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Ab initio theory of superconductivity in a magnetic field. I. Spin density functional theory
for superconductors and Eliashberg equations
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We present a first-principles approach to describe magnetic and superconducting systems and the phenomena
of competition between these electronic effects. We develop a density functional theory SpinSCDFT by extending
the Hohenberg-Kohn theorem and constructing the noninteracting Kohn-Sham system. An exchange-correlation
functional for SpinSCDFT is derived from the Sham-Schlüter connection between the SpinSCDFT Kohn-Sham
and a self-energy in Eliashberg approximation. The reference Eliashberg equations for superconductors in the
presence of magnetism are also derived and discussed.
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I. INTRODUCTION

In this work, we present how magnetic and superconducting
(SC) properties can be computed on the same footing and
from first principles by extending the density functional
theory (DFT) framework. In developing this spin DFT for SC
(SpinSCDFT), we will restrict ourselves to situations where
currents are negligible and only consider the effect of the
Zeeman term of the Hamiltonian. Under this assumption, we
can exclude the occurrence of the Abrikosov vortex state [1]
that, having a mesoscopic characteristic length scale, would be
beyond the present computational power for a fully ab initio
method.

The expulsion of static magnetic fields from the bulk [2]
is one of the most spectacular properties of SC materials
and illustrates the profound competition between magnetic
and SC behavior. The SC-magnetic interaction generates, in
fact, a large number of interesting phenomena on which the
scientific community has focused attention. Some of the most
investigated are the Abrikosov vortices [1] and the variety
of fascinating effects occurring in heterostructures [3], such
as stacked layers of magnetic with SC material (see Ref. [4]
for a review). Among these effects is also the FFLO state,
named after Fulde, Ferrel [5], Larkin, and Ovchinnikov [6],
where strong exchange fields induce a SC state with a finite
momentum pairing. Evidently, this state was recently observed
experimentally [7,8] in heavy-fermion SC, many years after its
prediction. In addition, triplet SC has been observed in several
systems [9–15], and is usually associated to ferromagnetism.

Among the many effects generated by the interplay of
magnetism and superconductivity, some have an intrinsic
microscopic nature and could be accessible to first-principles
calculations, in particular, we refer to the sharp suppression
of the critical temperature due to paramagnetic impurities
[16], and the surprising evidence of coexisting phases between
singlet SC and local magnetism, in particular, close to a
magnetic phase boundary [14,17–19] where high-Tc SC occurs
[20,21]. We devote this work to set the ground for an ab initio
theory to describe these physical effects.

We will start our formulation from the Pauli Hamiltonian
in Sec. II. In Sec. III, we formulate a density functional
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theory (DFT), proving that the electronic density n(r), the
spin magnetization m(r), the diagonal of the nuclear N -body
density matrix, and the singlet and triplet SC order parameters
χ (r,r ′) are uniquely connected with their respective external
potentials. With this extension of the Hohenberg-Kohn the-
orem [22] we lay the foundation of the DFT for magnetic
and SC systems: SpinSCDFT. In Sec. III A, we introduce
the formally noninteracting Kohn Sham (KS) system that
reproduces the exact densities of the interacting system.
Similar to every DFT, SpinSCDFT relies on the construction
of an exchange-correlation (xc) functional that connects the
KS with the interacting system. In this work, this is achieved
by establishing, in Sec. III B, a Sham-Schlüter connection [23]
via the Dyson equation of the interacting system.

The interacting system is also being investigated directly
by means of a magnetic extension of the Eliashberg method
[24–29]. A derivation1 of this alternative approach in the
present notation is given in Sec. IV. Advantages and disad-
vantages of these two theoretical schemes, SpinSCDFT and
Eliashberg, will be discussed in the conclusions.

II. HAMILTONIAN

We assume that the interacting system is governed by the
Pauli Hamiltonian (we use Hartree atomic units throughout)

Ĥ = T̂e + T̂n + V̂e + Ûee + Ûen + Ûnn , (1)

where T̂e (T̂n) is the kinetic energy operator of the electron
(nuclei) and Ûee(Ûnn) is the electron-electron (nuclei-nuclei)
interaction, i.e., usually the Coulomb potential. Ûen is the
Coulomb potential between electrons and nuclei. To break the

1Schossmann and Schachinger have derived Eliashberg equations
including the vector potential [61]. However, they set out from a
self-energy that is taken to be local in real space with an empirical
electron phonon coupling. It is not straightforward to generalize their
approach to the case of ab initio calculations, where the pairing
interactions are usually taken to be local in the space of normal-
state quasiparticles. Vonsovsky et al. [24] have derived Eliashberg
equations, treating the magnetic field perturbatively except for an
onsite splitting parameter. They require the self-energy to be diagonal
with respect to normal-state electronic orbitals which is similar to the
main results in this work.
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respective symmetries and allow the corresponding densities
to adopt nonzero values in a thermal average, we include an
external vector potential Aext(r) and an external singlet/triplet
pair potential Δext(r,r ′) in the Hamiltonian. These external
fields will be set to zero at the end of the derivation. Because we
do not consider currents, the only term in the Pauli Hamiltonian
containing Aext(r) is

T̂e =
∫

d r ψ̂†(r) ·
(

−σ0
∇2

2
+ S · Bext(r)

)
· ψ̂(r) (2)

with Bext(r) = ∇ × Aext(r) and S = 1
2 (σx σy σz)T, σx,y,z

being the Pauli matrices. We use the notation ψ̂†(r) =
(ψ̂†(r ↑) ψ̂†(r ↓)) for the field operator where ψ̂†(r ↑)
creates an electron at location r with spin up. The scalar
potential part of Ĥ reads as

V̂e =
∫

d r ψ̂†(r) · σ0 · ψ̂(r)vext(r)

−1

2

∫
d r

∫
d r ′(χ̂(r,r ′) · Δext∗(r,r ′) + H.c.). (3)

Here, the anomalous density operator is defined by

χ̂(r,r ′) = ψ̂(r) · � · ψ̂(r ′) . (4)

χ̂ (r,r ′) is a 4-vector of which the first component (proportional
to �1) is the singlet part of the order parameter, while the other
components (related to �2, �3, and �4) are the triplet part.
The four components of the singlet/triplet vector � = (iσy, −
σz,σ0,σx)T are 2 × 2 spin matrices similar to the components
of S. Similarly, the anomalous external potential

Δext(r,r ′) =

⎛
⎜⎜⎜⎝

Δext
s (r,r ′)

Δext
tx (r,r ′)

Δext
ty (r,r ′)

Δext
tz (r,r ′)

⎞
⎟⎟⎟⎠ (5)

is assumed to have singlet and triplet components.

III. SPIN SCDFT

The conventional density functional approach to the many-
body problem [22,30–32] consists of two steps: first es-
tablishing the Hohenberg-Kohn (HK) theorem, i.e., realize
that a chosen set of densities is uniquely connected with
a set of external potentials; second, construct an auxiliary,
noninteracting KS system to reproduce the densities of the
interacting system.

We follow Ref. [33] and consider a multicomponent DFT
with the normal n(r), the SC order parameter as the anomalous
density χ (r,r ′), that describes the electrons condensed into
singlet and triplet states, and Γ (R1 . . . RN ) the diagonal of the
nuclear N -body density matrix. In addition, we introduce the
magnetization m(r) as another electronic density.

The HK proof [n(r),m(r),χ (r,r ′),Γ (R1 . . . RN )] ↔
[vext(r),Bext(r),Δext(r,r ′),Wext(R1 . . . RN )] is a straightfor-
ward generalization of Mermin’s HK proof in a finite-
temperature ensemble [34]. For this reason, we will not repeat
it here. On the other hand, the construction of the KS system
is done assuming that densities are always v representable,
i.e., we assume the existence of the KS system. Being

noninteracting it consists of independent equations for nuclei
and electrons, coupled only via the xc potentials. Our focus will
be on the electronic system, discussed in detail in Sec. III A 2.
The nuclear part will be addressed in Sec. III A 1, briefly, since
it is usually enough to approximate the nuclear KS system
with its non-SC counterpart [33,35]. The construction of the
xc potentials will be discussed in Secs. III B and III C.

A. Kohn-Sham system

In this work, we are mainly interested in the influence
of a magnetic field on the SC state. We briefly review the
approximation steps to arrive at the Fröhlich Hamiltonian
starting from the formally exact multicomponent DFT. The
reader may refer to the existing literature for further details
[32,33]. We introduce the KS Hamiltonian

ĤKS = Ĥ e
KS + Ĥ n

KS , (6)

where we have separated the electronic Ĥ e
KS,

Ĥ e
KS =

∫
d r ψ̂†(r) · σ0

(
−∇2

2
+ vs(r) − μ

)
· ψ̂(r)

−1

2

∫
d r

∫
d r ′(χ̂ (r,r ′) · Δs∗(r,r ′) + H.c.)

+
∫

d r m̂(r) · Bs(r), (7)

from the nuclear Ĥ n
KS,

Ĥ n
KS = −

∫
d R ζ̂ †(R)

∇2
R

2M
ζ̂ (R)

+
∫

· · ·
∫

d R1 · · · d RNn
ζ̂ †(R1) · · · ζ̂ †(RNn

)
×Ws

(
R1, . . . ,RNn

)
ζ̂ (R1) · · · ζ̂ (

RNn

)
. (8)

We write vs(r) = vext(r) + vxc(r) with vxc(r) being the scalar
xc potential [similar for Bs(r) and Δs(r,r ′)]. m̂(r) = ψ̂†(r) ·
S · ψ̂(r) is the operator of the magnetic density. In the nuclear
description, ζ̂ †(R) creates the nuclear field at location R.
Following Lüders et al. [33] and Marques et al. [35], we use
the N -body potential Ws(R1, . . . ,RNn

) because in this way
the nuclear KS system can be easily related to the standard
Born-Oppenheimer approximation. M refers to the ionic mass.
Here, we neglect the spin of the nuclei and consider only one
atomic type (the generalization is straightforward).

1. Nuclear part

Since SC occurs in the solid phase, we assume that ions
can only perform small oscillations about their equilibrium
position. A discussion that goes beyond this simple picture can
be found in Refs. [32,36]. We expand Ws(R1, . . . ,RNn

) in ui =
Ri − R0i around the equilibrium positions R0i . The nuclear
degrees of freedom (up to harmonic order) are described by
the Hamiltonian Ĥ

ph
KS with Ĥ n

KS = Ĥ
ph
KS + O(u3) in second

quantization

Ĥ
ph
KS =

∑
q

Ωq

(
b̂†q b̂q + 1

2

)
. (9)
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We use the notation q = q,λ with Bloch vector q and mode
number λ. We further use the notation −q = −q,λ for all
Bloch vector and band or mode combinations. We point
out that via the functional dependence of Ws[n,m,χ ,Γ ], the
KS phonon frequencies Ωq are in principle functionals of
the densities as well. b̂

†
q creates a bosonic KS phonon with

quantum numbers q. Usually, approximating Ws with the
Born-Oppenheimer energy surface leads to phonon frequen-
cies in excellent agreement with experiment [37,38].

The electron phonon scattering should be formally con-
structed from the bare Coulomb interaction [36]. However, in
order to have a proper description of the electronic screening,
this is not feasible in practice. The solution is the substitution
of the many-body electron-phonon interaction with its KS
counterpart Ûen → Ĥ

e-ph
KS :

Ĥ
e-ph
KS =

∑
q m

∫
d r ga

q (r)ψ̂†(r) · σm · ψ̂(r)(b̂q + b̂
†
−q), (10)

where m = 0,z and g0
q(r) = δvs(r)

δuq
, gz

q(r) = δBsz(r)
δuq

, u being
the phononic displacement vectors [37,38]. This form incor-
porates most of the electronic influence on the bare Coulomb
interaction between electrons and nuclei. We consider this as
a good approximation for the dressed phonon vertex in the
non-SC state (see also Ref. [36] for a further discussion). Note
that 〈Ĥ e-ph

KS 〉 is part of the xc functional of the electronic KS
system and will be added later in our approximate functional
using perturbation theory. For later use in the derivation of the
xc potential, we define the propagator of the noninteracting
system of KS phonons

D0
q,q ′ (τ ) = 〈T[b̂q(τ ) + b̂

†
−q(τ )][b̂q ′(0) + b̂

†
−q ′ (0)]〉ph, (11)

D0
q,q ′ (νn) = δq,−q ′

(
1

iνn + Ωq

− 1

iνn − Ωq

)
. (12)

Here, T is the usual time (τ ) ordering symbol of operators
b̂q(τ ) + b̂

†
−q(τ ) in the Heisenberg picture and 〈· · · 〉ph means

to evaluate the thermal average using the Hamiltonian Ĥ
ph
KS of

Eq. (9). The bosonic Matsubara frequency is νn = 2πn
β

.

