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We introduce the concept of maximum probability domains (MPDs), developed in the context of the
analysis of electronic densities, in the study of the microscopic spatial structures of liquids. The idea
of locating a particle in a three dimensional region, by determining the domain where the probability
of finding that, and only that, particle is maximum, gives an interesting characterization of the local
structure of the liquid. The optimization procedure, required for the search of the domain of maximum
probability, is carried out by the implementation of the level set method. Results for a couple of
case studies are presented, to illustrate the structure of liquid water at ambient conditions and upon
increasing pressure from the point of view of MPDs and to compare the information encoded in the
solvation shells of sodium in water with, once again, that extracted from the MPDs. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4907406]

I. INTRODUCTION

While liquids have long-range disorder, they exhibit a
local order that drives many of their physical properties. This
short-range order is usually characterized through the Radial
Distribution Functions (RDFs).1 However, the RDFs convey
little or indirect information about the three-dimensional (3D)
local structure of liquids. Spatial Distribution Functions
(SDFs) have then been introduced for this purpose.2,3 Since
then, several indicators of the local order of liquids have been
proposed, in particular, for the important case of liquid water,
including the statistics of Voronoi polyhedron,4–8 local struc-
ture index,9 or angular correlation.10,11 Recently, local density
fluctuations and the probability distribution of occupancy of a
given volume have attracted a lot of attention, in the framework
of the theory of hydrophobicity.12 These have been used to
characterize and locate patches of hydrophobicity or hydro-
philicity at surfaces13–15 or around proteins.13,16 However, as
such, they have not been used to characterize the microscopic
structure of liquids.

In a very different context that of electronic structure,
related concepts have been used to locate electron pairs.17–19

In general, these methods are designed to identify regions in
3D space with particular chemical and physical meaning. The
analysis is based on the information provided by the electronic
probability density calculated from the many-body wave func-
tion but offers a way to define and to visualize some relevant
regions in real space.

The work presented in this paper is motivated by the in-
terest for developing an alternative approach to study the local

structure of liquid systems, combined with the clear similar-
ities between the electronic probability density and the atomic
many-body probability distribution of a liquid. We propose
here a method based on the identification of regions of space
where the probability of finding one and only one particle is
maximum. We refer to these regions as Maximum Probability
Domains (MPDs). The definition of this probability is given as
the generalization of the concept17,20–23 used for the analysis of
electronic probability densities in molecules and indeed can
be generalized to the case of n (and only n) particles. The
information encoded in this quantity has a many-body nature,
also when considering the one-particle occupancy probability.
It has to be viewed as the probability of finding n particles
within a certain region of space with all other particles outside.
Therefore, such probability is different from any reduced n-
particle probability density, since the degrees of freedom of the
N − n remaining particles (N being the total number of parti-
cles in the system) are not integrated out. In analogy to such
quantities, however, the probability can be evaluated by using a
standard sampling procedure with Molecular Dynamics (MD)
or Monte Carlo (MC) trajectories.

We illustrate the method by applying it to describe the
structure of pure liquid water and to define the solvation shells
of sodium ions in a diluted water solution. We compare the
results of our study with more standard approaches based on
the RDFs and with various definitions of solvation shells. It will
become apparent from the illustrations that the method offers
an efficient complementary tool to the analysis of liquid struc-
tures, both qualitatively and quantitatively. The one-particle
MPD defines the boundary of the 3D region available to a
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given particle, where it is not likely that another particle can
penetrate. When a set of MPDs is identified around a central
water molecule or sodium ion, we obtain a 3D-map of the
locations of the surrounding molecules with a number of MPDs
that are usually smaller, as we will see later, than the standard
coordination number. The request of exclusive occupation of
a MPD by only one particle is responsible for this feature,
even though for rigid local structures, as the first solvation shell
of water, there are clear similarities between the two pictures
(MPDs and coordination numbers).

