈n|

=
∑

m,n∈M

|m〉(S−1
M AMS−1

M )mn〈n| =
∑

m,n∈M

|m〉(ÃM)mn〈n|

(3)

where AM = (〈m|Â|n〉) is the direct matrix given by the
matrix elements of Â with the basis {|α〉} of subspace M, and
ÃM = S−1

M AMS−1
M is the so-called nuclear matrix in that basis.

Note that for an orthonormal basis of M we have ÃM = AM.
Frequently, we will also have to project an operator Â

given for some subspace M onto a smaller subspace M′ ⊂ M:

ÂM′ = P̂M′ÂMP̂M′ =
∑

m,n∈M

P̂M′ |m〉(ÃM)αβ〈n|P̂M′

=
∑
m,n∈M

m′ ,n′ ,p′ ,q′∈M′

|m′〉(S−1
M′ )m′p′

〈
p′|m〉

(ÃM)mn

〈
n|q ′〉(S−1

M′ )q ′n′ 〈n′|

=
∑

m′,n′∈M′
|m′〉(S−1

M′ SM′M ÃM SMM′ S−1
M′ )m′n′ 〈n′| (4)

where SM′M is the overlap matrix between orbitals |m′〉 ∈ M ′

and orbitals |m〉 ∈ M . Hence we obtain the following
expression for the nuclear matrix of subspace M′ in terms of
the nuclear matrix for subspace M:

ÃM′ = S−1
M′ SM′M ÃM SMM′ S−1

M′ (5)

On the other hand, we may also have the opposite situation
where we have some operator ÂM only defined on subspace
M, and we want to know the direct matrix for the entire space
H, i.e.

〈α|ÂM|β〉 =
∑

m,n∈M

〈α|m〉(ÃM)mn〈n|β〉 (6)

Hence the direct matrix of the operator ÂM is given by

AM = SHMÃMSMH (7)

2.2. Projected Green’s functions

The central quantities both in DFT based transport calculations
of molecular electronics devices and in quantum many-body
theory are Green’s functions (GF). The one-body GF is defined
as the resolvent of the one-body Schrödinger equation [90]:

Ĝ(z)(z + µ − Ĥ ) = Î (8)

where z is complex, µ is the chemical potential, and Ĥ is the
Hamiltonian of the system. Ĝ(z) has poles at the eigen values
εk of Ĥ for a finite system or a branch cut on the real axis at the
energy bands for an infinite system. Its spectral representation
in terms of the eigen states |k〉 of Ĥ is given by:

Ĝ(z) = (z + µ − Ĥ )−1 =
∑

k

|k〉〈k|
z + µ − εk

(9)

The GF operator projected onto subspace M is given by:

ĜM(z) = P̂MĜ(z)P̂M =
∑

α,β∈M

|α〉(G̃M(z))αβ〈β| (10)

Defining the GF of the isolated subspace M as

ĝM(z) = ((z + µ)P̂M − ĤM)−1 (11)

and the self-energy operator �̂M associated with the coupling
of the subspace M to the rest of the world as

�̂M(z) = [ĝM(z)]−1 − [ĜM(z)]−1 (12)

it is possible to rewrite the projected GF as

ĜM(z) =
(
(z + µ)P̂M − ĤM − �̂M(z)

)−1
(13)

The self-energy �̂M(z) is not to be confused with the one
describing electron-electron interactions in the many-body GF
formalism. Note that in many-body physics in the context
of the Anderson impurity model [91] �̂M(z) is often called
hybridization function and is denoted by �̂M(z).

One can easily write �̂M(z) in terms of the GF for the
isolated (i.e. not coupled to M) complementary space M̄
defined by P̂M̄, ĝM̄(z) = ((z + µ)P̂M̄ − ĤM̄)−1 as �̂M(z) =
ĤM,M̄ ĝM̄(z) ĤM̄,M where ĤM,M̄ = P̂MĤ P̂M̄ = (ĤM̄,M)†. In
order to find the matrix representations GM and G̃M of the
projected GF ĜM(z), equation (13), is multiplied with the
denominator of the rhs, the matrix elements are taken and the
subspace identity P̂M is inserted between the two factors of
the lhs:

〈α|ĜM(z)
∑

α′,β ′∈M

|α′〉(S−1
M )αβ ′ 〈β ′|

(
(z + µ)P̂M − �̂M(z)

)
|β〉

= 〈α|P̂M|β〉 (14)

Hence we find for the direct GF matrix

GM(z) = SM ((z + µ)SM − HM − �M(z))−1 SM

= (
(z + µ)S−1

M − H̃M − �̃M(z)
)−1

(15)

and for the corresponding nuclear matrix

G̃M(z) = ((z + µ)SM − HM − �M(z))−1 (16)
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Figure 2. Feynman diagrams for the single-particle Green’s function G̃ and the bare Coulomb interaction Vc in an atomic basis set.

2.3. Many-body Green’s functions and Feynman diagrams in
an atomic basis set

The generalization of the one-body Green’s function for an
(effectively) non-interacting system to the case of interacting
electrons are the single-particle Green’s function or single-
particle propagators. The single-particle Matsubara GF [92]
for atomic states α and α′ is defined as

Gαα′(τ, τ ′) = −〈Tτ [cα(τ ), c
†
α′(τ

′)]〉 (17)

where τ is imaginary time and the creation and annihilation
operators obey the generalized anti-commutation rules for non-
orthogonal basis sets [93]:

{cα, c
†
β} = Sαβ (18)

The Fourier transform with respect to imaginary time τ yields
the Matsubara GF for imaginary frequencies (called Matsubara
frequencies):

Gαα′(iω) =
∫ β

0
dτ eiωτGα,α′(τ, 0) (19)

By analytic continuation to the real frequency axis one obtains
the retarded single-particle GF G

(+)
αα′(ω) ≡ Gαα′(iω → ω+iη).

Gαα′ defines the direct single-particle GF matrix G. In
the absence of interactions the single-particle GF matrix G
turns out to be equal to the one-body GF matrix defined as the
resolvent of the one-body Schrödinger equation. Analogous
to the one-body GF we can also define the nuclear matrix for
the interacting single-particle GF as G̃ = S−1GS−1.