2. Electronic part

The electronic KS Hamiltonian Ĥ e
KS is not diagonal in the

electronic field operator ψ̂(r) because Eq. (7) involves terms
proportional to ψψ and ψ†ψ†. Being a Hermitian operator, we
can find an orthonormal set of eigenvectors of Ĥ e

KS in which
it is diagonal. Let γ̂

†
k create such a two-component vector in

spin space (the Hamiltonian is not diagonal in spin so the spin
degrees of freedom is in the set {k}), then the SC KS system
will take the form

Ĥ e
KS = E0 +

∑
k

Ekγ̂
†
k γ̂k, Ek � 0 (13)

where E0 is the ground-state energy and the Ek are all
positive. This form can be achieved [39] by commuting the op-
erators Ĥ e

KS = ∑
k Ẽkâ

†
kâk = ∑

k|Ẽk<0 +∑
k|Ẽk�0 Ẽkâ

†
kâk +∑

k|Ẽk<0 |Ẽk|âkâ
†
k and then redefining the negative-energy

particle operators as holes âk = γ̂
†
k . We use a notation based

on the original Refs. [24,40,41] and introduce

Ψ̂ (r) =

⎛
⎜⎜⎝

ψ̂(r ↑)
ψ̂(r ↓)
ψ̂†(r ↑)
ψ̂†(r ↓)

⎞
⎟⎟⎠. (14)

Using this Nambu field operator Ψ̂ (r), the KS Hamiltonian
reads as

Ĥ e
KS =

∫
d r

∫
d r ′Ψ̂ †(r) · 1

2
H̄KS(r,r ′) · Ψ̂ (r ′), (15)

where the KS Hamiltonian (first quantization Nambu form) is
given by

H̄KS(r,r ′) =
(

δ(r − r ′)H NS
KS (r) � · Δs(r,r ′)

−[� · Δs(r,r ′)]∗ −δ(r − r ′)
[
H NS

KS (r)
]Ts

)
,

(16)

with

H NS
KS (r) = (− 1

2∇2 + vs(r) − μ
)
σ0 − S · Bs(r). (17)

Note that the changed order of the electronic field operator
implies a transposition in spin space in the (−1,−1) component
that is equivalent to using S∗. In a similar transformation, the
diagonal KS Hamiltonian (13) becomes

Ĥ e
KS =

∑
k

Φ̂
†
k · 1

2

(
Ek 0
0 −Ek

)
· Φ̂k (18)

with (γ γ )T = (γ̂k

γ̂
†
k

)
. As a consequence of the rearrangement of

the operators to the Nambu-Anderson form of Eq. (18), there
should appear the trace of the Hamiltonian Ĥ e

KS. However, not
being an operator, this trace cancels from thermal averages and
has been disregarded. Φ̂k is a two- (not four-) component vector
because the spin may not be a good quantum number in the SC
KS system. We can diagonalize Ĥ e

KS in the form of Eq. (15)
resulting in Eq. (18) by introducing a unitary transformation
that we parametrize generically with four complex spinor
functions. This connection between Ψ̂ (r) and Φ̂k is known
as the Bogoliubov-Valatin transformation [42,43]. We write it
in the form

Ψ̂ (r) =
∑

k

(
uk(r) 
v∗
k (r)


vk(r) 
u∗
k(r)

)
· Φ̂k,

Φ̂k =
∫

d r
(
u∗

k(r) 
v∗
k (r)


vk(r) 
uk(r)

)
· Ψ̂ (r). (19)

Note that in the first case the matrix is 4 × 2 dimensional,
and in the second 2 × 4 because of the spinor property of the

uk(r),
vk(r). In going from Eq. (15) to (18), we identify∫

d r
∫

d r ′
(
u∗

k(r) 
v∗
k (r)


vk(r) 
uk(r)

)
· H̄KS(r,r ′) ·

(
uk′(r ′) 
v∗
k′(r ′)


vk′(r ′) 
u∗
k′(r ′)

)

=
(

Ek 0

0 −Ek

)
δkk′, (20)

which are the KS Bogoliubov–de Gennes (KSBdG) equations
for magnetic system. Applying the inverse Bogoliubov-Valatin
transformation from the left we obtain two redundant vector
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equations of which we usually consider the first for the positive
eigenvalues Ek:∫

d r ′H̄KS(r,r ′) ·
(
uk(r ′)


vk(r ′)

)
= Ek

(
uk(r)


vk(r)

)
. (21)

This is the usual form of the KSBdG equations which gener-
alize those of Refs. [33,44]. The equation in (
v∗

k (r) 
u∗
k(r))T

leads to the equivalent negative eigenvalue −Ek which reflects
the additional degrees of freedom that we have created in going
to the 2×2 Nambu formalism.

a. Normal-state KS basis expansion. The KSBdG
equations (21) pose a challenging integrodifferential problem.
Sensible approximations can be obtained by first performing
an expansion into a basis set that is accessible in practice
and resembles closely to the true quasiparticle structure
of the nonsuperconducting phase of the material under
consideration. With this in mind, we consider the non-SC KS
single-particle equation

εiσ 
ϕiσ (r) =
[(

−∇2

2
+ v0

s (r) − μ

)
σ0 − B0

sz(r)
σz

2

]
· 
ϕiσ (r).

(22)

v0
s (r) and B0

sz(r) are known functionals, like the local spin
density approximation (LSDA) [45]. We also assume that
B0

s is collinear and has components in σz only. We use a
pure spinor notation for the orbitals, i.e., 
ϕiσ (r) has only one

nonvanishing component, e.g., 
ϕi↑(r) = (ϕi (r↑)
0

). We use the

indices i,j for the quantum numbers of the basis and thus
distinguish from the quantum number k of the SC KS system.
Later, in the spin decoupling approximation (Sec. III A 2 c)
when we assume the expansion coefficients to have only
one nonvanishing component each, this distinction will not
be made. As a next step, we expand the Bogoliubov-Valatin
transformations in these solutions2 { 
ϕiσ (r)}:


uk(r) =
∑
iσ

uiσ
k 
ϕiσ (r) , 
vk(r) =

∑
iσ

viσ
k 
ϕ∗

iσ (r) . (23)

Defining the matrix elements

Rσσ ′
ij =

∫
d r 
ϕ∗

iσ

(
σ0

[
vs(r) − v0

s (r)
]

− S · [
Bs(r) − B0

s (r)
]) 
ϕjσ ′ , (24)

Δsσσ ′
ij =

∫
d r

∫
d r ′ 
ϕ∗

iσ (r) · [
� · Δs(r,r ′)

] · 
ϕ∗
jσ ′(r ′), (25)

Eσσ ′
ij = εiσ δij δσσ ′ + Rσσ ′

ij , (26)

and the singlet/triplet parts of the pair-potential expansion
coefficient matrix

Δs
sij = 1

2

(
Δ

s↑↓
ij − Δ

s↓↑
ij

)
, Δs

txij = 1
2

(
Δ

s↓↓
ij − Δ

s↑↑
ij

)
,

Δs
tyij = 1

2

(
Δ

s↓↓
ij + Δ

s↑↑
ij

)
, Δs

tzij = 1
2

(
Δ

s↑↓
ij + Δ

s↓↑
ij

)
, (27)

2Note that the −1, − 1 component of the SC KS Hamiltonian
Eq. (16) is the complex conjugated of the 1,1. This comes from
the property [H NS

KS (r)]Ts = [H NS
KS (r)]∗ of the Hamiltonian, Ts being a

transposition in spin space.

we can cast Eq. (20) into a convenient form

(g+
k g−

k )† ·
( E � · Δs

(� · Δs)† −ET

)
· (g+

k′ g−
k′ ) = Ekδkk′τz ,

(28)
with

g+
k = (

u
1↑
k u

1↓
k u

2↑
k · · · v

1↑
k v

1↓
k v

2↑
k . . .

)T
, (29)

g−
k = (

v
1↑∗
k v

1↓∗
k v

2↑∗
k · · · u

1↑∗
k u

1↓∗
k u

2↑∗
k . . .

)T
. (30)

The superscript 1,2, . . . means we have ordered the Bloch
vectors and bands in some way. The precise way of ordering
is unimportant. The 2N -dimensional vectors {g±

k } have an N -
dimensional part that refers to the particle (. . . ,1) components
(the u’s for g+

k ) and a second part that refers to the hole
(. . . ,−1) components (the v’s for g+

k ) when multiplied from
the right to a Nambu matrix. Note that the set of {g−

k }
solves the eigenvalue equation similar to Eq. (21) with the
negative eigenvalues −Ek , while the set {g+

k } corresponds to
the eigenvectors with positive eigenvalues Ek . The elements of
the set {g+

k } are the SC KS orbitals of SpinSCDFT, represented
in the normal-state KS orbital basis. We may easily represent
the densities using the normal-state KS orbital basis { 
ϕiσ (r)},
for example,

n(r) =
∑
iσjσ ′


ϕ∗
i (rσ )(nij )σσ ′ 
ϕj (rσ ′) , (31)

and similar for m(r) and χ(r,r ′) where χ (r,r ′) is expanded in

ϕ∗
i (rσ ) and 
ϕ∗

j (r ′σ ′). The coefficients read as

(nij )σσ ′ = (σ0)σσ ′
∑

k

[(
uiσ

k

)∗
u

jσ ′
k fβ(Ek)

+ viσ
k

(
v

jσ ′
k

)∗
fβ(−Ek)

]
, (32)

(mij )σσ ′ = (S)σσ ′
∑

k

[(
uiσ

k

)∗
u

jσ ′
k fβ(Ek)

+ viσ
k

(
v

jσ ′
k

)∗
fβ(−Ek)

]
, (33)

(χ ij )σσ ′ = (�)σσ ′
∑

k

[
u

jσ ′
k

(
viσ

k

)∗
fβ(Ek)

+uiσ
k

(
v

jσ ′
k

)∗
fβ(−Ek)

]
. (34)

We want to stress that we have not performed any approxi-
mations so far and the SC KS system reproduces the exact
interacting densities of the Hamiltonian of Eq. (1).

b. Singlet superconductivity. Due to the antisymmetric
structure of the fermionic wave function and the effectively
attractive interaction, in absence of magnetism, the singlet
solution usually leads to a more stable SC state. Known SC that
feature a triplet pairing all share a very low critical temperature
less than a few Kelvin [9–15]. In presence of magnetism,
as we have seen, the spin is not a good quantum number
and singlet/triplet components mix. Since the triplet pairing
channel seems to be rather unimportant for many systems,
it is of use to define a singlet approximation, in which it is
completely disregarded.

We therefore make the assumption that our pairing potential
has only the singlet component (marked as a subscript S in the
KS potential). In addition, we assume a collinear spin structure
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in the normal-state part of the Hamiltonian

� · Δs ≈ �1Δ
s
s , Eσσ ′

ij ≈ Eσ
ij δσσ ′ . (35)

We observe that spin becomes a good quantum number in
the SC KS system. This follows because the KS Hamiltonian
matrix elements can be brought to a block-diagonal structure in
Nambu and spin space with two kinds of eigenfunctions to each
individual block. Consequently, we relabel the eigenvectors
with k → k,μ where the size of the set of k is reduced to half.
Each block μ is diagonalized as

(g+
kμ g−

k,−μ)†
( Eμ sign(μ)Δs

s

sign(μ)Δs
s
† −E−μT

)
(g+

k′μ g−
k′,−μ)

= δkk′

(
E+

kμ 0

0 E−
kμ

)
(36)

with

g+
kμ = (

u
1μ

kμ u
2μ

kμ · · · v
1−μ

kμ · · ·)T
, (37)

g−
kμ = (

v
1,−μ∗
kμ v

2,−μ∗
kμ . . . u

1μ∗
kμ · · ·)T

. (38)

E+
kμ is an eigenvalue that may or may not be positive.