The results for liquid water at different densities are
mainly presented as a test case, in order to prove that the
method is able to recover known results even if the problem
is analyzed from a new perspective. A more challenging
application is represented by the case of sodium in water.
Here, the one-particle MPDs located around the central ion are
organized such that the spherical symmetry of the problem is
maintained. However, the shape and dimension of the domains
give a 3D resolution that is not accessible, or at least not
directly, when employing the SDFs. We find relevant to stress
here that, as will become clear from the applications, the major
strength of the method developed in the paper is not to be
searched in a new overall picture of the liquid achieved by
determining the MPDs. The details are what make this method
an interesting alternative or complement to more standard
analysis techniques. Being able to pinpoint the location of
the interstitial water molecules that are mainly affected by the
increase of the density in liquid water or analyzing the shape
of the regions occupied by water around a central molecule or
ion could be used to predict properties such as the life-time of
a H-bond or the kinetic of a reaction. These developments will
not be discussed here, since our major goal is establishing the
theoretical basis of the method and proving its efficiency with
a few illustrations.

The paper is organized as follows. In Sec. II, we introduce
the general definition of the one-particle occupancy proba-
bility. Then, the maximization of such probability is posed
as a geometric optimization problem and solved within the
framework of the Level Set Method (LSM) in Sec. III. Sec-
tion IV gives the details for the numerical implementation of
the method, and we present the two illustrations mentioned
before in Sec. V. Finally, in Sec. VI, we conclude and state
our outlook for future developments.

II. DEFINITION OF MAXIMUM PROBABILITY DOMAINS

The one-particle MPD is defined as the region in 3D space
where the probability of finding one, and only one, particle
is maximum. In the present context, the term particle stands
for an atom or the center of mass of a molecule or some other
point of high symmetry in a molecule. The choice depends on
the information that we want to extract from this analysis. For
instance, in the study of liquid water, as presented in this paper,
the particles will be the oxygen atoms in the molecules.

If a system is composed of N + 1 identical particles with
positions R′N+1 = R′

0,R
′
1, . . . ,R

′
N and we focus on the N

particles with positions Ri = R′
i − R′

0 for i = 1, . . . ,N , we can
define the one-particle occupancy probability of a domain ∆,

P(1)(∆), as the probability of finding one, and only one, particle
in the region of space ∆with all other particles located outside
∆. This probability,21 written as

P(1)(∆) =
N
i=1


∆c

dR1 . . . dRi−1


∆

dRi

×

∆c

dRi+1 . . . dRN ρ(RN), (1)

is what in mathematics is called a set function. Here, ρ(RN)
is the configurational probability density and, in the particular
case of water and sodium diluted in water, will be explicitly
defined in Appendix A.

The domain∆ is given in a reference frame that is centered
on the particle at R′

0, which is kept out of statistics (in the
sense that in Eq. (1), we do not integrate over its positions).
∆c is the symbol used to indicate the complementary volume
of ∆. The sum in Eq. (1) allows us to define the probability
that is independent of the identity of the particle occupying the
domain ∆. Moreover, the notation in Eq. (1) indicates that all
integrals involving the variables R1 . . .Ri−1 and Ri+1 . . .RN

are performed over ∆c. This definition of the probability can
be easily extended to n particles in ∆ and N − n particles in
∆c. Equation (1) satisfies the normalization condition

N
n=0

P(n)(∆) = 1, (2)

which can be easily obtained for an ideal gas (in the absence
of interactions among particles) occupying a volume V , as
the configurational probability density is explicitly known,
i.e., ρ(RN) = V−N , thus allowing for the analytic calcula-
tion of Eq. (1). This is done by inserting the expression
of the n-particle occupancy probability P(n)(∆) = (

N
n

)
vn(V

− v)N−n/V N in Eq. (2), where v is the volume occupied by
∆ and V − v that occupied by ∆c.