For the development of a diagrammatic expansion for
the interacting GF in a non-orthogonal basis in terms of the
Coulomb interaction and the non-interacting GF, one has to
either use the nuclear GF matrix in combination with the
direct Coulomb interaction matrix, or the direct GF matrix
in combination with the nuclear matrix of the Coulomb
interaction [93]. Here we will work with the nuclear matrix for
the Green’s functions and the direct matrix for the interactions.

The bare Coulomb interaction in an atomic basis set is
given by:

Ve−e = 1

2

∑
α,α′,β,β ′,σ,σ ′

Ṽαβ;α′β ′ c†
ασ c

†
α′σ ′cβ ′σ ′cβσ (20)

where Ṽαβ;α′β ′ is the nuclear matrix of the Coulomb interac-
tion [93], i.e. Ṽ(1, 2) = S(1)−1S(2)−1V(1, 2)S(2)−1S(1)−1

and the direct matrix elements are given by

Vαβ;α′β ′ = e2
∫ ∫

dr1dr2
φ∗

α(r1)φβ(r1)φ
∗
α′(r2)φβ ′(r2)

‖r1 − r2‖ (21)

The Feynman diagrams for the GF and the Coulomb interaction
in an atomic basis set are shown in figure 2.

2.4. DFT based transport calculations

We consider the situation schematically depicted in figure 1(c).
The central device region D containing a molecule is coupled
to two electrodes L and R. This situation can be realized in
a number of ways as shown in figures 1(a) and (b): (a) A
molecule bridging the tips of a nanocontact or (b) a molecule
deposited on a metal substrate and coupled to an STM tip. In
addition to the molecule the device region D contains those
parts of the two electrodes which are in close proximity to the
molecule and whose electronic structure is modified by the
presence of the molecule and vice versa. In the case of the
molecular bridge (a) the tips of the nanocontact are included
in the device region while in the case of the molecule on the
substrate (b), part of the surface and of the STM tip are included
in the device region.

The electronic structure of the central device region is
calculated ab initio on the level of DFT in the Kohn–Sham (KS)
framework, taking into account the coupling to the electrodes L
and R. The Kohn–Sham Green’s function of the device region
D is given by:

G̃0
D(z) = ((z + µ)SD − H0

D − �L(z) − �R(z))−1 (22)

where H0
D is the KS Hamiltonian of the device region which

yields an effective mean-field description of the electronic
structure of the device region. ΣL(z) and ΣR(z) are the lead
self-energies associated with the coupling of the device region
to the bulk electrodes.

From the device GF the electronic density can easily be
calculated by integration up to ω = 0 (corresponding to the
chemical potential µ)

D̃0
D = −Im

1

π

∫ 0

−∞
dω G̃0

D(ω + iη) (23)

the density matrix yields a new KS Hamiltonian for the
device region thus closing the self-consistency cycle of the
KS calculation. Hence we can self-consistently calculate the
electronic structure of the device region taking into account
the coupling to the electrodes (open system).

In contrast to D, the electronic structure (Hamiltonian) of
the electrodes L and R, and hence the self-energies are kept
fixed during the self-consistent calculation of the electronic
structure of D. Depending on the situation, different models
for the bulk electrodes can be employed. One can for example
choose nanowires [94], embed the cluster into a perfect
crystalline surface calculated ab initio [26], or use so-called
absorbing boundary conditions (ABC) [95]. Here we choose
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a tight-binding Bethe lattice model [96] with realistic tight-
binding parameters obtained from DFT calculations [97].
The actual choice of the electrode model is not crucial for
calculations as long as the bulk electrodes are far enough away
from the central scattering region, i.e. the device region is
chosen big enough and contains a sufficiently big part of the
electrodes [98].

Once the KS calculation is converged the transport
properties can be calculated within the Landauer approach
from the transmission function which is given by:

T 0(ω) = Tr[ΓL(ω)G̃0†
D (ω)ΓR(ω)G̃0

D(ω)] (24)

where ΓL ≡ i(ΣL − Σ†
L) and ΓR ≡ i(ΣR − Σ†

R) are the
so-called coupling matrices which yield the broadening of
the device region due to the coupling to the leads. From
the transmission function the current and conductance can be
calculated using the Landauer formula

I (V ) = 2e

h

∫
dω T 0(ω) (f (ω − µL) − f (ω − µR)) (25)

where µL and µR are the electrochemical potentials of the left
and right lead, respectively, defined by the applied bias voltage
eV = µL −µR. Note that in general the transmission function
T 0(ω) also depends on the applied voltage V , i.e. T 0 =
T 0(ω, V ), and actually has to be calculated out of equilibrium
by combining the KSDFT with the NEGF [24–26]. However,
within the mean-field like KSDFT based NEGF approach the
transmission is often not so strongly voltage dependent, and
hence current and conductance can be approximated well by
the equilibrium transmission T 0(ω, 0) at least for sufficiently
small bias voltages.

In the typical situation of an STM setup (figure 1(b)), most
of the applied bias voltage V will drop near the sharp STM
tip, i.e. the electrochemical potential of the substrate remains
fixed to the equilibrium one µsub = µ while that of the STM
tip changes with the bias µtip = µ + eV . The differential
conductance for low bias at zero temperature is then directly
given by the transmission function:

G(V ) = ∂I

∂V

= 2e

h
× ∂

∂V

∫ eV

0
dω T 0(ω) = 2e2

h
× T 0(eV ) (26)

In contrast, for the situation of a molecule coupled
symmetrically to two leads (figure 1(a)), the voltage will drop
more or less symmetrically across the junction, i.e. µL =
µ− eV/2 and µR = µ+ eV/2. Hence for the conductance we
obtain now

G(V ) = 2e

h
× ∂

∂V

∫ +eV/2

−eV/2
dω T 0(ω)

= e2

h

[
T 0

(
eV

2

)
+ T 0

(
−eV

2

)]
(27)

In a more general situation where the coupling is neither
completely symmetric nor completely asymmetric, more
sophisticated modelling of the electrostatics or even a KS-
NEGF calculation would be necessary in order to find the actual
voltage drop.

2.5. Projection onto the correlated subspace: Anderson
impurity model

Next we have to identify the strongly correlated subspace
C. Usually C will be formed by the open d- or f -shells of
transition metal atoms. However, also molecular orbitals of
purely organic molecules such as C60 or carbon nanotubes
weakly coupled to electrodes can show strong correlations if
the effective interaction in these levels is big in comparison
with the broadening due to the coupling to the leads. Our
approach is completely general in this respect.