However, we have introduced the SC KS particles in Eq. (13)
with a positive excitation energy Ekμ so this fact requires
further commenting. In the present situation where the matrix
elements of the SC KS Hamiltonian are block diagonal in
Nambu and spin space, we can show that if g+

kμ has the
eigenvalue E+

kμ the “negative” labeled eigenfunction g−
k,−μ

has the eigenvalue −E+
k,−μ.3 Thus, we still have the original

redundancy in the eigenvalue spectrum but not in the same
spin channel μ. Instead,

E±
kμ = −E∓

k,−μ . (39)

We conclude that to every k we have four eigenvalues of which
two are positive. These positive eigenvalues are identified with
Ekμ. In Sec. III A 2 c after introducing the decoupling approxi-
mation we will be able to compute these eigenvalues explicitly,
and continue this discussion. Note that the correspondence of
the spin μ with the spin of the underlying electrons σ is not one
to one. The pair potential is spin singlet and thus couples the σ

channel of a particle with the −σ channel of the hole state. As
we shall see later using the decoupling approximation in the
non-SC limit, a given eigenvalue E−

kμ, for example, changes its
spin character in terms of the non-SC eigenvalues εkσ from μ to
−μ upon crossing the Fermi level. In general, the pairing will
mix different spin channels. On the other hand, for states far
away from the Fermi level where the pairing is negligible, one
finds that the mixing of opposite spin hole states is negligible
and the spin μ of the SC KS states equals the NS KS state spin.

c. Spin decoupling approximation. It is desirable to reduce
the effort to solve the KSBdG equation (36) further. A sub-
stantial simplification is the decoupling approximation [33,35]
(or Anderson approximation [46]). There, one considers only

3The explicit calculation uses the fact that E is Hermitian and thus
E∗ = ET and further that � · Δs is totally antisymmetric (� · Δs)† =
−(� · Δs)∗.

singlet SC and pairing between a quasiparticle state (iσ ) and its
time-reversed hole state (−i,−σ ). Furthermore, it is assumed
that the basis { 
ϕiσ } approximates the true non-SC quasiparticle
structure well enough. In the language of the KSBdG equation
(28), this reads as

Eσσ ′
ij ≈ εiσ δσσ ′δij , (� · �s)σσ ′

ij ≈ �σσ ′
1 Δs

si,−iδi,−j . (40)

This type of approximation is inherent in the Eliashberg equa-
tions as well as SCDFT functionals. It is also straightforward
to include a diagonal correction Rσσ

ii . In the form presented
here, we will call it spin decoupling approximation (SDA). For
each k and μ, Eq. (28) reduces to the 2 × 2 equation(

uk
kσ vk∗

−kσ

v−k
k−σ u−k∗

−k−σ

)†(
εkσ sign(σ )Δs

sk,−k

sign(σ )Δs
s
∗
−k,k −ε−k−σ

)

×
(

uk
kσ vk∗

−kσ

v−k
k−σ u−k∗

−k−σ

)
=

(
E+

kσ 0

0 E−
kσ

)
. (41)

Here, we have introduced a single spin notation v−k−σ
kσ = v−k

k−σ

and ukσ
kσ = uk

kσ . The spin label on the coefficients of the
Bogoliubov transformation always refers to the normal-state
KS basis spin label and thus we use the spin notation μ → σ .
As mentioned before, the spin label cannot be strictly identified
with the spin of a SC KS particle. We will come back
to this point later. From now on, we will use the notation
Δs

sk = Δs
sk,−k = Δs

s−k,k . We may compute the two eigenvalues
and eigenvectors analytically. From the high-energy limit
εkσ + ε−k,−σ 
 εkσ − ε−k,−σ , we identify the name ± for the
two branches. The eigenvalues are

E−
kσ = εkσ − ε−k−σ

2
−

√(
εkσ + ε−k−σ

2

)2

+ ∣∣Δs
sk

∣∣2
, (42)

E+
kσ = εkσ − ε−k−σ

2
+

√(
εkσ + ε−k−σ

2

)2

+ ∣∣Δs
sk

∣∣2
. (43)

In the spin degenerate limit, the + branch has always positive
eigenvalues E+

kσ and it is clear which of the eigenvectors belong
to the first column of the Bogoliubov-Valatin transformation.
In the spin-polarized case, the situation is more complicated.
Again, because E±

kσ = −E∓
−k,−σ , two of the four Bogoliubov

eigenvalues to a given k are positive, but without knowledge
of εkσ and Δs

sk one can not tell in advance which ones these
are. The general situation is sketched in Fig. 1 for a constant
Δs

sk and homogeneously splitting free-electron gas. In the
next paragraph, we give a more detailed discussion of the
Bogoliubov eigenvalues E±

kσ .
d. Eigenvalues in the SDA. Our first concern is how to

interpret the spin quantum number σ of E±
kσ in connection with

the underlying normal states εkσ . First, consider the non-SC
limit where

Δs
sk = 0 : 2E±

kσ = εkσ − ε−k−σ ± |εkσ + ε−k−σ |. (44)

This situation is plotted in Fig. 1(b). Note that if εkσ + ε−k−σ >

0, then E−
kσ = −ε−k−σ and if εkσ + ε−k−σ < 0 we conclude

E−
kσ = εkσ .
Second, consider the following case that occurs at any k0

where εk0↑ + ε−k0↓ = 0. Given that we have an energy splitting
εk0↑ − ε−k0↓ > 2|Δs

sk|, we find that both E±
−k0,↓ are negative.
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FIG. 1. (Color online) Sketch of the Bogoliubov eigenvalues E±
kσ for a free-electron gas with a homogeneous splitting εkσ = 1

2 k2 +
sign(σ )μBB0. We choose a constant Δs

sk > μBB0 in (a) and Δs
sk = 0 in (b). We plot the + Bogoliubov branch in red and orange for ↑ and ↓

and the − branch in light blue and dark blue for ↑ and ↓, respectively. We indicate the εkσ in (a) as thin dashed lines. In (a), the + branches are
strictly larger than the Fermi energy Ef and thus constitute the SC KS particle excitations. On the other hand, for Δs

sk < μBB0 as in (b), the +
and − branches partly swap their order. When E−

k↑ > Ef , the SC KS particle excitations are from the − branch as well.

This means that according to the definition in Eq. (13) to
take the positive eigenvalues, both KS particles are from the
σ = ↑ branch. It is not possible to construct the Bogoliubov
transformations in this case and in any case the γ̂

†
k↑ state

cannot be occupied twice. It is, however, possible to give
up the requirement that all SC KS particles are positive and
simply always take the + branch. Then, we can say that γ̂

†
kσ

creates a negative-energy excitation which will be occupied
in the ground state. By analogy with BCS, γ̂

†
kσ creates an

electronlike single-particle state on the SC vacuum, this leads
to the interpretation that, in the ground state, this k-space
region is occupied by unpaired electrons. A similar discussion
can be found (still in the context of BCS theory) in the work
of Sarma [47]. Similar to Eq. (13), we can redefine electron
to hole operators at the price of changing the ground-state
energy. Because the ground-state energy, in turn, cancels from
the thermal averages, the expectation values computed with
this theory do not depend on this interpretation. We want to
point out that this discussion only applies when the splitting is
larger than the pair potential.

e. Eigenvectors in the SDA. Furthermore, we can ana-
lytically compute the normalized eigenvectors gα

kμ to the
eigenvalues Eα

kμ (α = ±). As discussed before, it is not
known a priori if an eigenvalue Eα

kμ is positive and, thus,
we cannot determine if the components of gα

kμ have to be
labeled according to Eq. (30) or (29). We introduce a combined
notation for the right-hand side of Eqs. (29) and (30) with
an additional index α = ±. Due to the SDA, as compared
to Eqs. (29) and (30), only one of the entries uiσ

k and viσ
k ,

respectively, is nonzero. We may thus only denote these two
components in our combined notation

gα
kσ =

(
ukα

kσ

v−kα
k−σ

)
. (45)

When Eα
kμ is positive, ukα

kμ (v−kα
k−μ) corresponds to the nonvan-

ishing u
kμ

k (v−k−μ

k ); if on the other hand Eα
kμ is negative, ukα

kμ

(v−kα
k−μ) corresponds to v

−k−μ

k

∗
(ukμ

k

∗
). The components ukα

kσ and

v−kα
k−σ are given in terms of the eigenvalues and components of

the matrix that are diagonalized in Eq. (41) by

v−kα
k−σ =

√ ∣∣Eα
kμ − εkσ

∣∣
|E+

kσ + E+
−k−σ | , (46)

ukα
kσ = sign(σ )

sign(α)

Δs
sk∣∣Δs
sk

∣∣
√ ∣∣ε−k−σ + Eα

kσ

∣∣∣∣Eα
kσ + Eα

−k−σ

∣∣ . (47)

Starting from a converged zero-temperature normal-state
calculation, within the SDA the only remaining variable is
thus the matrix elements of the pair potential Δs

sk because the
SC KS wave functions as well as the Bogoliubov eigenvalues
are explicitly given in terms of it.

It is important to point out that within the SDA, Δs
sk can be

chosen to be real [40,41]. This can be proven by exploiting the
gauge symmetry of Eq. (41) under rotation about the τz axis.
If the rotation is applied with a k-dependent angle θk of

θk = arctan

(
ImΔs

sk

ReΔs
sk

)
, (48)

we get

e−iτz
θk
2

(
εkσ sign(σ )Δs

sk

sign(σ )Δs
s
∗
k −ε−k−σ

)
eiτz

θk
2

=
(

εkσ sign(σ )Δ̃s
sk

sign(σ )Δ̃s
sk −ε−k−σ

)
, (49)

where Δ̃s
sk = sign(ReΔs

sk)|Δs
sk| ∈ R. Thus, the (k,−k) matrix

elements of our general complex decoupled pair potential are
gauge equivalent to purely real ones. We still keep a general
complex notation for Δs

sk first to investigate explicitly if self-
energy corrections affect this conclusion and, second, to make
it easier to extend the formalism to the case where the gauge
symmetry does not have enough freedom to make all matrix
elements real.
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3. Competition between SC and magnetism in the SDA

The SDA, as introduced so far, assumes that we compute
SC on top of a (magnetic) quasiparticle structure. Thus, for
example, it does not allow magnetism to be suppressed when a
weakly magnetic system becomes SC. In conventional SCDFT
[33,35], this type of feedback can be safely neglected because
SC changes the dispersion only for states very close to the
Fermi level. The effect on the electronic density is thus
negligible and so is the change in the normal-state xc potential.
However, since the contributions to m(r) are in general more
localized at the Fermi level, assuming quasiparticle energies
εiσ to be unaffected when SC sets in may not be reasonable
for magnetic systems.

We want to point out that it is also possible to keep
the simple form of the SDA and include competition of SC
and magnetism at the same time, by means of the following
iterative scheme:

(1) Take the normal KS states { 
ϕiσ } and eigenvalues εkσ as
starting orbitals.

(2) Solve the KS–BdG equations in the SDA.
(3) Recompute the densities n(r) and m(r) according to

the Eqs. (32) and (33).
(4) Rediagonalize the normal-state KS equations with the

updated densities [in particular, changes in m(r) may be of
relevance].

(5) Iterate from point 2 until self-consistency is reached.
This procedure changes the meaning of the SDA during the

iteration because we are self-consistently updating the orbitals
{ 
ϕiσ } it refers to.

B. Sham-Schlüter equation of SpinSCDFT

So far we have presented the structure of SpinSCDFT with
the focus on the electronic SC KS system. The derivation

of the approximations for the xc potentials presented in this
section generalizes one originally proposed by Marques [48]
and later used by Sanna and Gross [49] in SCDFT and uses
the Sham-Schlüter equation of SpinSCDFT. This equation is
based on the observation that the parts of the KS Green’s
function (GF) and the interaction GF that correspond to the
densities must be equal. Using the Dyson equation for a SC
in a magnetic field starting from the SC KS system as the
formally noninteraction one, we can relate the xc potentials to
an approximation for the self-energy.

We introduce the GF with the τ ordering symbol T̄ and the
field operators in the Heisenberg picture

Ḡ(rτ,r ′τ ′) = −〈T̄Ψ̂ (rτ ) ⊗ Ψ̂ †(r ′τ ′)〉. (50)

The imaginary-time ordering symbol in Nambu space T̄
is defined to act on every one of the (4 × 4) components
individually which can be achieved by transposing in Nambu
spin space

T̄Ψ̂ (rτ ) ⊗ Ψ̂ †(r ′τ ′) = θ (τ − τ ′)Ψ̂ (rτ ) ⊗ Ψ̂ †(r ′τ ′)

−θ (τ ′ − τ )[Ψ̂ †(r ′τ ′) ⊗ Ψ̂ (rτ )]Tsn .

(51)

We define the equal-time limit in the −1,−1 component
different as compared to the usual one in that we take the
annihilator operator infinitesimally before the creation opera-
tor. The equal-time limit of the time-ordering symbol should
be defined to recover the density matrix operator, but the usual
rule where the creation operator is taken infinitesimally before
the annihilator would lead to the form ψψ† in the −1,−1
component.