To extend the integration domain in Eq. (1) to the whole
configuration space, we introduce the characteristic function
Υ∆(R), defined as

Υ∆(R) =



1 if R ∈ ∆
0 otherwise

, Υ∆c(R) = 1 − Υ∆(R). (3)

The probability P(1)(∆) is then

P(1)(∆) =
N
i=1


dRN
Υ∆(Ri)

N
j,i

�
1 − Υ∆(R j)� ρ(RN) (4)

which allows us to identify the microscopic observable

Γ
(i)
∆
(RN) = Υ∆(Ri)

N
j,i

�
1 − Υ∆(R j)� . (5)

The equilibrium average of Γ(i)
∆
(RN), evaluated according to

the probability density ρ(RN), leads to the definition of P(1)(∆),

P(1)(∆) =
 N
i=1

Γ
(i)
∆

�
RN

�
. (6)

Equation (6) can be evaluated by sampling the microscopic
observable Γ(i)

∆
(RN) along a MD or MC trajectory. From the
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algorithmic point of view, P(1)(∆) can be estimated by comput-
ing

ν(1)(∆) = 1
Nconf

Nconf
κ=1

δ1,n∆(κ) ≃ P(1)(∆), (7)

the frequency of the event “one, and only one, particle inside
∆.” Here, Nconf is the total number of configurations sampled
along the trajectory and κ labels the selected configuration. The
term in the sum is equal to one only if the number of particles
n∆(κ) inside the volume∆, for the configuration κ, is equal to 1.

The construction of the MPDs is carried out by initially
choosing some centers around the central particle (labeled by
0) and some volumes enclosing these centers. A set of MPDs
will be then identified as

∆
∗
i = arg max

∆i

P(1)(∆i), with i = 1,2, . . . . (8)

The centers around the 0th particle can be chosen quite arbi-
trarily; however, we find useful to locate them in correspon-
dence of the local maxima of the SDF or of the RDF. It is worth
underlining that∆∗i is not an absolute maximum24 over all space
of volumes, but it is the one found by a local search (the closest
to the initial choice).

The definition of the set of MPDs ∆∗1,∆
∗
2, . . . can be used

for the characterization of the structure of atomic and molec-
ular liquids as an alternative or a complement to standard tools
such as distribution functions, solvation shells, and coordina-
tion numbers. The determination of the optimized domains
∆∗i’s is posed as a geometric optimization problem, since the
probability P(1)(∆i) has to be maximized with respect to vari-
ations of ∆i. In Sec. III, we present25–29 the LSM to be applied
in the search of the MPDs, in particular, in a liquid.

III. SHAPE DERIVATIVE IN THE LEVEL SET METHOD

A central concept in the procedure referred to as LSM
is that of shape derivative. The function P(1)(∆) belongs to a
specific class of what is normally called a set function, and the
variations of a set function with respect to changes of the set
define its shape derivative. The aim of the numerical procedure
developed and tested in this paper is to determine how P(1)(∆)
changes by varying ∆, such that the value of the probability
itself is maximized. Appendix B is devoted to a detailed discus-
sion on the shape derivative and on its expression in the context
of the MPDs. Here, we will focus on illustrating the essence of
such concept.

The set function defined in Eq. (1) depends on the inte-
gration volume, ∆. Therefore, when ∆ changes, also the value
of the integral performed over ∆ changes: such (infinitesi-
mal) variations of P(1)(∆) will be indicated with the symbol
DSP(1)(∆), the shape derivative. In the particular application
discussed here, we request that this variation of the integration
domain follows a well-defined law: the value of the integral
has to increase as ∆ is varied. This choice of variation allows
us to define a deformation law, namely, a fictitious equation of
motion such as

∆ → ∆τ = {Rτ = R + v(R)dτ | R ∈ ∂∆} , (9)

with ∂∆ the border of ∆. The evolution, or deformation, of
the domain, where dτ is a fictitious time-step, is completely
defined by the fictitious velocity field v(R). The explicitly
expression of the velocity field is determined in Appendix B,
by requiring that DSP(1)(∆) ≥ 0. The maximization condition
on the shape derivative enables us to optimize the domain ∆
towards reaching the maximum of the set function P(1)(∆).

The numerical procedure developed to evolve the domain
∆ towards reaching the maximum value of P(1)(∆) is given in
Appendix B, while in Sec. IV, we implement the algorithm
based on the LSM to compute the MPDs in a liquid system.