From now on we assume that the orbitals φ forming
the subspace C are mutually orthogonal (but not necessarily
orthogonal to the other orbitals in the device region). This can
always be achieved by simple Löwdin orthogonalization of
subspace C. However, note that often the orbitals spanning C
are already mutually orthogonal. For example in the case of the
atomic orbitals forming the open d- or f -shell of a transition
metal atom, or in the case of molecular orbitals which are
the eigenstates of the KS Hamiltonian of the molecule and
hence by construction are orthogonal. In order to account for
the strong correlations in subspace C an effective Coulomb
interaction term

V̂e−e
C = 1

2

∑
ijkl

σσ ′

Uik;j l c
†
iσ c

†
jσ ′clσ ′ckσ (28)

is added acting on the orbitals in C. Note that Uik;j l is not the
bare Coulomb interaction but an effective interaction which
is usually much lower than the bare one due to screening
processes by the conduction electrons. In the next section
it is shown how to calculate Uik;j l ab initio from the DFT
electronic structure. The full many-body Hamiltonian of the
strongly interacting subspace C now reads:

ĤC = Ĥ0
C + V̂e−e

C (29)

where the one-body part Ĥ0
C = ∑

i,j,σ 〈φi |Ĥ 0
C|φj 〉c†

iσ cjσ is

given by projection of the KS Hamiltonian Ĥ 0
D onto C.

However, since the Coulomb interaction has been taken into
account already on a mean-field level in the Kohn–Sham
Hamiltonian, we also need to subtract a double-counting
correction (DCC) term:

Ĥ 0
C = P̂CĤ 0

DP̂C − V̂ dc
C (30)

Unfortunately, the DCC term V̂ dc
C is not exactly known for DFT,

and several approximation schemes are used in practice [99].
Here the so-called atomic limit or fully localized limit (FLL) is
employed [100], but generalized to the case of an anisotropic
Coulomb repulsion Uii;jj [69]:

(V dc
C )ii =

∑
j

Uii;jj

(
nj − 1

2MC

)
− JH

NC − 1

2
(31)

where nj = 〈c†
j cj 〉 is the electronic occupation of orbital

φj , MC is the dimension of subspace C, JH is the Hund’s
rule coupling given by the orbital-averaged exchange matrix
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Figure 3. Dyson equation for RPA screened interaction for atomic basis set. Wiggly lines correspond to the bare Coulomb interaction V ,
double wiggly lines to the RPA screened interaction W .

elements Uij ;ji , and NC = ∑
j∈C nj is the total electronic

occupation of subspace C.
According to (16) the self-energy (a.k.a. the hybridization

function) associated with the coupling of C to the rest of the
system is given by

�C(ω) = (ω + µ)1C − H0
C − [G̃0

C(ω)]−1 (32)

where the projected GF of the correlated subspace C ⊂ D can
be calculated from the device GF according to (5) as

G̃C(ω) = SCDG̃D(ω)SDC (33)

As customary in many-body physics we will call �C(ω)

the hybridization function from now on. The many-body
Hamiltonian ĤC of subspace C together with the hybridization
function �C(ω) define a multi-orbital Anderson impurity
model (AIM). Solution of the AIM yields the self-energy
�C(ω) describing the strong electronic correlations within the
C subspace which is fed-back to the DFT calculation in order
to obtain electronic spectra and transport properties of the
molecular device (see section 2.8).

2.6. Computation of the effective interaction in the correlated
subspace

The effective interaction V̂e−e
C between the electrons in the

correlated subspace C is not the bare Coulomb interaction
because of screening processes by formation of electron–hole
(e–h) pairs in the rest of the system. Therefore the screened
Coulomb matrix elements Uik;j l are considerably lower than
the bare Coulomb interaction Vik;j l . The screening of the bare
interaction by formation of e–h pairs can be calculated within
the so-called Random Phase Approximation (RPA) (see e.g.
the book by Mahan [92] or any other textbook on quantum
many-body theory). However, screening of the electrons
within the C subspace will already be taken into account by
the impurity solver. Hence the contribution of the impurity
subspace C to the screening needs to be subtracted out. By
doing so one arrives at the so-called constrained random phase
approximation (cRPA) [101].

In order to calculate the effective screened interaction
Uik;j l of subspace C within cRPA we first define the so-called
polarizability region P in which screening processes due to
formation of e–h pairs are taken into account for calculating
the screened interaction. P comprises the strongly correlated
subspace C and a sufficient portion of the surrounding atoms
of subspace C as is schematically indicated in figure 1. In
principle, the whole D region could be chosen as P. However,

in practice this is often not feasible because of computational
limitations if the device region is reasonably big. Also as it
turns out the screening of the correlated subspace C by the
surrounding conduction electrons is relatively localized due to
the usually localized nature of the strongly correlated orbitals
making up C.

Within RPA the screened interaction W is given by the
Dyson equation shown diagrammatically in figure 3 which in
an atomic orbital basis set can be written algebraically as

−Wα1β1;α2β2(τ1, τ2) = −Vα1β1;α2β2 × δ(τ1 − τ2)

−
∑

µ1ν1µ2ν2

Vα1β1;µ1ν1

∫ β

0
dτ (Π̃P)µ1ν1;µ2ν2(τ1, τ )

×Wµ2ν2;α2β2(τ, τ2) (34)

For the screening of the bare Coulomb interaction V only
screening processes within region P are taken into account.
Hence we have to calculate the polarizability (i.e. the bubble
diagram in figure 3) projected onto the P region:

(Π̃P)αβ;α′β ′(τ, τ ′) =
∑

σ

(G̃0
P)

σ
β ′α(τ ′, τ ) (G̃0

P)
σ
βα′(τ, τ

′) (35)

where the projected GF for the P region can be obtained from
the device GF according to (5) as

G̃P = S−1
P SPD G̃D SDP S−1

P (36)

For a stationary Hamiltonian we can replace the two times in
the screened interaction and polarizability by time differences:
�(τ1, τ2) → �(τ1 −τ2) and W(τ1, τ2) → W(τ1 −τ2). Hence
(by setting τ2 = 0 and after some renaming), we can write the
Dyson equation for the RPA screened interaction as:

Wα1β1;α2β2(τ ) = Vα1β1;α2β2 × δ(τ )

+
∑

µ1ν1µ2ν2

Vα1β1;µ1ν1

∫ β

0
dτ ′ (Π̃P)µ1ν1;µ2ν2(τ − τ ′)

×Wµ2ν2;α2β2(τ
′) (37)

Here we will only consider the static limit of the screened
interaction, i.e. W 0 ≡ W(ω = 0) = ∫

dτ W(τ). Because

of the β-periodicity of �(τ) we also have
∫ β

0 dτ �(τ − τ ′) =∫ β

0 dτ �(τ) ≡ �0. Hence we obtain the following Dyson
equation for the static screened interaction W 0:

W 0
α1β1;α2β2

= Vα1β1;α2β2 +
∑

µ1ν1µ2ν2

Vα1β1;µ1ν1(�̃
0
P)µ1ν1;µ2ν2

×W 0
µ2ν2;α2β2

(38)
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Figure 4. Dyson equation for fully screened RPA interaction W0
C of subspace C in terms of effective interaction U. Orbital indexes have

been suppressed here.