From the equation of motion we derive the Dyson equation
starting from the SC KS system as a formally noninteracting
system

Ḡ(r,r ′,ωn) = ḠKS(r,r ′,ωn) +
∫

d r1

∫
d r ′

1Ḡ
KS(r,r1,ωn) · Σ̄ s(r1,r ′

1,ωn) · Ḡ(r ′
1,r

′,ωn), (52)

with

Σ̄ s(r,r ′,ωn) = Σ̄(r,r ′,ωn) − v̄xc(r,r ′). (53)

Here, Σ̄ is the irreducible Nambu self-energy, where the electronic Hartree diagram was subtracted, and v̄xc is the Nambu xc
potential

v̄xc(r,r ′) =
(

δ(r − r ′)[σ0vxc(r) − S · Bxc(r)] � · Δxc(r,r ′)
−� · Δxc∗(r,r ′) −δ(r − r ′)[σ0vxc(r) − S∗ · Bxc(r)]

)
. (54)

The SC KS GF satisfies ∫
d r1(iωnδ(r − r1)τ0σ0 − H̄KS(r,r1)) · ḠKS(r1,r ′,ωn) = δ(r − r ′)τ0σ0. (55)

From the equation of motion we can compute the SC KS GF. Because by construction the SC KS GF yields the same densities as
the interacting system, we can cancel the respective parts of the GFs in the Dyson equation (52) that correspond to the densities.
The result is the Sham-Schlüter equation

1

β

∑
n

∫
d r1

∫
d r ′

1[ḠKS(r,r1,ωn) · Σ̄ s(r1,r ′
1,ωn) · Ḡ(r ′

1,r
′,ωn)]α,−α = 0, (56)

1

β

∑
n

∫
d r1

∫
d r ′

1[ḠKS(r,r1,ωn) · Σ̄ s(r1,r ′
1,ωn) · Ḡ(r ′

1,r,ωn)]α,α = 0. (57)
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For convenience, the self-energy is decomposed in a phononic
part Σ̄ph(ωn) and a Coulomb part Σ̄C(ωn):

Σ̄(ωn) = Σ̄ph(ωn) + Σ̄C(ωn). (58)

Σ̄(ωn) has a diagrammatic expansion in terms of Ḡ(ωn) [24]
and can be even viewed as part of a Hedin cycle for a
SC including phononic and Coulomb interactions [50]. For
simplicity, we do not consider vertex corrections, thus the
Coulomb self-energy part Σ̄C is the electronic GW diagram

Σ̄C(ωn) ≈ . (59)

As an interesting extension, we could include parts of the
vertex corrections that lead to spin fluctuations. These, in
the form of an effective spin interaction, are discussed by
Essenberger et al. [51] and the extension to the present
spin-dependent formalism is straightforward.

As compared to the polarization corrections of the same
order, the phononic vertex corrections are negligible [52].
Moreover, due to the quality of the phonon spectra one obtains
with density functional perturbation theory [37,38] we do not
consider further diagrammatic electronic screening and treat
the phononic interaction in the Hartree-Fock approximation

Σ̄ph(ωn) ≈ + . (60)

It has been observed that computing the GW quasiparticle
band structure in a metal gives usually small corrections to
the KS bands (compare Ref. [53], Fig. 2), also densities
result to be almost identical. Thus, at least in the spin
degenerate case, the GW corrections on a KS band structure
of a metal are usually negligible. For convenience, we use
a similar assumption for the spin part. This way, we can
drop the construction of the Nambu diagonal part of v̄xc

from the Sham-Schlüter equation. We represent ḠKS(r,r ′,ωn)
and Ḡ(r,r ′,ωn) in the same basis as the Bogoliubov-Valatin
transformations, i.e., the normal-state KS orbitals {Ψ KS

iσα(r)}

FIG. 2. (Color online) Sketch of the function βa
σ,−σ
k (Δs

s) mul-
tiplying Δs

sk into the coefficients for χs(r,r ′). While being always
nonzero, the coefficient function at B = 0 behaves as −(β/2)/
cosh[β(E+

kσ + E−
kσ )/2] and thus becomes exponentially small with

decreasing temperature.

with the pure Nambu and spin spinor wave functions

Ψ KS
iσα(r) =

(
δα,1 
ϕiσ (r)

δα,−1 
ϕ∗
iσ (r)

)
. (61)

Sorting the expansion coefficients of ḠKS(r,r ′,ωn) =∑
αα′σσ ′ij ḠKS

iασjα′σ ′(ωn)Ψ KS
iασ (r) ⊗ Ψ KS

jα′σ ′(r ′) in a similar
Nambu and spin matrix form, we obtain the 4N×4N matrix
equation

1

β

∑
n

ḠKS(ωn) ·
(

0 � · Δxc

(� · Δxc)† 0

)
· Ḡ(ωn)

= 1

β

∑
n

ḠKS(ωn)

[(
0 Σ̄

1,−1
C (ωn)

Σ̄
−1,1
C (ωn) 0

)

+ Σ̄ph(ωn)

]
Ḡ(ωn) (62)

that we need to solve for � · Δs. From here on, we use � · Δs

and � · Δxc synonymously, i.e., the external pair potential is
assumed to be infinitesimal.

In the next section, we reduce the problem to the singlet case
and employ the SDA. Because in this case we can solve the
KSBdG equations analytically, we obtain a potential functional
theory and arrive at a functional form that is formally similar
to the BCS gap equation. We stress that the methods presented
here and in the next section could also be applied without the
restriction to the SDA. However, in that case the equations
would have an implicit form and require a numerical solution
of the KSBdG equations. Such a general form would be of
importance to account for pairings beyond the usual one of
time-reversed states as would be needed, for example, to
describe the FFLO state [5,6]. A further discussion how to
go beyond the SDA can be found in Ref. [54].

C. Derivation xc potential

The Sham-Schlüter equation (62) involves the interacting
GF which is usually only available after solving the Dyson
equation. In an approximate scheme, this step can be avoided.
The straightforward way is to replace the matrix Ḡ(ωn) with
ḠKS(ωn) on all occurrences. As was realized before [33],
this approximation violates Migdal’s theorem because there
a vertex diagram is compared with the polarization diagram
of the same order. Thus, the phonon vertex corrections are
only negligible as compared to the Hartree exchange diagram
with the full GF. To circumvent this problem, some of the
authors have introduced a procedure to construct a self-energy
that does satisfy Migdal’s theorem [49]. Starting from an
electron gas model with a phononic Hartree exchange diagram,
this leads to excellent agreement with experiment while still
retaining the numerically simple form of the Sham-Schlüter
equation that is independent on Ḡ(ωn) and involves only
Matsubara sums that can be evaluated analytically. The
self-energy ΣKS(ωn), where G(ωn) is replaced by ḠKS(ωn),
so far has been the basis of all further improvements in
SCDFT. In this work, as a first step, we will not investigate
the parametrization procedure of Ref. [49] or improve the
comparison of Tc as in Ref. [33]. Instead, we will limit the
complexity of the derivation by assuming Σ̄(ωn) ≈ Σ̄KS(ωn).

024505-8



Ab INITIO THEORY . . . . I. SPIN DENSITY . . . PHYSICAL REVIEW B 92, 024505 (2015)

This will give inaccurate critical temperatures but qualitatively correct results. Thus, we are left to solve the equation

1

β

∑
n

ḠKS(ωn) ·
(

0 � · Δs

(� · Δs)† 0

)
· ḠKS(ωn) = 1

β

∑
n

ḠKS(ωn)

[(
0 Σ̄

KS1,−1
C (ωn)

Σ̄
KS−1,1
C (ωn) 0

)
+ Σ̄KS

ph (ωn)

]
ḠKS(ωn).

(63)

In this form, the matrix elements of the SC KS GF in the normal-state KS basis are given by

ḠKS
ij (ωn) =

∑
k

1

iωn − Ek

(

ui

k ⊗ 
uj∗
k 
ui

k ⊗ 
vj∗
k


vi
k ⊗ 
uj∗

k 
vi
k ⊗ 
vj∗

k

)
+

∑
k

1

iωn + Ek

(

vi∗
k ⊗ 
vj

k 
vi∗
k ⊗ 
uj

k


ui∗
k ⊗ 
vj

k 
ui∗
k ⊗ 
uj

k

)
. (64)

We use 
ui
k = (ui↑

k u
i↓
k )T with the expansion coefficients uiσ

k of 
uk(r) in 
ϕiσ (r) given in Eq. (23). Similar definitions apply for

vi
k . Further, we assume the SDA for the rest of this paper. Results beyond the SDA are discussed in Ref. [54]. In the SDA, the SC

KS GF simplifies to

ḠKS
ij (ωn) =

∑
α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

|uiα
i↑|2δij

iωn−Eα
i↑

0 0
uiα

i↑(v−iα
i↓ )∗δi,−j

iωn−Eα
i↑

0
|uiα

i↓|2δij

iωn−Eα
i↓

uiα
i↓(v−iα

i↑ )∗δi,−j

iωn−Eα
i↓

0

0
(uiα

i↑)∗v−iα
i↓ δi,−j

iωn+Eα
i↑

|uiα
i↑|2δij

iωn+Eα
i↑

0

(uiα
i↓)∗v−iα

i↑ δi,−j

iωn+Eα
i↓

0 0
|uiα

i↓|2δij

iωn+Eα
i↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (65)

This form and any further formula based on it use the components of the SC KS wave function as given in Eqs. (46) and (47).
In the Dyson equation Ḡ−1 = ḠKS−1 − Σ̄ we see that we need to compare the self-energy contributions with the inverse SC KS
GF. Inverting ḠKS

ij (ωn) we obtain

(ḠKS)−1
ij (ωn) = δij

[
iωnτ0σ0 −

(
εi↑ + ε−i↓

2

)
τzσ0 −

(
εi↑ − ε−i↓

2

)
τzσz

]
+ δi,−j

[
(iτy)(iσy)ReΔs

si + τx(iσy)i ImΔs
si

]
. (66)

Here, we see that self-energy contributions ∝τzσ0 change the average spin Fermi level εi↑+ε−i↓
2 = 0. Similarly, contributions

∝τzσz change the splitting of single-particle levels. It has to be understood that these are global properties of the band structure,
meaning that the full εiσ dispersion has to be integrated to obtain N electrons per unit cell. If the interaction changes dispersion
and occupations far away from the Fermi level, this may still cause a shift of the original Fermi level. A clear-cut example is the
following: In the context of SC one often employs the Eliashberg function α2F (Ω), which is the Fermi-surface average of the
electron-phonon interaction [25,28,29], to describe the electron-phonon interaction. This function is assumed to apply equally to
all states, also those away from the Fermi level. This is a good approximation only if corrections of the Fermi level are excluded
a priori (electron-hole symmetry), otherwise under this assumption the correction to the Fermi level εi↑+ε−i↓

2 and the splitting
εi↑−ε−i↓

2 would show a logarithmic divergence. As commonly done in Eliashberg theory, where the same effect occurs, one then
excludes self-energy contributions ∝τz. We will assume the same approximation.