IV. NUMERICAL IMPLEMENTATION

A. Choice of the initial volumes
and Bader partitioning

To apply the LSM, we need to choose a starting set. In
the two cases of pure water or sodium diluted in water, we
locate the initial domains ∆i in correspondence to the local
maxima of the oxygen-oxygen SDF or of the sodium-oxygen
RDF, respectively. This difference is related to the fact that the
SDF of a sodium ion is spherically symmetric.

The two-particle SDF30 ρ(2)(R), employed here and calcu-
lated around a central (0th) water molecule, is proportional to
the probability of finding an oxygen atom in R irrespective
of the position of all other oxygen atoms,1 given a certain
configuration {R0,R

H1
0 ,RH2

0 } of the central molecule

ρ(2)(R) ≡ ρ(2)
(
R | R0,R

H1
0 ,RH2

0

)
= N(N − 1)


dRN−1ρ

(
R,RN−1 | R0,R

H1
0 ,RH2

0

)
.

(10)

The probability density under the integral sign is a conditional
probability density,

ρ
(
R,RN−1 | R0,R

H1
0 ,RH2

0

)
=


dRH1N dRH2N

×
ρcan

(
R0,R,RN−1,RH1

0 ,RH2
0 ,RH1N

1 ,RH2N
)

Pm

(
R0,R

H1
0 ,RH2

0

) ,

(11)

exactly as in Eq. (A3), with ρcan the standard configurational
canonical density and Pm

(
R0,R

H1
0 ,RH2

0

)
the marginal prob-

ability of finding the central molecule in the configuration
{R0,R

H1
0 ,RH2

0 }, given by Eq. (A4). Note that ρ(2)(R) is now a
function of the three cartesian coordinates R and can therefore
be visualized in 3D space, as we will show below.

By employing Bader analysis,31 we locate maxima, and
domains around them, of the two-particle SDF in Eq. (10). In
doing that, we apply an analysis method designed for the study
of electronic probability densities to the study of a liquid. Bader
analysis partitions the space in regions assigned to the maxima
of the density. From these regions starts the search of the MPDs
which is not a partition of the space and can result in overlap
between domains or partial filling of the spaces.
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Exactly as it is done for Bader partitioning the electronic
density, the Bader procedure applied to the two-particle SDF
is based on the assumption that the SDF can be written as the
sum of L independent contributions,

ρ(2)(R) =
L

α=1

ρ
(2)
α (R), (12)

where L is the number of total domains to be determined by the
procedure and is equal to the number local maxima (modes)
of the density. In writing this relation, we make the further
hypothesis that ρ(2)α (R) , 0 only if R ∈ ∆α, with ∆α a volume
in 3D space. The main objective here is to determine the
∆α’s, referred to as Bader domains, and to use them as initial
conditions for the optimization procedure based on the LSM.
Since we are working in 3D space, Bader domains are enclosed
by the 2D surfaces where the density gradient has zero flux. In
actual calculations, to fully identify the Bader domains, given
an initial R′, we compute the vector R = R′ − R0, where R0 is
the origin of our reference system, and we evaluate the gradient
of ρ(2)(R) at that point. Then, we construct a steepest-ascent
path in 3D space whose tangent in every point is the direction of
the gradient. When the maximum is reached, all points of that
path are associated to a Bader volume. Another point R′ is then
chosen and the procedure is iterated until all space points have
been assigned to a specific maximum. Indeed, starting from
different points, the same maximum can be reached thus the
Bader volume has to be updated.

The main reason for choosing Bader partitioning as initial
condition for our optimization procedure is efficiency. The den-
sity landscape surrounding a water molecule is very complex
and not homogeneous. Therefore, starting with initial domains
that already contain information about the local structure of the
liquid does help in efficiently determining the MPDs. Employ-
ing Bader analysis is, however, not possible in general, but it
depends on the topology of the two-particle SDF. In fact, this
approach fails in the case of the spherically symmetric sodium-
oxygen SDF and we have to proceed differently. We take as
initial sets few spheres of different radii, generally smaller than
2.5 Å, whose centers are approximately located at a distance
from sodium corresponding to the two main maxima of the
sodium-oxygen RDF, i.e., at ∼ 2.5 Å and ∼4.5 Å from the
sodium ion (see, for instance, Fig. 11).