The static Polarizability �0 is now found easily by integrating
a Green’s function product over the frequency domain:

(Π̃0
P)µ1ν1;µ2ν2 ≡

∫ β

0
dτ (Π̃P)µ1ν1;µ2ν2(τ )

=
∫ β

0
dτ

∑
σ

(G̃0
P)

σ
ν2µ1

(−τ) (G̃0
P)

σ
ν1µ2

(τ )

= 1

β

∑
iωn

∑
σ

(G̃0
P)

σ
ν2µ1

(iωn) (G̃0
P)

σ
ν1µ2

(iωn)

−→
β→∞

1

2π

∫ ∞

−∞
dω

∑
σ

(G̃0
P)

σ
ν2µ1

(ω) (G̃0
P)

σ
ν1µ2

(iω) (39)

where in the last step we have taken the zero temperature
limit (β → ∞) rendering the discrete Matsubara frequencies
continuous.

We now define superindices I := (i1, i2) in order to
rewrite the Dyson equation in form of a matrix equation. Hence
we have W0 = (W 0

I ,J ) etc., and the Dyson equation can be
written in matrix form as:

W0 = V + V �̃0
P W0 (40)

Solving for the static screened interaction W0 we find:

W0 = (
1 − V �̃0

P

)−1
V (41)

Projection to the correlated subspace C then yields the RPA
screened interaction for the correlated electrons W0

C. However,
since the screening within the correlated subspace will already
be taken into account by the impurity solver in a more or
less exact way, the screening of the correlated electrons by
themselves has to be subtracted out in order to obtain the
effective interaction U. Hence the effective interaction U is
the partially screened interaction that results in the fully RPA
screened interaction W0

C when taking into account only the
polarizability �̃C within the C subspace. The corresponding
Dyson equation is shown diagrammatically in figure 4. Solving
for the effective interaction U we arrive at the following
‘unscreening’ equation [102–104] computing U from W0

C:

U = W0
C (1C + Π̃0

CW0
C)−1 (42)

In order to determine the screening within subspace C, we have
to calculate the polarizability corresponding to subspace C.

Π̃0
C = 1

2π

∫ ∞

−∞
dω

∑
σ

(G̃C)σν2µ1
(iω) (G̃C)σν1µ2

(iω) (43)

where G̃C(iω) = SCDG̃D(iω)SDC.
It is important to realize that Π̃0

C and G̃C are not just
submatrices of the corresponding bigger matrices Π̃0

P and G̃P

in the P region of the device due to the overlap between the
subspaces. Neglecting this detail can result in serious errors in
the computation of the effective Coulomb interaction U: Due to
the numerical instability of equation (42) small inaccuracies in
computing Π̃0

C can result in large errors and even in completely
unphysical effective interactions. The numerical instability of
equation (42) can be seen by rewriting it as

U =
([

W0
C

]−1
+ Π̃0

C

)−1
(44)

As the fully screened interaction W0
C is usually quite small

(compared to the bare Coulomb interaction) and positive,
[W0

C]−1 is big and positive. On the other hand the screening of
the correlated electrons by themselves is usually strong, and
therefore Π̃0

C is big and negative. Hence in order to obtain
U we are basically subtracting two relatively big numbers
and inverting the resulting small number so that relatively
small errors in calculating W0

C or Π̃0
C can result in quite large

errors for U. It should be noted here that in the case of a
semiconducting or insulating substrate or host material, as
well as in the case of insulating compounds this issue is less
problematic since then at low energies around the Fermi level,
the two subspaces are completely decoupled, leading to weaker
‘self-screening’ of the correlated electrons, and hence smaller
numbers for [W0

C]−1 and Π̃0
C.

However, in the case of a metallic host or substrate
considered here, it is thus crucial to correctly perform
the projections of the different quantities involved in the
calculation of the effective interaction (Green’s functions,
polarizability) to the P and C subspaces in order to reliably
calculate U. Also the usual neglect of certain product basis
states in the computation of the screened interaction [105]
might be problematic in this context. One way to stabilize
the numerical evaluation of (42) is to decouple the correlated
subspace from the rest of the system both in the calculation
of W and of U as proposed by Miyake et al [106]. This
way the self-screening of the correlated electrons is reduced
considerably, leading to smaller values of [W0

C]−1 and Π̃0
C,

and thus enhancing the numerical stability. However, this can
lead to far too high matrix elements for the direct Coulomb
interaction as will be shown in section 3. Apparently, ‘mixed
propagators’ between the correlated subspace and the rest of
the system (which vanish when the subspaces are decoupled)
can be quite important for the screening of the effective
interaction.

2.7. Solution of the Anderson impurity model: one-crossing
approximation

Since the interaction Uijkl is strong in comparison with the
single-particle broadening (given by the imaginary part of

8
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Figure 5. Diagrams for pseudo-particle self-energies in NCA and OCA approximations. Full lines correspond to conduction electron
propagators coupled to impurity levels α, double dashed lines to full pseudo-particle propagators.

�̂C(ω)), the AIM problem cannot be solved by standard
perturbation theory in the Coulomb interaction. Instead more
advanced many-body methods usually starting from an exact
diagonalization of the full impurity Hamiltonian ĤC have to
be employed in order to properly take into account the strong
correlations within subspace C. Here I use the one-crossing
approximation (OCA) [107] which is an improvement over
the non-crossing approximation (NCA) [108–110]. However,
it should be emphasized that the methodology presented so
far can in principle be combined with any other method for
solving the AIM, as e.g. continuous time quantum Monte-
Carlo (CTQMC) [111], or numerical renormalization group
(NRG) [112], or the Lanczos diagonalization scheme [76].