Because the Hartree diagram is proportional to τz, it is thus not considered. While the expected Fermi energy shift is negligible,
corrections to the spin splitting εi↑−ε−i↓

2 could be of relevance. However, due to the extreme additional numerical complexity of
considering the true full electronic state dependence of the electron-phonon interaction, we leave this to a future project. From
now on, we use g exclusively for the electron-phonon coupling. The solutions to the KSBdG equations g±

kσ are referenced only
via their components u and v. We compute the self-energy matrix elements in the SDA from Eq. (60):

Σ̄KS
ph

1,1

iσjσ ′(ωn) = δσσ ′
∑
qkα

g
q

ikσ g
−q

kjσ

∣∣ukα
kσ

∣∣2
Mph

(
Ωq,E

α
kσ ,ωn

)
, (67)

Σ̄KS
ph

1,−1

iσjσ ′(ωn) = −δσ,−σ ′
∑
qkα

g
q

ikσ g
−q

j,−k,−σ ukα
kσ

(
v−kα

k−σ

)∗
Mph

(
Ωq,E

α
kσ ,ωn

)
, (68)

Σ̄KS
ph

−1,1

iσjσ ′(ωn) = −δσ,−σ ′
∑
qkα

g
q

kiσ g
−q

−k,j,−σ

(
ukα

kσ

)∗
v−kα

k−σ Mph
(
Ωq,−Eα

kσ ,ωn

)
, (69)

Σ̄KS
ph

−1,−1

iσjσ ′ (ωn) = δσσ ′
∑
akα

g
q

kiσ g
−q

jkσ

∣∣ukα
kσ

∣∣2
Mph

(
Ωq,−Eα

kσ ,ωn

)
. (70)

From the Hermiticity of Ĥ
e-ph
KS of Eq. (10) comes ga

−q(r) = [ga
q (r)]∗ and thus the electron-phonon interaction matrix elements

g
q

ijσ =
∫

d r
∑
a=0,z


ϕ∗
iσ (r) · σa · 
ϕjσ (r)ga

q (r) (71)
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have the property g
q

ijσ = g
−q

jiσ

∗
. Moreover, g

q

ijσ ∝ δki ,kj +q which is expected from the lattice translational symmetry [37]. The
Matsubara summation Mph(Ω,E,ωn) is evaluated with the result

Yph(Ω,E,ωn) = 1

β

∑
n′

1

iωn′ − E

1

i(ωn − ωn′ ) + Ω
(72)

= nβ(Ω) + fβ(E)

Ω − E + iωn

, (73)

Mph(Ω,E,ωn) = nβ(Ω) + fβ(E)

Ω − E + iωn

+ fβ(E) + nβ(−Ω)

Ω + E − iωn

(74)

= Yph(Ω,E,ωn) − Y ∗
ph(Ω, − E,ωn), (75)

where fβ(E) and nβ(Ω) are Fermi and Bose functions, respectively. The Coulomb self-energy parts on the Nambu off diagonal
with the diagram of Eq. (59) are

Σ̄KS
C

1,−1
iσjσ ′ (ωn) = −δσ,−σ ′

∑
kα

W stat
ikj,−kσ,−σ

ukα
kσ v−kα∗

k−σ fβ

(
Eα

kσ

)
, (76)

Σ̄KS
C

−1,1
iσjσ ′(ωn) = −δσ,−σ ′

∑
kα

W stat
ki,−k,j σ,−σ

ukα∗
kσ v−kα

k−σ fβ

(−Eα
kσ

)
(77)

with the static screened Coulomb matrix elements

W stat
k1k2k3k4 σσ ′ =

∫
d r

∫
d r ′ 
ϕ∗

k1σ
(r) · 
ϕk2σ (r)

ε−1(r,r ′,0)

|r − r ′| 
ϕ∗
k3σ ′(r ′) · 
ϕk4σ ′(r ′) , (78)

with the inverse dielectric function ε−1(r,r ′,0) that is acces-
sible in many electronic-structure codes [55,56]. ε−1(r,r ′,0)
is often calculated within the random phase approximation
(RPA) which yields very good results for metals in general.
As we have pointed out, terms proportional to τz, i.e., contri-
butions (Σ̄KS1,1

ph − Σ̄KS−1,−1

ph ) are dropped from the functional
construction.

Because of the gauge symmetry discussed in Sec. III A 2 c,
we expect the equations for Δs

sk and Δs∗
sk to be similar. Thus,

we proceed and evaluate only the 1,−1 component of the
Sham-Schlüter equation (62) in SDA and arrive at

M
k,−k
k,−k Δs

sk + M
′k,−k
−k,k Δs

s
∗
k = Dk,−k + Ck,−k . (79)

Here, Dk,−k are the purely phononic contributions due to the
Nambu diagonal self-energy parts τ0(Σ̄KS1,1

ph + Σ̄KS−1,−1

ph ). Ck,−k

is due to the Nambu off-diagonal self-energy contributions
and contains the phononic interaction along with the Coulomb
potential on the same footing. The coefficients

M
k,−k
k,−k = 1

β

∑
nσ

Ḡ
KS1,1
kσ,kσ (ωn)ḠKS−1,−1

−k,−σ,−k,−σ (ωn), (80)

M ′k,−k

−k,k = 1

β

∑
nσ

Ḡ
KS1,−1
kσ,−k,−σ (ωn)ḠKS−1,1

kσ,−k,−σ (ωn) (81)

are the Matsubara summed SC KS GF parts. Note that
M

′k,−k
−k,k Δs∗

sk ∝ |Δs
sk|2Δs

sk so the Sham-Schlüter equation in the
SDA is unaffected by the phase of Δs

sk , as expected from the
gauge symmetry.

Dkk′ and Ckk′ have nonvanishing matrix elements apart from
k,−k. These are not included in the SDA. Other SC theories
such as Eliashberg and spin degenerate SCDFT are built on
similar approximations and from the quality of the results one
obtains, we conclude that such corrections are in general not
important.

Another interesting aspect of the functional construction to
observe is that a self-energy part showing tx triplet symmetry
appears, that means the spin-inverted Nambu off-diagonal
components are not equal and of opposite sign

Σ̄KSα,−α

k↑k′↓ + Σ̄KSα,−α

k↓k′↑ �= 0 . (82)

This self-energy part leads to nonvanishing functional con-
tributions in Ck,−k in the singlet channel. We call these
contributions intermediate triplet contributions. We have in-
vestigated the effect of removing them and found that this has
essentially no consequence in the numerical calculation for a
spin-independent coupling (see Paper II [57]). In addition, we
note that similar to the matrix elements k′ �= −k, the diagrams
generate triplet contributions that cannot be incorporated into
the SDA. This also means that the terms

∑
σ

(
1

β

∑
n

ḠKS1,1(ωn)Σ̄KS1,−1(ωn)ḠKS−1,−1(ωn)

)
σ,−σ

�= 0,

(83)

∑
σ

(
1

β

∑
n

ḠKS1,−1(ωn)Σ̄KS−1,1(ωn)ḠKS1,−1(ωn)

)
σ,−σ

�= 0

(84)

are not zero as, on the other hand, one would expect for a
singlet SC. This fact simply means that ignoring the triplet
components from the external potential is not consistent, in
presence of a magnetic field, because a triplet-singlet coupling
exists at the level of the xc potential. As discussed earlier
(Sec. III A 2 b), it is not clear in which cases triplet effects
become relevant. In this work, we focus on purely singlet SC
and will not consider triplet SC further.

Within the SDA, the SC KS wave function compo-
nents v−kα

k−σ ,ukα
kσ are explicit functionals of the potential Δs

s.
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Thus, the left- and right-hand sides of the Sham-Schlüter equation (79) are equally nonlinear functionals of the potential Δs
s. We

interpret the Sham-Schlüter condition (79) as

Sβ

[
Δs

s

]
Δs

s = 0, Sβ = SM
β + SC

phβ + SC
Cβ + SD

β . (85)

Here, SM
β Δs

s is equivalent to −(Δs
skM

k,−k
k,−k + M ′k,−k

−k,kΔ
s
s
∗
k), SD

β Δs
s = Dk,−k , and (SC

phβ + SC
Cβ)Δs

s = Ck,−k . The nonlinear Sham-
Schlüter operator contributions are given by

SM
β kk′ = −δkk′

∑
σ

(
(εkσ + ε−k−σ )2

|E+
iσ − E−

iσ |2 Ps(E
+
kσ ,E−

kσ ) + 2
∣∣uk+

kσ

∣∣2∣∣v−k+
k−σ

∣∣2 ∑
α

Ps
(
Eα

kσ ,Eα
kσ

))
(86)

and

SD
β kk′ = 1

2
δkk′

∑
qk2σ

∑
α1α2α3

sign(α3)

|E+
kσ − E−

kσ |
((∣∣v−k2α2

k2−σ

∣∣2∣∣v−kα1
k−σ

∣∣2∣∣gq

−k2,−k,−σ

∣∣2 + ∣∣ukα1
kσ

∣∣2∣∣uk2α2
k2σ

∣∣2∣∣gq

kk2σ

∣∣2)
L

(
Ωq,E

α1
kσ ,E

α2
k2σ

,E
α3
kσ

)

+ (∣∣v−k2α2
k2−σ

∣∣2∣∣v−kα1
k−σ

∣∣2∣∣gq

−k,−k2,−σ

∣∣2 + ∣∣ukα1
kσ

∣∣2∣∣uk2α2
k2σ

∣∣2∣∣gq

k2kσ

∣∣2)
L

(
Ωq,E

α1
kσ ,−E

α2
k2σ

,E
α3
kσ

))
. (87)

The functions Ps and L come from analytic Matsubara summations and are given in the Appendix together with various limiting
cases. The term SD

β kk′ due to the Nambu diagonal acts to reduce the critical temperature. In Refs. [33,35], this term was

reduced to approximately 1
2 by subtracting a temperature-sensitive extra term for the purpose of compensating for a systematic

underestimation as compared to the Eliashberg critical temperature in the phonon-only case. In Ref. [49], a SCDFT functional
is constructed by using a proper interacting GF in the exchange self-energy of Eq. (60), therefore removing the necessity to
reduce the repulsive SD

β kk′ . Having in mind to generalize this functional to SpinSCDFT, in this work we decided not to use
the scale factor. In Paper II [57], we find further indications that this scaling may also effect the robustness of the SC state
against a magnetic splitting. The predicted critical temperature will be too low as compared to experiment, but the correctness
of the qualitative behavior of the theory will be preserved. The Nambu off-diagonal contributions that derive from the phonon
interaction then read as

SC
phβkk′ = −

∑
qσ

∑
α1α2α3

g
q

kk′σ g
−q

−k,−k′,−σ

sign(α2)|E+
k′σ − E−

k′σ |
(∣∣ukα1

kσ

∣∣2∣∣v−kα3
k−σ

∣∣2 + u
kα1
kσ v

−kα1∗
k−σ u

kα3
kσ v

−kα3∗
k−σ

Δs
s
∗
k′

Δs
sk′

)
L

(
Ωq,E

α1
kσ ,E

α2
k′σ ,E

α3
kσ

)
, (88)

and the contribution that derives from the static Coulomb interaction reads as

SC
Cβkk′ =−

∑
σ

∑
α1α2α3

sign(α2)

|E+
k′σ − E−

k′σ |
(

W stat
kk′,−k,−k′

σ,−σ

∣∣ukα1
kσ

∣∣2∣∣v−kα3
k−σ

∣∣2 + u
kα1
kσ v

−kα1∗
k−σ u

kα3
kσ v

−kα3∗
k−σ

Δs
s
∗
k′

Δs
sk′

W stat
kk′,−k,−k′

∗
σ,−σ

)

×LC
(
E

α1
kσ ,E

α2
k′σ ,E

α3
kσ

)
. (89)

The function LC from an analytic Matsubara summation
is also given in the Appendix. The relation to previous
work on SCDFT presented in Ref. [33] is summarized in
Sec. III D.

1. Description of the second-order phase transition

If the SC transition to the normal state is of second
order, χ (r,r ′) is assumed to go to zero continuously upon
approaching the critical temperature. From earlier work [47]
in the BCS framework, we expect this to be the case in the low
magnetic field part of the phase diagram. The formalism in the
SDA is built on the potential Δs

s not the order parameter χ . We
thus need to prove that a second-order phase transition implies
also a continuous vanishing of the potential Δs

s. We note that in
the SDA it is sufficient to show that the expansion coefficients
of χ and Δs

s in our normal-state basis are of the form

χskσ,−k,−σ = a
σ,−σ
k Δs

sk , (90)

where a
σ,−σ
k is some function of Δs

s and show that
lim|Δs

s|→0 a
σ,−σ
k (Δs

s) �= 0. Given that this is the case, in the
limit |Δs

s| → 0 only linear order terms in the Sham-Schlüter

equation are relevant. Then, at a second-order phase
transition, Tc can be computed from the condition that the
matrix lim|Δs

s|→0 Sβ[Δs
s] is singular.

Coming back to Eq. (90) and using the SDA together with
Eq. (34) we see

a
σ,−σ
k = fβ(E+

kσ ) − fβ(E−
kσ )

|E+
kσ − E−

kσ | ≡ PS(E+
kσ ,E−

kσ ). (91)

Clearly, at T > 0, a
σ,−σ
k can only be zero if E+

kσ − E−
kσ → 0.