B. Algorithm

According to the steps described in Sec. III, we

1. define the initial domain ∆0
i ;

2. construct a level set function (see Appendix B for details).
Our choice29 is

φ(R,0) =



−1 + exp[−d(R)/σ] if R ∈ ∆
0 if R ∈ ∂∆

1 − exp[−d(R)/σ] if R < ∆
, (13)

where d(R) is the shortest distance of the point R from ∂∆
and σ is a parameter to be chosen;

3. calculate P(1)(∆) from Eq. (7);
4. calculate f∆(R) by sampling the microscopic observable in

Eq. (B21);

5. evolve the level set function according to Eq. (B26);
6. go back to point 3 and iterate until the variation of the

probability P(1)(∆) is smaller than a certain threshold δ, i.e.,
|P(1)(∆τ) − P(1)(∆)| ≤ δ.

The fictitious time-step dτ to be used in our calculations has re-
sulted to be 10.0, with a value forσ of 0.1 Å while the threshold
to monitor the convergence of the algorithm has been chosen to
be δ = 10−7. Tests have been performed with different values
of the convergence parameter and no significant changes have
been observed in the final results if δ is chosen to be 10−5 at
most. A good grid spacing for the 3D visualization of the MPDs
has resulted to be 0.2 Å.

V. CASE STUDIES

In the first solvation shell of pure water at suitable condi-
tions defined later on, Bader domains are shown in Fig. 1,
along with ρ(2)(R). If we restrict ourselves to the four high-
est maxima of ρ(2)(R) computed for water, Bader analysis
identifies the domains {∆i}i=1,4 that are represented by the
volumes enclosed by the grids in Fig. 1. The filled areas are
shown for reference and represent the function ρ(2)(R). For
each domain, the probability of finding one, and only one,
particle P(1)(∆i) is calculated from Eq. (7) and then maximized,
by following the procedure illustrated above. The final domain
is the MPD available to each particle surrounding the central
water molecule.

The applications of the LSM are illustrated below. Before
doing that, we find useful to stress two points.

(i) The results of our analysis do not depend on the initial
set chosen. To that end, let us look at the result of the

FIG. 1. The filled areas represent the two-particle SDF computed for water
at density ρ0= 1.0 g/cm3 (rendering of contour surface 0.17 of ρ(2)(R)/ρ0).
The grids enclose the Bader domains, namely, the volumes which are asso-
ciated to the four highest maxima of the two-particle SDF obtained by the
application of Bader analysis.
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FIG. 2. Left: different initial conditions for two sets of equivalent domains around a water molecule. Two domains are located in the region of the first solvation
shell corresponding to the two oxygen atoms accepting the hydrogen bond; two domains appear in the region in the first solvation shell occupied by the two
water molecules donating the hydrogen bonds. The green areas are Bader domains, whereas the blue areas are spheres with centers located at the positions of
the maxima of the two-particle SDF. Right: the domains located at equivalent positions are identical after optimization.

optimization performed using two different initial condi-
tions for maxima of equivalent physical meaning. The first
type of initial condition is a Bader domain (green areas in
Fig. 2, left). The second, for different but equivalent max-
ima, is a sphere, approximately centered at the positions of
the maxima of the SDF (blue areas in Fig. 2, left). Fig. 2
(right) shows that the shape of the MPDs is independent
of the initial conditions.

(ii) When Bader analysis is applied in order to identify the
initial domains, the space around the central particle (wa-
ter molecule in our case) is partitioned as far as the two-
particle SDF shows well defined local maxima. When the
liquid approaches a random distribution, Bader analysis
becomes inefficient. In the case of water at density ρ0
= 1.0 g/cm3 and ρ = 1.23 g/cm3 presented in Secs. V A
and V B, we are able to identify and analyze domains up
to within the third solvation shell (6 − 8 Å).