One advantage of OCA over other schemes is that
spectral data can be calculated directly on the real frequency
axis. Hence in contrast to the numerically exact CTQMC,
for example, it does not suffer from artifacts introduced
by numerical analytic continuation of the spectra from the
Matsubara axis to the real axis. Also spurious features in
the spectra coming from the approximation of the infinite and
continuous conduction electron bath in the Anderson model by
a finite and discrete one as in direct diagonalization schemes
such as Lanczos, are not a problem for OCA since the bath is
not truncated or discretized. On the other hand, in contrast
to the basically exact but computationally very demanding
NRG, OCA can actually be applied to realistic Anderson
models of 3d- and 4f -impurities with 5 and 7 impurity-levels,
respectively.

However, being an approximate method, OCA also suffers
from some deficiencies that one should be aware of. First, as
in the case of the simpler NCA, spurious non-Fermi liquid
behaviour is obtained in the zero-temperature limit, resulting
in artifacts in the spectral density for low temperatures. While
in NCA these artifacts already appear below TK , in OCA
the critical temperature below which the artifacts appear is
significantly lower (1–2 orders below TK ). Another problem of
NCA and OCA is the violation of certain sum rules especially
in the case of multi-orbital Anderson models that lead to
errors in the high frequency expansion of the electronic self-
energy [113]. Again, these errors are much less pronounced
in OCA than in NCA.

The basic idea of both NCA and OCA methods is to
treat the coupling of the correlated subspace C to the rest

of the system given by the hybridization function �C(ω) as
a perturbation to the dynamics within the subspace induced
by the strong electron-electron interactions which is treated
exactly. Hence the starting point is an exact diagonalization of
the many-body Hamiltonian of the correlated subspace:

ĤC =
∑
m

Em|m〉〈m| (45)

where |m〉 are the many-body eigenstates of HC and Em the
corresponding eigen-energies.

It is now convenient to represent the many-body
eigenstates of |m〉, in terms of auxiliary fields or pseudo-
particles (PPs) âm, â†

m which obey (anti-)commutation rules
depending on the number of electrons represented by the
corresponding many-body state |m〉. The physical electron
operators ciσ , c

†
iσ are related to the PP operators by:

ciσ =
∑
m,n

Fmn
iσ a†

man (46)

where Fmn
iσ are the matrix elements of the electron annihilation

operator with the many-body eigenstates of C: Fmn
iσ =

〈m|ciσ |n〉. Since the PPs obey (anti-)commutation rules a
diagrammatic expansion of PP propagators in terms of the
coupling to the rest of the system is possible. The full PP
propagator corresponding to a many-body state |m〉 is then
given by

Gm(ω) = 1

ω − λ − Em − �m(ω)
(47)

where �m(ω) is the PP self-energy describing the dynamic
interaction with the other PPs induced by the hybridization
with the rest of the system (bath).

NCA consists in an infinite resummation of self-energy
diagrams where conduction electron lines do not cross (hence
the name). These are the diagrams shown in the left box in
figure 5 for a certain PP m representing a many-body state of
N electrons. The NCA diagrams describe processes where
a single electron (hole) jumps from the bath to subspace
C and back thereby temporarily creating a PP with N + 1
(N − 1) electrons. Hence the NCA self-energy is given by
a convolution of the hybridization function �C(ω) with the PP
propagators Gm′ of the PPs m′ coupled to m. OCA additionally
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takes into account diagrams where two bath electron lines cross
as shown in the right box of figure 5. The algebraic expressions
for the OCA self-energies involve double convolutions of two
hybridization functions with three PP propagators. The exact
algebraic expressions can be found in the literature [103, 107].
Since the self-energy of a PP m depends on the dressed
propagators of the other PPs m′ that interact via Vhyb with m,
the NCA/OCA equations have to be solved self-consistently.

Once the NCA/OCA equations have been solved, the real
electronic quantities can be calculated from the PP propagators
by expanding the real electron operators in terms of PP
operators by (46). Within NCA, the real electron spectral
function is obtained from the PP spectral functions as

ρiσ (ω) = 1

〈Q〉
∑
mm′

∫
dε e−βε[1 + e−βω]|Fmm′

iσ |2

×Am(ε) Am′(ω + ε) (48)

where Am(ω) = −Im Gm(ω)/π is the PP spectral function
for PP m and Q is the PP charge which is obtained by
integration of the PP spectral functions. Again. in OCA the
expression for calculating the electronic density ρiσ (ω) is more
complicated, involving double convolutions of PP spectral
functions. From the electron spectral density ρiσ (ω) being the
imaginary part (modulo π ) of the electron Green’s function
Giσ (ω) we can calculate the real part of Giσ (ω) by Kramers-
Kronig. Finally, from the GF ĜC(ω) the electronic self-energy
describing the dynamic correlations within C is obtained by
�̂C(ω) = [Ĝ0

C(ω)]−1 − [ĜC(ω)]−1 where Ĝ0
C(ω) = ((ω +

µ)P̂C − Ĥ 0
C − �̂C(ω))−1 is the bare propagator of subspace

C. For a more detailed account of the NCA, OCA and other
methods based on a hybridization expansion of atomic states
see e.g. [71, 103].

2.8. Feedback of the self-energy: correlated electronic
structure and transport properties

Once we have solved the Anderson impurity model for the
strongly interacting subspace C coupled to the rest of the
system, we obtain the electronic self-energy describing the
strong dynamic correlations within subspace C:

�̂C(ω) =
∑
i,j∈C

|i〉 [ΣC(ω)]ij 〈j | (49)

Note that Σ̃C = ΣC since we have assumed the basis to
be orthonormal within subspace C. This self-energy is now
fed back to the DFT part in order to obtain the correlated
electronic structure and transport properties of the system.
More specifically, we obtain the correlated device GF

ĜD(ω) =
(

[Ĝ0
D(ω)]−1 − [�̂C(ω) − V̂ dc

C ]
)−1

(50)

where V̂ dc
C is the DCC operator which like �̂C(ω) only acts on

C. According to (7) the corresponding nuclear matrix of the
device GF is

G̃D(ω) = (
[G̃0

D(ω)]−1 − SDC[ΣC(ω) − Vdc
C ]SCD

)−1
(51)

where the overlap matrices SDC and SCD sandwiching ΣC(ω)−
Vdc

C account for the overlap between the correlated subspace C
and the rest of the system (see equation (7)).