Taking the respective limit

lim
E+

kσ −E−
kσ →0

a
σ,−σ
k = −β

2

1

cosh[β(E+
kσ + E−

kσ )/2]
(92)

< 0, (93)

which is the desired result. We may thus use |Δs
s| → 0 instead

of |χs| → 0 at the point of a second-order phase transition.
We sketch the function a

σ,−σ
k using A = β(E+

kσ + E−
kσ )/2 and

B = β(E+
kσ − E−

kσ )/2 in Fig. 2. Note that while a
σ,−σ
k is strictly

nonzero if β(E+
kσ + E−

kσ )/2 
 1, then a
σ,−σ
k is exponentially

small in the range |B| � |A|.
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We thus observe that the order parameter χs(r,r ′) is only
weakly dependent on the potential matrix elements Δs

si that
correspond to states below the splitting energy. Still, this does
not invalidate the conclusion that at any finite temperature a
continuously vanishing order parameter implies a continuously
vanishing pair potential. We thus expect that (at low splitting)
we can use the linearized Sham-Schlüter equation (85). In the
following, we use a breve on top of linearized entities such as
S̆βc = lim|Δs

s|→0 Sβ[Δs
s] and Eq. (85) can be solved from the

condition

det S̆βc = 0, (94)

where βc = 1/Tc. The right eigenvector of S̆βc is proportional
to Δs

s. To compute the small Δs
s limit of S̆βc we first investigate

the behavior of |ukα
kσ |2, |v−kα

k−σ |2, and Eα
kσ separately where we

find

lim
|Δs

s|→0

∣∣ukα
kσ

∣∣2 = δα,sign(εkσ +ε−k−σ ) , (95)

lim
|Δs

s|→0

∣∣v−kα
k−σ

∣∣2 = δα,−sign(εkσ +ε−k−σ ) , (96)

lim
|Δs

s|→0
Eα

kσ = δα,sign(εkσ +ε−k−σ )εkσ

− δα,−sign(εkσ +ε−k−σ )ε−k,−σ . (97)

Also, we see that

lim
|Δs

s|→0

∣∣ukα
kσ

∣∣2∣∣v−kα
k−σ

∣∣2 = lim
|Δs

s|→0
ukα

kσ v−kα
k−σ

∗ = 0. (98)

Thus, it is straightforward to arrive at

S̆M
β kk′ = −2δkk′Ps(εk↑,−ε−k↓) (99)

and

S̆D
β kk′ = δkk′

εk↑ + ε−k,↓

∑
ql

(∣∣gq

kl↑
∣∣2

[L(Ωq,εk↑,εl↑,εk↑)

+L(Ωq,εk↑,−εl↑,εk↑) − L(Ωq,εk↑,εl↑,−ε−k,↓)

−L(Ωq,εk↑,−εl↑,−ε−k,↓)]

+ ∣∣gq

−k,−l↓
∣∣2

[L(Ωq,ε−k↓,ε−l↓,ε−k↓)

+L(Ωq,ε−k↓,−ε−l↓,ε−k↓) − L(Ωq,ε−k↓,ε−l↓,−εk↑)

−L(Ωq,ε−k↓,−ε−l↓,−εk↑)]
)
. (100)

Moreover,

S̆C
phβkk′ =−2

∑
q

g
q

kk′↑g
−q

−k,−k′,↓
|εk′↑ + ε−k′,↓| [L(Ωq,εk↑,Ĕ+

k′↑,−ε−k↓)

+L(Ωq,ε−k↓,Ĕ+
−k′↓, − εk↑)] (101)

and

S̆C
Cβkk′

=−2W stat
kk′,−k,−k′ ↑,↓Ps(Ĕ

+
k′↑,−Ĕ+

−k′↓)Ps(εk↑,−ε−k↓). (102)

2. Nonlinear gap equation

Far from Tc or in those parts of the phase diagram where
the SC transition is of first order we need to use the nonlinear
Sham-Schlüter equation, because a solution with small |Δs

sk|
may not exist. The most common method to solve an equation

of type Eq. (85) is to use an invertible splitting matrix S and
cast Sβ[Δs

s]Δ
s
s = 0 into a fixed-point problem

Δs
s = KS

[
Δs

s

]
Δs

s, KS = S−1(Sβ + S) . (103)

This is the gap equation of SpinSCDFT. In the spin degenerate
limit, the choice S = −S̆M

β leads to the SCDFT gap equation
given in Ref. [33]. We point out that while we can show
that all S̆M

βk,k < 0 at εkσ + ε−k,−σ = 0 S̆M
βk,k ∼ exp[− 1

2β(εkσ −
ε−k,−σ )] and is thus a numerically problematic object. In the
implementation that we describe in detail in Paper II [57], we
find that a good choice isS = −SM

β (εkσ = ε−k,−σ ). Obviously,
in the spin degenerate limit we recover the formulas given in
Ref. [33]. In Paper II, we will also discuss the properties of
the splitting versus temperature diagram for a simple system
in detail.

D. Relation to earlier work on SCDFT

Previous work on SCDFT in Ref. [33] led to a similar gap
equation as Eq. (103) using KS perturbation theory. While a
nonlinear functional is derived in Ref. [33] as well, in most
applications only the linear or partially linearized equation
has been used. In the partially linearized gap equation, the
temperature behavior of the gap below Tc is modeled using
the BCS hyperbolic tangent [33]. On the other hand, in the
fully linearized approach, KS perturbation theory and the
derivation via the Sham-Schlüter equation lead to the same
results [48]. Thus, we focus on the comparison of results form
a linearization. In Ref. [48], the Sham-Schlüter equation is
kept as in Eq. (63) also within the decoupling approximation in
the form where the susceptibilitylike terms M

k,−k
k,−k and M

′k,−k
−k,k

times the potential Δs
s is on the left-hand side of the equation

while the self-energy term is on the right-hand side. Note that
M ′ is of higher than linear order.

To solve the resulting equation for the potential Δs
s,

it seems natural to divide by the function M
k,−k
k,−k =

1
β

∑
nσ Ḡ

KS1,1
kσ,kσ (ωn)ḠKS−1,−1

−k,−σ,−k,−σ (ωn). Doing so, we arrive at
the analog of Eq. (35) in Ref. [33] that reads as in our notation

Δs
sk = −ZkΔ

s
sk − 1

2

∑
k′

Kk,k′
tanh

(
β

2 εk′
)

εk′
Δs

sk′ , (104)

where, following the derivation of this work, we have

Zk = −S̆D
β k,k

/
M̆

k,−k
k,−k , Kk,k′ = −S̆C

β kk′
/
M̆

k,−k
k,−k . (105)

In the spin degenerate limit, this is the linear result in Ref. [33].
Note that there is a problem with M̆

k,−k
k,−k if the splitting is not

zero as we discuss in the following, which is why the more
general approach of this work has been introduced.

We show the function a in Fig. 2 which is equivalent to the
function Ps given in the Appendix. From this plot and Eq. (99)

can be understood that (M̆k,−k
k,−k )

−1 = (S̆M
βkk′)

−1
is numerically

not well behaved at finite splitting and low temperatures. Since
M̆

k,−k
k,−k represents the connection between χ and Δ to linear

order, the application of the functional derivative δΔ
δχ

as in
Ref. [33] is equally problematic in this limit.

Within the decoupling approximation, the right-hand side
of the Sham-Schlüter equation equally depends on Δs

s. So,
in this work we use the entire equation directly without first
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separating the potential term. The solution can be found using
a fixed-point iteration with a more general splitting matrix.
This directly leads to the fixed-point equation (103).

As compared to the previous work on SCDFT, the Mat-
subara summations in GKSΣGKS that result in the functions
L(Ω,E1,E2,E3) and LC(E1,E2,E3) given in the Appendix
are complicated by the fact that E3 is not necessarily equal or
opposite equal to E1. Thus, L does not reduce to I, I ′, J , and
J ′ of Ref. [33] that depend only on two energy variables.

Most importantly, we need to solve a nonlinear gap equation
since the high-field part of the phase diagram in a magnetic
field shows a transition that is first order. Also, a partial
linearization is thus not straightforward.

IV. ELIASHBERG EQUATIONS

In the KS-SpinSCDFT formalism, interaction effects are
mimicked by the xc potential that is an (implicit) functional
of the densities. While the functional construction and the
additional complications of the SC KS system pose additional
algebraic complexity, the result is a numerically cheaper
computational scheme. This is owed to the fact that Matsubara
summations in the self-energy are not computed numerically
but absorbed into the analytic structure of the xc potential.
Likely, the knowledge of the interacting self-energy is essential
to a future improvement of the presented functional. The
self-energy (53) in turn is constructed via diagrammatic
perturbation theory using the electronic and phononic GF
similar to Sec. III C, and involving the solution of a Dyson
equation. In this section, we develop this direct many-body
scheme to obtain the electronic GF. The final set of equations
generalize the ones of Eliashberg [29] and we refer to
them with the same name. Reference [24] discusses similar
equations in a different notation with a limitation to isotropic
system with a homogeneous splitting parameter.

A. Solving the Dyson equation

The starting point of the derivation of the Eliashberg
equations is the Dyson equation of a SC equation (52). We
represent it in the basis of normal-state, zero-temperature KS
orbitals { 
ϕiσ (r)} defined in Eq. (22). We use the Nambu-
Anderson [40,41] notation similar to that used in the functional
derivation and in Eq. (62). The Dyson equation reads as

Ḡij (ωn) = ḠKS
ij (ωn) +

∑
kl

ḠKS
ik (ωn)Σ̄ s

kl(ωn)Ḡlj (ωn), (106)

where ḠKS
ij is the SC KS GF and Σ̄ s

ij (ωn) = Σ̄xcij (ωn) − v̄xcij

where Σ̄xcij (ωn) is the Nambu exchange and correlation
self-energy that also includes the phononic Hartree diagram
[50]. v̄xcij are the matrix elements of the xc potential of the
SC KS system. Note that the SC KS GF is not diagonal in the
space of { 
ϕiσ (r)}. Similar to our approach in SpinSCDFT of
Sec. III, we assume that { 
ϕiσ (r)} is a good approximation to the
quasiparticle state,4 i.e., Σ̄ s

kl(ωn) and Ḡij (ωn) are essentially
diagonal. We use similar diagrams [Eqs. (59) and (60)]

4The same scheme for going beyond the decoupling approximation
presented in Sec. III A 3 can be used in this Eliashberg approach: the

TABLE I. Self-energy contributions, the variable of the inverse
SC KS GF which they add to, and the basis vector, e.g., along
the τ0σ0 direction in spin and Nambu space iωn + Σω

k (ωn). In the
last column, we give the related Eliashberg property. Note that
ΔE

k ∼ ΣRe�
k + iΣ Im�

k and ΔE�
k (ωn) ∼ ΣRe�

k − iΣ Im�
k .

SE part ḠKS−1
part Basis vector Eliashberg

Σω
k (ωn) iωn τ0σ0 Zk(ωn)

Aω
k (ωn) τ0σz Ãω

k (ωn)

Σε
k (ωn) (εk↑ + ε−k↓)/2 τzσ0 ε̃k(ωn)

ΣJ
k (ωn) (εk↑ − ε−k↓)/2 τzσz J̃k(ωn)

ΣRe�
k (ωn) ReΔs

sk (iτy)(iσy) ΔE
k (ωn)

iΣ Im�
k (ωn) i ImΔs

sk τx(iσy) ΔE�
k (ωn)

as for the functional construction of SpinSCDFT in Sec. III C,
namely, the phononic and Coulomb exchange diagram. Again
similarly (compare Sec. III C) we drop the Coulomb correc-
tions on the Nambu diagonal that add to the xc potential.
Further, we assume, as in the SDA of Sec. III A 2 c, that the
pairing occurs only between time-reversed states [46]. This
means we only consider singlet SC. Starting from Eq. (106)
in the form Ḡij (ωn) = [ḠKS−1

ij (ωn) − Σ̄ s
ij (ωn)]−1, under the

mentioned approximations, the Dyson equation is a 4×4
matrix equation that can be solved analytically. Note that here
we do not substitute the SC KS GF for the interaction GF in
the self-energy (as was done in the functional construction of
SpinSCDFT of Sec. III C). This is the main difference in the
two approaches so far.