An additional point that is worth discussing here is the
statistics. In order to increase the accuracy of our calculations
in the case of pure water (Secs. V A and V B), we observe
that all molecules are identical. Therefore, each molecule can
be used as the central one, with respect to which the one-
particle occupancy probability is calculated. This procedure is
employed to overcome problems related to a short trajectory
simulation. This same operation is, however, not possible in the
case of sodium (Sec. V C), because only one ion is present in
the simulation box. In this case, since the problem has spherical
symmetry, we increase the statistics by averaging over different
orientations of the reference system centered on the ion.

A. Liquid water at ρ0 = 1.0 g/ cm3

The MD trajectory of 150 ps for liquid water at room
temperature is generated by employing the TIP4P32 model.
The system is composed of 4096 molecules in a cubic box
with side length 49.7 Å. Periodic boundary conditions are used
throughout.

The 3D two-particle SDF has been calculated from the
MD trajectory, and from the application of Bader analysis,
the space around a central water molecule is partitioned in 15
regions within a distance of about 8 Å from the central oxygen
atom. The resulting 15 MPDs give information on the structure
of water up to within the third solvation shell, as we will now
show.

Results will be presented by first looking at the MPDs
in comparison to Bader domains. A 3D-map of the distri-
bution of oxygen atoms surrounding the central water mole-
cule is obtained. Each MPD is, on average, occupied by a
single oxygen, thus such 3D-map has a very clear physical
interpretation, pinpointing the locations of the oxygen atoms
around a given water molecule. After this preliminary, more
qualitative, presentation of the results, a few analysis tool will
be introduced: we will classify the MPDs according to the
corresponding value of the one-particle occupancy probability,
according to their distance from the central oxygen atom and
according to their volumes. These properties will be used to
rationalize the differences between water at ρ0 = 1.0 g/cm3

and at higher density, ρ = 1.23 g/cm3, presented in Sec. V
B. Finally, the results shown here will be compared to more
standard analysis tools, like RDFs, angular distributions, and
hydrogen bond (HB) structure.

1. Qualitative analysis of the MPDs in water

Figs. 3, 4, and 5 compare the results from Bader par-
titioning the space around a water molecule from the MPD
analysis. In all figures, Bader domains are indicated as grids,
while the MPDs are the filled regions. The four MPDs in Fig. 3
clearly identify the regions occupied by the four water mole-
cules hydrogen-bonded (H-bonded) to the central molecule,
arranged according to the typical tetrahedral structure of the
first solvation shell of water.

Fig. 4 shows the domains 5–10: domains 5–8 (left) are
arranged on both sides of the plane defined by the central
molecule in front of the hydrogen atoms and are symmetric
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FIG. 3. Case of water at ρ0= 1.0 g/cm3. MPDs (filled areas) labeled 1, 2
(blue) and 3, 4 (red) around the central water molecule. The initial Bader
domains are also shown as grids.

with respect to this plane; domains 9 and 10 (right) are located
in front of the hydrogen atoms of the central molecule and, after
the optimization, are similar to domains 5–8.

Domains 11 and 12 are shown in Fig. 5 (left) and, as will
be proven below, they only partially occupy the first solvation
shell, but they are mainly found in the second solvation shell,
similarly to the domains 5–10. The MPDs 5–12 are interstitial
domains, as they are located in correspondence of the empty
spaces between the MPDs 1 and 4. The MPD labeled 13
(light-purple) in Fig. 5 (right) is also located in the second
solvation shell, while further from the central molecule, the
MPDs labeled 14, 15 (turquoise) are found as shown in Fig. 5
(right).

2. Some tools for a quantitative analysis

The MPDs around the central water molecule can be
classified according to the value of the probability P(1)(∆) in

each domain, as shown in Table I. The domains labeled 1,
2 are associated to a higher probability than the domains 3,
4. This difference can be explained as follows. Domains 1,
2 enclose the oxygen atoms of the two water molecules H-
bonded to the hydrogen atoms of the central water molecule,
namely, HO · · ·Hcentral. Domains 3, 4 enclose the oxygen
atoms of the molecules that are H-bonded to the central one as
OH · · ·Ocentral. Therefore, in the latter case, the oxygen atoms
are not directly bonded to the central molecule, thus resulting
more mobile.