From the correlated device GF G̃D(ω) we can calculate the
correlated electronic density analogously to (23) by integration
of G̃D(ω) up to 0 energy:

D̃D = −Im
1

π

∫ 0

−∞
dω G̃D(ω + iη) (52)

From the correlated density in turn a new KS Hamiltonian
for the device region can be calculated, from which a
new correlated density is obtained and so forth until self-
consistency is reached. Hence we can calculate the effect of the
correlation within the C subspace onto the charge distribution
of the device region. This part corresponds to the so-
called ‘charge self-consistency’ loop within the DFT+DMFT
scheme [73].

Following Meir–Wingreen [114], the low-bias transport
properties can be obtained in complete analogy to the case of
KS-DFT transport equations (24)–(27) even in the presence of
strong correlations from the correlated transmission function

T (ω) = Tr[ΓL(ω)G̃†
D(ω)ΓR(ω)G̃D(ω)] (53)

Note that the strong correlations giving rise e.g. to the Kondo
effect are actually contained in T (ω) via the correlated GF
G̃D(ω).

In the next section we will see that the Fano–Kondo
lineshapes measured by STM spectroscopy of magnetic atoms
and molecules on metal substrates can indeed be reproduced by
calculating the conductance from the (zero-bias) transmission
function. This is due to the fact that the Kondo effect is a low-
energy phenomenon, i.e. the Kondo peak is observed for very
small bias voltages so that finite-bias effects only play a minor
role. For the description of actual non-equilibrium phenomena
the formalism has to be generalized to include the effect of
finite bias voltages. As shown by Meir and Wingreen in their
landmark papers [114] this can be achieved by generalization
of the formalism to the Keldysh contour. However, in this
case the Anderson impurity problem has to be solved out of
equilibrium which is computationally extremely demanding.
So far it has only been achieved in the context of the single-
level AIM [115–117], but not for realistic cases.

3. Results: Co adatom at the Cu(0 0 1) surface

Now the developed methodology is applied to the case of a Co
adatom deposited on the Cu(0 0 1) surface. This system is an
ideal testbed for the theory as it has been measured extensively
in the recent past [80, 82, 83, 118–120]. Figure 6(a) shows
the atomic structure of the device region. The device contains
the Co atom on three layers of the Cu(0 0 1) surface and an
STM tip consisting of a Cu pyramid grown in the (0 0 1)
direction. The Co atom and its four nearest neighbour Cu
atoms have been relaxed with Gaussian09 [86] using the
local spin density approximation (LSDA) and the LANL2DZ
double-zeta valence plus outer core electron basis set with core
pseudo potentials [121] while the rest of the device atoms have

10



J. Phys.: Condens. Matter 27 (2015) 245606 D Jacob

Table 1. Total and orbital resolved occupations and spin of Co 3d-shell within DFT on the level of LSDA and LDA and DFT+OCA
calculations.

Nd z2 xz yz x2 − y2 xy Sd

LSDA 8.13 1.59 1.66 1.66 1.33 1.89 0.82
LDA 8.25 1.66 1.63 1.63 1.52 1.81 —
OCA 8.26 1.34 1.94 1.94 1.08 1.97 0.86
OCA (+0.4 eV) 8.06 1.11 1.96 1.96 1.06 1.97 0.94

Note: In the last line we show the DFT+OCA results for the Co 3d-levels
εd shifted by 0.4 eV upwards in energy with respect to the FLL.

Table 2. Direct Coulomb repulsion matrix elements Uii;kk (density-density interaction) and exchange matrix elements Uik;ki (Hund’s rule
coupling) of effective Coulomb interaction for Co 3d-shell.

density-density interaction (eV) Hund’s coupling (eV)

z2 xz yz x2 − y2 xy z2 xz yz x2 − y2

z2 5.38 4.27 4.27 3.45 3.46
xz 4.27 5.56 3.86 3.73 3.74 0.60
yz 4.27 3.86 5.56 3.73 3.74 0.60 0.83
x2 − y2 3.45 3.73 3.73 5.23 4.28 0.94 0.82 0.82
xy 3.46 3.74 3.74 4.28 5.26 0.92 0.83 0.83 0.48

been kept fixed. The interlayer and intralayer distances for the
fixed Cu atoms are those of a perfect Cu surface taken from
[122]. In good agreement with [120, 123], I find that the Co

atom relaxes at a height of about 1.5 Å above the four nearest
neighbour Cu atoms while these in turn are pushed by 0.1 Å
into the substrate.

Using ANT.G and the LANL2MB minimal basis set
including valence and outer core electrons with pseudo
potentials [121] the electronic and magnetic structure of the
device coupled to the tip and substrate electrodes is calculated
within DFT on the level of LSDA. The Co atom is essentially
in a 4s13d8 configuration with the two holes in the 3d-shell
giving rise to an a approximate spin-1 state of the Co atom (see
table 1) again in good agreement with [123]. LSDA basically
predicts a mixed valence situation for all the orbitals with the
individual occupations around 1.6 with the exception of the
xy-orbital which is nearly full.

From the LSDA electronic structure the effective Coulomb
interaction Uij ;kl for the Co 3d-shell is calculated as described
in section 2.6. For the P region we take into account substrate
atoms up to the 3rd nearest neighbour, i.e. the 9 Cu atoms
closest to the Co adatom. The change in U from taking into
account 2nd nearest neighbours to 3rd nearest neighbours is
about 2%. For 4th nearest neighbours (18 atoms in total) the
super matrices in the RPA equation (41) become too big (linear
matrix dimension 2342 = 54 756) to be handled.

Table 2 shows the matrix elements of the effective
Coulomb interaction, namely the direct Coulomb repulsion
matrix elements (density-density interaction) Uii;kk and the
exchange interaction matrix elements (Hund’s rule coupling)
Uik;ki . The average density-density interaction is Ū = 4.14 eV.
It is strongly screened by the conduction electrons, resulting
in a reduction of over 80% compared to the bare value of
22.9 eV for the Co 3d-shell. On the other hand, the Hund’s
rule coupling is much less affected by the screening: it is only
reduced by about 10% from its bare value of 0.85 eV, resulting
in an average Hund’s coupling of JH = 0.77 eV. Note that the

inter-orbital Coulomb repulsion (Uii;kk for i �= k) is related to
the average intra-orbital Coulomb repulsion for both orbitals
and the Hund’s rule coupling via Uii;kk = (Uii;ii +Ukk;kk)/2−
2Uik;ki .