1. Analytic inversion of the Dyson equation

The easiest way to invert the right-hand side of the Dyson
equation

Ḡij (ωn) = [
ḠKS−1

ij (ωn) − Σ̄ s
ij (ωn)

]−1
(107)

is to identify contributions of the self-energy that add to a
given variable of the inverse SC KS GF ḠKS−1

ij (ωn) of Eq. (66).
We summarize these self-energy contributions in Table I. This
means we decompose the Nambu and spin matrix Σ̄ s

kl(ωn)
along the vectors τ0σ0, τzσ0, and so on. Then, we name the
self-energy contributions according to the property of the SC
KS GF they add to in Eq. (107) and indicate the property
in the superscript. For example, the Matsubara frequency
variable of the inverse SC KS GF points along the τ0σ0 axis in
spin and Nambu space. Correspondingly, the self-energy part
along basis vector is referred to as Σω

k (ωn). In the following,
we use |gq

kk′σ |2 = |g−q

k′kσ |2, D0
q,−q = D0

−q,q , and W stat
kk′k′kσσ

=
W stat

k′kkk′σσ
. Then, the equations for the corresponding scalar

self-energy components read as

Σω
k (ωn) = 1

4

∑
σαk′q

1

β

∑
n′

(τ0)ααD0
q,−q(ωn′−ωn)

× ∣∣gq

kk′σ

∣∣2
Ḡ

α,α
k′σ,k′σ (ωn′), (108)

KS orbital basis could, in principle, be self-consistently updated with
modified densities in the SC state.
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Aω
k (ωn) = 1

4

∑
σαk′q

1

β

∑
n′

(τ0)αα

sign(σ )
D0

q,−q(ωn′−ωn)

×∣∣gq

kk′σ

∣∣2
Ḡ

α,α
k′σ,k′σ (ωn′), (109)

Σε
k (ωn) = 1

4

∑
σαk′q

1

β

∑
n′

(τz)ααD0
q,−q(ωn′−ωn)

×∣∣gq

kk′σ

∣∣2
Ḡ

α,α
k′σ,k′σ (ωn′), (110)

ΣJ
k (ωn) = 1

4

∑
σαk′q

1

β

∑
n′

(τz)αα

sign(σ )
D0

q,−q (ωn′−ωn)

× ∣∣gq

kk′σ

∣∣2
Ḡ

α,α
k′σ,k′σ (ωn′). (111)

Note that Aω
k (ωn) stands out in the sense that the SC KS GF

has no contribution along this direction in Nambu and spin
space. On the Nambu off-diagonal we similarly introduce

Σ Im�
k (ωn) = −

∑
σk′

1

β

∑
n′

sign(σ )

4i

(∑
q

D0
q,−q(ωn′−ωn)

×g
q

kk′σ g
−q

−k,−k′,−σ + W stat
kk′,−k,−k′

σ,−σ

)

×
∑

α

(τx)ααḠ
α,−α
k′σ,−k′,−σ (ωn′), (112)

ΣRe�
k (ωn) = −

∑
σk′

1

β

∑
n′

sign(σ )

4

(∑
q

D0
q,−q(ωn′ − ωn)

×g
q

k′kσ g
−q

−k′,−k,−σ + W stat
k′k,−k′,−kσ,−σ

)

×
∑

α

(iτy)ααḠ
α,−α
k′σ,−k′,−σ (ωn′) . (113)

Here, we introduce Bk(ωn) = ΣRe�
k (ωn) + iΣ Im�

k (ωn) and
B�

k (ωn) = ΣRe�
k (ωn) − iΣ Im�

k (ωn):

Bk(ωn) = −
∑
σk′

1

β

∑
n′

sign(σ )

2

(∑
q

D0
q,−q(ωn′−ωn)

×g
q

kk′σ g
−q

−k,−k′,−σ + W stat
kk′,−k,−k′

σ,−σ

)

×Ḡ
1,−1
k′σ,−k′,−σ (ωn′), (114)

B�
k (ωn) =

∑
σk′

1

β

∑
n′

sign(σ )

2

(∑
q

D0
q,−q (ωn′ − ωn)

×g
q

k′kσ g
−q

−k′,−k,−σ + W stat
k′k,−k′,−kσ,−σ

)

×Ḡ
−1,1
k′σ,−k′,−σ (ωn′). (115)

If both �Re�
k and �Im�

k are real, B�
k is the complex conjugate

of Bk . Further, for the same reasons discussed in Sec. III A 2 b,

we do not consider the possibility that triplet self-energy
contributions appear. It is important to remark that, just as in the
usual derivation of the spin degenerate Eliashberg equations,
the k dependence of all self-energy parts is generated via
the k dependence of the couplings |gq

kk′σ |2 and in addition
W stat

k′k,−k′,−kσ,−σ
on the Nambu off diagonal.

Introducing the mass renormalization function Zk(ωn) as

Zk(ωn) = 1 + iΣω
k (ωn)

/
ωn , (116)

we can rewrite some of the above equations by including
ZE

k (ωn) into the self-energy parts

ΔE
k (ωn) = Bk(ωn)/Zk(ωn), (117)

ΔE�
k (ωn) = B�

k (ωn)/Zk(ωn), (118)

ε̃k(ωn) = [
(εk↑ + ε−k↓)/2 + Σε

k (ωn)
]/

Zk(ωn), (119)

J̃k(ωn) = [
(εk↑ − ε−k↓)/2 + ΣJ

k (ωn)
]/

Zk(ωn), (120)

Ãω
k (ωn) = Aω

k (ωn)
/
Zk(ωn). (121)

Then, by introducing the abbreviation

Fkσ (ωn) = ([
ε̃k(ωn) + sign(σ )Ãω

k (ωn)
]2+ΔE

k (ωn)ΔE�
k (ωn)

) 1
2 ,

(122)

and suppressing the arguments ωn, we arrive at the formulas
for nonvanishing SC GF components:

Ḡ
1,1
kσ,kσ = 1

2FkσZk

∑
α

Fkσ + α
[
ε̃k + sign(σ )Ãω

k

]
iωn − sign(σ )J̃k − αFkσ

, (123)

Ḡ
−1,−1
kσ,kσ = 1

2Fk,−σZk

∑
α

Fk,−σ + α
[
ε̃k − sign(σ )Ãω

k

]
iωn + sign(σ )J̃k + αFk,−σ

,

(124)

Ḡ
1,−1
kσ,−k,−σ = 1

2FkσZk

∑
α

sign(σ )αΔE
k

iωn − sign(σ )J̃k − αFkσ

, (125)

Ḡ
−1,1
kσ,−k,−σ = 1

2Fk,−σ Zk

∑
α

sign(σ )αΔE�
k

iωn + sign(σ )J̃k + αFk,−σ

.

(126)

We have thus expressed the GF in terms of the self-energy
components [Eqs. (117) to (121)] explicitly. The coupled set
of equations (117) to (121) are the Eliashberg equations and
have to be solved according to the following scheme:

(1) Start with the coupling matrix elements g
q

k′kσ and
W stat

k′k,−k′,−kσ,−σ
and an initial guess for the self-energy com-

ponents ΔE
k , ΔE�

k , ε̃k,J̃k , and Ãω
k .

(2) Evaluate Eqs. (117) to (121). They are closed in
the sense that inserting the equations of this section
ΔE

k , ΔE�
k , ε̃k,J̃k , and Ãω

k are only dependent on each other
and the coupling matrix elements g

q

k′kσ and W stat
k′k,−k′,−kσ,−σ

.
(3) Construct a new self-energy and iterate from point 2,

up to self-consistency.
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One may insert the expression for the GF into the self-
energy components [Eqs. (117) to (121)] which would provide
us with the magnetic generalization to the equations derived
in Ref. [26]. Ãω

k is a peculiar object because it generates a spin
imbalance in the particle as compared to the hole channel.
To understand the effect of Ãω

k , consider the following self-
consistent cycle. We start the iteration of these equations with
Ãω

k = 0 and Σ Im�
k = 0. Then follows Ḡ

1,−1
kσ,−k,−σ = Ḡ

−1,1
k,−σ,−kσ

which results in B�
k = Bk and no self-energy part Σ Im�

k is
generated. Further, because Ḡ

−1,−1
kσ,kσ = Ḡ

1,1
k,−σk,−σ we find then

that Ãω
k is proportional to the difference of the interaction in the

spin channels Ãω
k ∝ |gq

kk′↑|2 − |gq

kk′↓|2. If now the interaction
is independent on the spin channel |gq

kk′↑|2 − |gq

kk′↓|2 = 0, then
Ãω

k also remains zero and we are at our starting point. Thus,
we conclude that for spin-independent couplings Σ Im�

k and
Ãω

k remain zero during iteration. If the interaction is spin
dependent |gq

kk′↑|2 − |gq

kk′↓|2 �= 0 the self-consistency iteration
will generate a spin imbalance in the GF. This is not surprising
because the up and down single-particle spectrum is altered in
a different way by the interaction. Then, a nonvanishing Σ Im�

k

cannot be excluded.
For future reference, we extract the renormalized energy

dependence ε̃k of the GF as it appears in the self-energy
equations (108) to (111) and (114) and (115). With the
abbreviation

ak(ωn) = (
Ãωz

k

)2 + ΔE
k ΔE�

k + ω2
n − (J̃k)2 (127)

we obtain (b = 0,z)∑
α

(τb)ααḠ
α,α
kσ,kσ

=
∑

α

(τb)αα

Zk

α
(
ε̃k − sign(σ )

(
J̃k + αÃω

k

)) − iωn

ak − 2α
sign(σ )

(
iωnJ̃k + Ãω

k ε̃k

) + ε̃2
k

(128)

and∑
σ

Ḡ
1,−1
kσ,−k,−σ (ωn) = − 1

Zk

∑
α

ΔE
k

ak − α
(
iωnJ̃k + Ãω

k ε̃k

) + ε̃2
k

.

(129)

B. Analytic integration of the energy

In a numerical solution, Eqs. (117) to (121) have to be
iterated until self-consistency is reached. Each self-consistent
step requires to perform Matsubara summations in addition to
the k-space summations which will be numerically demanding.

Note, however, that the k-space summations can be avoided
using an approximation that is very common in the context
of Eliashberg theory which is essentially to replace the
couplings with their value at ε̃k(ωn) = 0. The reason why
this is sensible can be understood from the GF. From the
above equation (128) one can easily see that Ḡ

1,1
kσ,kσ (ωn) −

Ḡ
−1,−1
kσ,kσ (ωn) behaves as [ε̃k(ωn)]−1 for large ε̃k(ωn). In turn,

Ḡ
1,1
kσkσ (ωn) + Ḡ

−1,−1
kσkσ (ωn) and the Nambu off-diagonal parts

Ḡ
α,−α
kσ,−k,−σ (ωn) behave as [ε̃k(ωn)]−2 for large ε̃k(ωn). Using

this insight, we see from the Eqs. (108), (109), (114), and
(115) that Zk(ωn), Ãω

k (ωn), ΔE
k (ωn), and ΔE�

k (ωn) are almost
independent on the space k belonging to large ε̃k because

its contributions are suppressed by a factor [ε̃k(ωn)]−2. Thus,
these quantities can be computed replacing the couplings with
their value at ε̃k(ωn) = 0.

With the integrand behaving as [ε̃k(ωn)]−1, the convergence
of the Brillouin zone integrals in Σε

k (ωn) and ΣJ
k (ωn) depend

on the k dependence of the couplings in an essential way,
even on k that correspond to a large ε̃k . In particular, in
absence of any k dependence of the couplings Σε

k (ωn) and
ΣJ

k (ωn) diverge logarithmically. From the physical point of
view, Σε

k (ωn) shifts the position of the Fermi energy and
ΣJ

k (ωn) the magnetic splitting of quasiparticle states due to
many-body interactions. These terms are zero if the system
shows particle-hole symmetry and small in general (see also
the discussion in Sec. III C). Therefore, we will discard these
contributions completely and replace the couplings with their
value at ε̃k(ωn) = 0 entirely, reducing the computational costs
significantly.

Another very effective simplification of the formalism
comes from assuming the system to be isotropic in k. This
means that the couplings will depend on k only via the
quasiparticle energy εkσ . Here, we introduce the averaging
operation on a generic function Fkσ on equal center of energy
and equal splitting surfaces according to

Fσ (ε,J ) = Îkσ (ε,J )Fkσ (130)

= 1

�(ε,J )

∑
k

δ

(
εsign(σ )k↑ + ε−sign(σ )k↓

2
− ε

)

× δ

(
εsign(σ )k↑ − ε−sign(σ )k↓

2
− J

)
Fkσ , (131)

where the number of states on center of energy and splitting
surfaces is given by �(ε,J ) = Îkσ (ε,J ) 1. The subscript indices
“kσ ′′ on Îkσ (ε,J ) indicate the variables that are averaged.
Note that we invert the sign of k for the σ = ↓ part which
makes Îkσ (ε,J )Fkσ = Î−k,−σ (ε,J )F−k,−σ . Now, we define the
analog of the Eliashberg function α2F (ω) [25,28]. We are
going to keep the state dependence k for a little longer, and
eventually take only those k such that ε̃k(ωn) = 0. On the
Nambu diagonal, it appears the coupling function

α2F D
σ (ε,J,ε′,J ′,Ω)

= �(ε′,J ′)Îk′σ (ε′,J ′)Îkσ (ε,J )
∑

q

∣∣gq

kk′σ

∣∣2
δ(Ω − Ωq)

(132)

and on the Nambu off diagonal

α2F (ε,J,ε′,J ′,Ω)

= �(ε′,J ′)Îk′σ (ε′,J ′)Îkσ (ε,J )

×
∑

q

g
q

kk′σ g
−q

−k,−k′,−σ δ(Ω − Ωq), (133)

Cstat(ε,J,ε′,J ′) = �(ε′,J ′)Îk′σ (ε′,J ′)Îkσ (ε,J )W stat
k′k,−k′,−kσ,−σ

.