Both density-density interactions and Hund’s rule
coupling are somewhat anisotropic (i.e. orbital-dependent).
The intra-orbital Coulomb repulsion Uii;ii deviates only by up
to 0.17 eV or by to 3% from its mean value of U = 5.4 eV. The
variation is stronger for the inter-orbital Coulomb repulsion
Uii;kk , deviating by up to 0.43 eV or by up to 11% from its
mean value of U ′ = 3.85 eV. The Hund’s rule coupling Uik;ki

deviates even stronger by up to 0.29 eV or by up to 38% from
its mean value of JH = 0.77 eV. It is worth noting at this point
that the complete decoupling of the correlated subspace from
the rest of the system as proposed in [106] in order to achieve
a stable computation of the effective interaction in the case
of ‘entangled bands’ produces a much higher density-density
interaction of about 12 eV. Apparently the screening effects of
‘mixed propagators’ between the correlated subspace and the
rest of the system are actually quite important and cannot be
neglected.

Next, the electronic structure of the system is calculated
for the paramagnetic case on the level of the local density-
approximation (LDA) in order to obtain the KS energy levels
of the Co 3d-shell ε0

d and hybridization functions �d(ω) in the
absence of spin-polarization. Figure 6(b) shows the imaginary
parts of the hybridization functions �d(ω) for each of the
Co 3d-orbitals which yields the (dynamic) broadening of the
orbitals due to the coupling to the substrate. We see that
the broadening near the Fermi level is basically featureless
indicating coupling to the delocalized Cu 4s-states of the
substrate. As can be seen the degenerate xz- and yz-levels
couple most strongly to the these states. Because of their
shape these two orbitals couple very well to the 4s-states of
the four Cu atoms directly underneath the Co adatom. On the
other hand, the coupling of the xy-orbital to the substrate is
the weakest for all five orbitals since the direct coupling to the
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Figure 6. Results for Co adatom at Cu(0 0 1) surface. (a) Atomic structure of device part. The Co adatom is shown in grey. (b) Orbitally
resolved imaginary part of hybridization functions for Co 3d-shell. (c) Orbitally resolved OCA spectral functions for Co 3d-shell at
T ∼ 10 K. (d) Total occupation of Co 3d-shell as a function of energy shift �ε. (e) Half-width of Kondo feature in z2 spectral function as a
function of the total shift �ε of Co 3d-levels with respect to energy levels given by FLL DCC. (f ) Spectral functions of Co z2-orbital for
different energy shifts �ε at T ∼ 10 K. (g) DFT+OCA transmission functions for different energy shifts �ε (line colours as in (f )).

underneath Cu atoms is strongly suppressed due to symmetry
reasons. The coupling of the z2- and the x2 −y2-orbitals to the
substrate is intermediate between these two cases. At negative
energies, the coupling to the localized Cu 3d-states of the
substrate leads to strong peaks in the hybridization functions
at energies between −5 and −2 eV. Less pronounced peaks
at positive energies above 4 eV indicate coupling to the Cu
4p-orbitals of the substrate.

The bare energies εd of the Co 3d-levels constituting the
impurity shell in the Anderson impurity model are obtained
from their KS energies ε0

d = P̂dĤ
0P̂d corrected by a DCC

term, as explained earlier in section 2.5. The so-called FLL
generalized to an anisotropic (i.e. orbital-dependent) density-

density interaction Uii;kk is employed (31). The values for the
direct Coulomb repulsion are the ones shown in table 2. For the
Hund’s rule coupling the orbital averaged exchange interaction
is taken, i.e. JH = 0.77 eV.

The Anderson impurity problem presented by the
interacting Co 3d-shell coupled to the substrate is now solved
within OCA as described in section 2.7. For the effective
Coulomb interaction of the Co 3d-shell we take into account
the density-density interactions Uii;kk as well as the exchange
interactions Uik;ki as given in table 2. At the energy levels
for the Co 3d-orbitals given by the FLL-DCC (31), the total
occupancy for the Co 3d-shell is about 8.2 electrons similar to
the ones of the LDA and LSDA calculations (see table 1).
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However, the individual occupancies of the 3d-orbitals are
now quite different from the DFT ones, namely they are now
closer to integer occupancies, as opposed to the mixed-valence
situations obtained in the DFT calculations. In particular, the
x2 − y2-orbital is now basically half-filled, and the xz-, yz-
and xy-orbitals are nearly full now. The z2-orbital is now
also closer to half-filling than before but still has strong charge
fluctuations (occupancy∼ 1.3). Similar to LSDA, the spin of
the Co 3d-shell is found to be Sd ∼0.87, close to a spin-1
configuration.

In figure 6(c) the calculated spectral functions of the Co
3d-orbitals ρd(ω) (at T ∼ 10 K) are shown. We can see a very
strong Kondo peak at the Fermi level in the z2-orbital. The
upper Hubbard peak is here quite close to the Kondo peak at the
Fermi level due to the strong charge fluctuations. This orbital
is still quite close to a mixed-valence situation. The x2 − y2-
orbital despite being half-filled and thus bearing a spin-1/2
does not yield a Kondo peak. We are dealing here essentially
with a so-called underscreened Kondo effect [124, 125, 126]:
Despite the relatively similar hybridization of the z2-channel
and the x2 − y2-channel, the Kondo temperature TK,z2 of the
z2-channel is much higher than that of the x2 − y2-channel,
TK,x2−y2 , due to its stronger charge fluctuations. Hence at finite
temperature T with TK,x2−y2 < T < TK,z2 , only the spin-1/2
in the z2-channel is Kondo-screened, while the spin-1/2 in the
x2 − y2 channel remains unscreened.