(134)

Note that in the above equations (133) and (134), the left-hand
side does not depend on σ because the averaging leads to the
same result for σ = ↑ or ↓. The summation over k′ and q in
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the self-energy equations (108) to (115) are then transformed to integrals over ε′, J ′, and Ω , respectively. However, if the
couplings lose their center-of-energy dependence ε, the following functions only depend on the Matsubara frequency ωn (that
we now indicate as the index n) and the splitting: Zn(J ), Ãω

n (J ), ΔE
n(J ), and ΔE�

n (J ). With ε̃k(ωn) ≡ ε/Zn and J̃k(ωn) = J/Zn

we can compute analytically the integral over the center of energy ε of Eq. (128). Because the integrand decays faster than ε−1

for large ε, we may compute the integral

Mnσ (J ) =
∫

dε
∑

α

α
(
ε − sign(σ )

(
J + Ãω

nZn

)) − iωnZn

an(J )Z2
n − 2α

sign(σ )

(
iωnZnJ + Ãω

n Znε
) + ε2

(135)

as the sum of residues in the upper complex half-plane. Since it is not clear which of the four poles will be in the upper half, we
compute all residues. Adding those, we obtain the energy integral in Eqs. (108) and (109) with

Sn,σ (J ) =
√

−[
Z2

nΔ
E
nΔE�

n − (iωnZn − sign(σ )J )2
]

(136)

as

Mnσ (J ) = πi

(
iωnZn − sign(σ )J

Sn,σ

− 1

)
θ

[
Im

(
− Ãω

nZn

sign(σ )
− Sn,σ

)]
− πi

(
iωnZn − sign(σ )J

Sn,σ

+ 1

)

× θ

[
Im

(
− Ãω

nZn

sign(σ )
+ Sn,σ

)]
+ πi

(
iωnZn + sign(σ )J

Sn,−σ

+ 1

)
θ

[
Im

(
Ãω

nZn

sign(σ )
− Sn,−σ

)]

−πi

(
iωnZn + sign(σ )J

Sn,−σ

− 1

)
θ

[
Im

(
Ãω

n Zn

sign(σ )
+ Sn,−σ

)]
. (137)

Further, for Eqs. (114) and (115), we integrate Eq. (129) in center of energy ε. We define

Nn(J ) =
∑

α

∫
dε

anZ2
n − α

(
iωnZnJ + εÃω

n

) + ε2
, (138)

that is evaluated to

Nn(J ) = πi
(
S

−1
n,↑θ

[
Im

(−Ãω
n Zn − Sn,↑

)] − S
−1
n,↑θ

[
Im

(−Ãω
n Zn + Sn,↑

)]
+S

−1
n,↓θ

[
Im

(
Ãω

n Zn − Sn,↓
)] − S

−1
n,↓θ

[
Im

(
Ãω

nZn + Sn,↓
)])

. (139)

We obtain the Eliashberg equations similar to their usual,
spin degenerate form [26,27,58], that only refer to the GF
implicitly

Zn(J ) = 1 + i

4ωn

∫
dJ ′ 1

β

∑
n′σ

Kσ
n,n′ (J,J ′)Mn′σ (J ′),

(140)

Ãω
n (J ) = 1

4Zn(J )

∫
dJ ′ 1

β

∑
n′σ

Kσ
n,n′ (J,J ′)
sign(σ )

Mn′σ (J ′),

(141)

ΔE
n(J ) = − 1

2Zn(J )

∫
dJ ′ 1

β

∑
n′

Ln,n′ (J,J ′)

×Zn′(J ′)ΔE
n′(J ′)Nn′(J ′), (142)

ΔE�
n (J ) = − 1

2Zn(J )

∫
dJ ′ 1

β

∑
n′

Ln,n′ (J,J ′)

×Zn′(J ′)ΔE�
n′ (J ′)Nn′(J ′), (143)

where

Kσ
n,n′ (J,J ′) =

∫
dΩ

2Ω α2F D
σ (0,J,0,J ′,Ω)

(ωn − ωn′ )2 + Ω2
, (144)

Ln,n′ (J,J ′) =
∫

dΩ
2Ω α2F (0,J,0,J ′,Ω)

(ωn − ωn′ )2 + Ω2

+Cstat(0,J,0,J ′) . (145)

We point out that the Coulomb interaction is not well suited
for the k-constant coupling approximation. The reason is
that the function Nn(J ) behaves as 1/n for large n while
Zn(J ) goes to 1 and thus the Matsubara integral shows a
logarithmic divergence due to Cstat(0,J,0,J ′) if ΔE

n(J ) does not
cut off the integral. Often, the effect of the Coulomb potential
is mimicked by replacing Cstat with μ�θ (ωc − |ωn|) where
μ� = Cstat

1+Cstat ln(E/ωc) with E , a parameter of the electronic band
structure and ωc a phonon frequency cutoff [59,60]. Usually,
the so-called Morel-Anderson pseudopotential μ� is fitted so
that the calculated Tc matches the experimental one. μ� usually
ranges between 0.1 and 0.16 for conventional SC [28]. The
above equations imply that the coupling is isotropic in the sense
that all states with equal center of energy and equal splitting
share the same coupling matrix elements. Sometimes as in the
well-known case of MgB2 there are significant differences in
the couplings and it is important to group states into bands
for the isotropic approximation to hold. We refer to this case
as the multiband approximation which simply means that all
isotropic variables obtain another index for the band they
correspond to.

Comparing the equations for the SC KS GF of
Eq. (65) [noting ukα

kσ (v−kα
k−σ )∗ = αsign(σ )Δs

sk/Fk where Fk =√
εk↑+ε−k↓

2 + |Δs
sk|2] with the interacting GF Eq. (125) we note

that Δs
sk takes the role of ΔE

k (ωn) so the similar name is
not accidental. However, as we have seen ΔE

k (ωn) takes its
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significant shape in Matsubara space while Δs
sk does not have

such a ωn dependence and mimics the SC pairing in its k

dependence in a way that densities of the interacting system
are reproduced.

V. SUMMARY AND CONCLUSION

In this work, we have developed fully ab initio methods to
compute the SC phase of a material in a magnetic field Zeeman
coupled to the spin magnetization. In a unified notation we
present a purely GF based (the Eliashberg approach) and a
density functional based scheme.

In our DFT we have employed a SC KS system to
reproduce the interacting densities n(r), m(r), χ (r,r ′), and
Γ (R1 . . . RN ). The SC KS system can be solved analytically
using the SDA where we only consider the singlet pairing of
time-reversed basis states. We have derived xc potentials in
this case that include the electron-nuclear interaction on the
level of KS phonons and treat the Coulomb interaction in the
same footing without the need for any adjustable parameter.

As a second step, we have applied similar approximations
to the Dyson equation starting from the SC KS system as a
formally noninteracting system. This procedure leads to the
Eliashberg equations of a SC in a magnetic field similar to
those discussed in Ref. [24].

While SpinSCDFT allows to include the full Coulomb
potential and promises numerically efficient calculations for
real materials, the direct GF approach is, instead, valuable
to get direct physical insights to develop approximations and
further improve the SpinSCDFT scheme.

The theoretical framework presented in this work allows to
compute the phenomenon of coexistence and competition of
SC with magnetism from first principles.

In the subsequent Paper II [57], we will discuss a detailed
numerical implementation of the equations presented in this
work, i.e., the linear and nonlinear functionals and the
Eliashberg equations without Coulomb interactions. Further,
we will introduce a G0W0 scheme to obtain the excitation
spectrum starting from a SpinSCDFT calculation.

APPENDIX: FORMULAS FOR THE MATSUBARA SUMS

In the potential terms, it appears the Matsubara summation

Ps(E,E′) = 1

β

∑
n

1

(iωn − E)(iωn − E′)
. (A1)

This is analytically evaluated with the result

Ps(E,E′) = fβ(E) − fβ(E′)
E − E′ , (A2)

lim
E′→E

Ps(E,E′) = ∂Efβ(E) = −βfβ(E)fβ(−E), (A3)

where the symmetries Ps(E,E′) = Ps(−E,−E′) and
Ps(E,E′) = Ps(E′,E) hold. The Matsubara frequency sum-
mation

I (Ω,E1,E2,E3) = 1

β2

∑
nn′

1

iωn − E1

1

i(ωn − ωn′ ) − Ω

× 1

iωn′ − E2

1

iωn − E3
, (A4)

L(Ω,E1,E2,E3) = I (−Ω,E1,E2,E3) − I (Ω,E1,E2,E3)

(A5)

is also in principle straightforward. However, the resulting
formulas are rather large and computer algebra becomes
essential for the evaluation of residues and limiting behaviors,
necessary for a numerical implementation. Note that a partial
summation leads to

L(Ω,E1,E2,E3) = 1

β

∑
n

Mph(Ω,E2,ωn)

(iωn − E1)(iωn − E3)
. (A6)

From the definition we observe the following symmetry
relations:

L(Ω,E1,E2,E3) = L(Ω,E3,E2,E1), (A7)

L(−Ω,E1,E2,E3) = −L(Ω,E3,E2,E1), (A8)

[L(Ω,E1,E2,E3)]∗ = −L(Ω,−E1,−E2,−E3). (A9)

Evaluation of the Coulomb diagram requires the following
summation:

LC(E1,E2,E3) = 1

β2

∑
nn′

1

iωn′ − E2

1

iωn − E1

1

iωn − E3
(A10)

= fβ(E2)Ps(E1,E3). (A11)

Using Mathematica, we evaluate the sums Eqs. (A4) and (A5) to

L(Ω,E1,E2,E3) =
(

fβ(E2)nβ(Ω)

(E2 − E1 + Ω)(E2 − E3 + Ω)
+ fβ(E2)[1 + nβ(Ω)]

(E1 − E2 + Ω)(E3 − E2 + Ω)
+ fβ(E1)[1 − fβ(E2) + nβ(Ω)]

(E1 − E3)(E1 − E2 − Ω)

+ fβ(E3)[1 − fβ(E2) + nβ(Ω)]

(E1 − E3)(E2 − E3 + Ω)
+ fβ(E1)[fβ(E2) + nβ(Ω)]

(E1 − E3)(E1 − E2 + Ω)
+ fβ(E3)[fβ(E2) + nβ(Ω)]

(E3 − E1)(E3 − E2 + Ω)

)
. (A12)

Clearly, some points, e.g., E1 = E3 are numerically problematic, so whenever E1 ≈ E3 we may have to evaluate the limiting
formula instead. In general, the various limits where the denominators are zero all exist and can be computed explicitly, again

024505-17



LINSCHEID, SANNA, ESSENBERGER, AND GROSS PHYSICAL REVIEW B 92, 024505 (2015)

using Mathematica. The results are

lim
E1→E3

L(Ω,E1,E2,E3) = fβ(E2)

(
nβ(Ω)

(E2 − E3 + Ω)2
+ 1 + nβ(Ω)

(E2 − E3 − Ω)2

)
− fβ(E3)

(
fβ(−E2) + nβ(Ω)

(E2 − E3 + Ω)2

fβ(E2) + nβ(Ω)

(E2 − E3 − Ω)2

− βfβ(−E3)

(E2 − E3)2 − (Ω)2
([fβ(E2) − fβ(−E2)]Ω + [2nβ(Ω) + 1](E2 − E3))

)
, (A13)

lim
Ω→E3−E2

lim
E1→E3

L(Ω,E1,E2,E3) = β
[1 + fβ(E2) + nβ(E3 − E2)]fβ(−E3)fβ(E3)

2(E2 − E3)
+ fβ(E2) + fβ(E3)[1 − 2fβ(E2)]

4(E2 − E3)2

+β2fβ(−E2)[2 + nβ(E3 − E2)]fβ(E3)

(
1

2
− fβ(E3)

)
, (A14)

lim
Ω→E1−E2

L(Ω,E1,E2,E3) = fβ(E1)[fβ(E2) + nβ(E1 − E2)]

2(E1 − E2)(E1 − E3)
+ fβ(E2)[1 + nβ(E1 − E2)]

2(E1 − E2)(E1 − 2E2 + E3)

+ fβ(E3)[nβ(E1 − E2) + fβ(−E2)] − fβ(E2)nβ(E1 − E2)

(E1 − E3)2

+ fβ(E3)[fβ(E2) + nβ(E1 − E2)]

2(E3 − E1)(E1 − 2E2 + E3)
+ β

fβ(−E1)fβ(E2)nβ(E1 − E2)

E3 − E1
, (A15)

lim
E1→2E2−E3

lim
Ω→E1−E2

L(Ω,E1,E2,E3) = fβ(E2)[1 + nβ(E2 − E3)]

2(E2 − E3)

(
βfβ(−E3) − 1

2(E2 − E3)

)
. (A16)

We point out here that the limit Ωqλ → 0 does not exist. It is, however, unimportant as the g
λq
ij go to zero in the limit Ω → 0

faster than L diverges.
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