The half-width of the Kondo peak is about 90 K,
in very good agreement with the experimentally observed
values [80, 82, 83]. However, the lineshape of the calculated
transmission function (red curve in figure 6(g)) is rather peak-
like, different from the experimentally observed asymmetric
Fano-lineshaphes. As the DCC for DFT is not exactly known
and equation (31) is only an approximation, we now shift
the Co 3d-levels upwards in energy by an amount �ε thus
emptying the Co 3d-shell as can be seen in figure 6(d).
Emptying the Co 3d-shell mainly lowers the occupancy of
the z2-orbital reducing the charge fluctuations for that orbital,
while the occupancies of the other orbitals are quite stable.
Figure 6(f ) shows the effect of shifting the Co 3d-levels and
the concomitant reduction of charge fluctuations on the the
spectral function of the z2-orbital (at T ∼ 10 K): As the z2-
orbital is emptied, its occupation approaches 1, the Kondo peak
becomes smaller, and the upper Hubbard peak moves away
from the Fermi level. The width of the Kondo peak decreases
at first and then starts to grow again for shifts �0.2 eV, as
can be seen in figure 6(e). Note that the non-monotonic
behaviour of the width of the Kondo peak is actually a finite
temperature effect: As the actual Kondo temperature decreases
with decreasing charge fluctuations, the Kondo peak in the
finite temperature spectra (here T ∼ 10 K) does not attain
its full (zero-temperature) height anymore. As the height of
the (finite-T ) Kondo peak decreases, its width starts to grow
again at some point. Hence the half-width of the Kondo
peak measured at some finite temperature really only yields
an apparent Kondo temperature.

Figure 6(g) shows the effect of shifting the Co 3d-levels
on the low-energy transmission spectra. As said above,
for the 3d-levels at the values given by the FLL-DCC the

transmission function near zero energy is rather peak-like,
unlike the ones observed experimentally. But when shifting
the 3d-levels upwards in energy the lineshapes become more
asymmetric Fano-like. Good agreement between theoretical
and experimental Fano-lineshapes is achieved for shifts
between 0.4–0.5 eV. In this regime the half-width of the Kondo
peak is between 67 K and 86 K, in good agreement with the
experimentally observed ones between 70 K and 100 K for the
Co on Cu(0 0 1) system [80, 82, 83]. These results are quite
different from those obtained recently for the case of Co on
Cu(1 1 1) with a similar approach [127] where all the Co 3d-
orbitals give rise to Kondo-like resonances at the Fermi level.
The reason could be the altogether quite different geometric
situation at the (1 1 1) surface leading to a decidedly different
symmetry and occupancy for the Co 3d-shell.

4. Conclusions

In conclusion, an ab initio methodology has been developed
for describing the impact of strong electronic correlations on
the electronic structure and transport properties of nanoscale
devices. Starting from the DFT electronic structure of an
embedded nanoscale device, an Anderson impurity model is
constructed by projection of the Kohn–Sham Hamiltonian onto
the correlated subspace. The effective Coulomb interaction
U for the correlated subspace (impurity) is calculated ab
initio from the DFT electronic structure by making use of
the constrained RPA approach. The solution of the Anderson
impurity model yields the dynamic correlations originating
from strong interactions within the correlated subspace in form
of a self-energy which is fed back to the DFT calculation in
order to obtain the correlated electronic structure and transport
properties.

The methodology has been tested for the case of a
single Co adatom on Cu(0 0 1) substrate. On a qualitative
level the results are in good agreement with experiments: A
Fano–Kondo feature with the width in good agreement with
experiments is obtained in the calculated low-energy tunnelling
spectra. However, the lineshape of the Fano–Kondo feature is
not correctly reproduced at the energies for the Co 3d-levels
given by the double-counting correction. Only when shifting
the Co 3d-levels slightly upwards in energy good agreement
with the experimentally observed lineshapes is achieved. It is a
well known problem of DFT+U and DFT+DMFT approaches
that the double-counting correction is not exactly known and
in general does not yield the correct position (and thus charge)
of the correlated levels. Nevertheless, the so-called fully-
localized limit employed here, is actually not too far off as
only moderate shifts are necessary to achieve good quantitative
agreement with experiments. Importantly, the physics is
actually not affected by the shifting of the Co 3d-levels:
Independent of the shift (in that energy range) the Co 3d-
shell constitutes essentially a spin-1 system that experiences
an underscreened Kondo effect. The shifting only affects the
weight of the Kondo peak by lowering the charge fluctuations
in the Kondo-screened orbital.

Hence the developed methodology is capable of
qualitative predictions of strong correlation phenomena. But
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accurate quantitative predictions for example of Kondo
temperatures and the exact shapes of Fano–Kondo features
are difficult as these are dependent on the exact occupancy of
the correlated subspace which cannot be calculated accurately
because of the approximate nature of the double-counting
correction in our approach. One possibility to overcome
these difficulties is to make use of the GW approach instead
of DFT for the description of the weakly interacting part of
the system, similar to the GW+DMFT approach for strongly
correlated materials [128–130] since for GW the double-
counting correction term is exactly known.
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[25] Palacios J J, Pérez-Jiménez A J, Louis E, SanFabián E and
Vergés J A 2002 First-principles approach to electrical
transport in atomic-scale nanostructures Phys. Rev. B
66 035322

[26] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K
2002 Density functional method for nonequilibrium
electron transport Phys. Rev. B 65 165401

[27] Rocha A R, Garcia-Suarez V M, Bailey S, Lambert C,
Ferrer J and Sanvito S 2006 Spin and molecular
electronics in atomically generated orbital landscapes
Phys. Rev. B 73 085414

[28] Mehrez H, Wlasenko A, Larade B, Taylor J, Grütter P and
Guo H 2002 I–V characteristics and differential
conductance fluctuations of Au nanowires Phys. Rev. B
65 195419

[29] Di Ventra M, Pantelides S T and Lang N D 2000
First-principles calculation of transport properties of a
molecular device Phys. Rev. Lett. 84 979

[30] Varga K and Pantelides S T 2007 Quantum transport in
molecules and nanotube devices Phys. Rev. Lett.
98 076804

[31] Lindsay S M and Ratner M A 2007 Molecular transport
junctions: clearing mists Adv. Mater. 19 23

[32] Thygesen K S and Rubio A 2009 Renormalization of
molecular quasiparticle levels at metal-molecule
interfaces: trends across binding regimes Phys. Rev. Lett.
102 046802

[33] Mera H and Niquet Y M 2010 Are Kohn–Sham conductances
accurate? Phys. Rev. Lett. 105 216408

[34] Dell M et al 2010 Relating energy level alignment and
amine-linked single molecule junction conductance Nano
Lett. 10 2470

[35] Strange M, Rostgaard C, Häkkinen H and Thygesen K S
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