The probability of finding only one water molecule inside
domains 5–12 is further reduced compared to the previous
case. It follows that a high probability is an indication of a
strong bond, like a H-bond, while a lower probability suggests
the absence of a strong interaction, as in the case of the oxygen
atoms in the interstitial domains.

Table I shows also the volumes associated to each MPDs
and their distance from the oxygen atom of the central water
molecule, expressed in terms of the distance of their centers
of mass. In particular, we notice the clear identification of
three groups of domains, whose distances from the central
molecule are below 3 Å, between 4 and 5 Å, above 6 Å. We
will see below how this structure changes upon increasing the
density. We also observe the increase of the volume of the
domain itself as its distance from the central oxygen increases.
The correlation to the central water molecule is reduced, then
the surrounding molecules are more mobile and occupy larger
volumes. Observations about the effect of the interactions on
the volume of the MPDs are reported in Appendix C.

3. Comparison with standard analysis tools

Since the domains 1–4 enclose the oxygen atoms of the
water molecules that are H-bonded to the central molecule,
we can define an estimate of the number nHB of HBs formed
by a water molecule. Indeed, the domains indicate only the
positions of the oxygen atoms, and therefore, domains 3 and
4 cannot, strictly speaking, be used to estimate the presence
of HBs. This is because in those regions the hydrogen atoms
(not the oxygens) form HBs with the central water molecule.
However, the H-bonded hydrogens are close to the oxygens
occupying the domains 3 and 4. If we take a high one-particle
occupancy probability as an indication of the presence of a
HB, then its value can qualitatively measure the fraction of
HBs present. Taking that the four closest domains do not

FIG. 4. Case of water at ρ0= 1.0
g/cm3. Left: MPDs labeled 5, 6 (cyan)
and 7, 8 (orange). Right: MPDs la-
beled 9, 10 (violet). The MPDs are com-
pared to the initial Bader domains, rep-
resented as grids.
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FIG. 5. Case of water at ρ0= 1.0
g/cm3. Left: MPDs labeled 11, 12
(ochre areas). Right: MPDs labeled 13
(light-purple) and 14, 15 (turquoise). As
in the previous figures, the initial Bader
domains are shown for reference. We
underline here that both pairs of do-
mains 11, 12 and 14, 15 (Bader and
MPDs) are completely symmetric with
respect to the plane of the molecule and
to its perpendicular plane.

superpose (a hypothesis almost always satisfied, but certainly
an approximation33), we can sum up their probabilities to have
an indication of how many HBs are formed around a water
molecule,

nHB =

4
i=1

P(1)(∆i). (14)

In a transient configuration, when one hydrogen bond is broken
before another is formed, it is plausible to assume that the
domain is occupied by a number of water molecules different
from one. According to Eq. (14), we find that the average
number of HBs formed by a water molecule is nHB = 3.37,
in agreement33,34 with the values reported in the literature of
3.3 − 3.6.

In the context of the MPDs, solvation shells can be defined
by calculating the oxygen-oxygen RDF resolved in each opti-
mized domain. In Fig. 6, we show the RDFs computed within
the MPDs (lower panel) and compared to the total RDF (upper
panel). The x-axis has been divided in three regions, each rep-
resenting a solvation shell around the central water molecule.

TABLE I. List of the MPDs (first column), average number of particles in
each volume before (Bader analysis, second column) or after the optimization
(third column), volumes of the MPDs (fourth column), distances of the
centers of mass of the MPDs from the central oxygen atom (fifth column),
and the one-particle occupancy probability (sixth column). In the same line
of the first column, we have put equivalent domains.

Label ⟨N ⟩before ⟨N ⟩after Volume (Å3) Distance (Å) P(1)(∆∗)
1, 2 1.2 1.1 14.9 2.8 0.9,0.91
3, 4 1.6 1.0 15.2 2.6 0.78
5 - 8 2.0 1.2 15.8 4.2 0.63
9, 10 1.8 1.1 15.9 4.3 0.63
11, 12 5.9 1.1 15.8 4.4 0.63
13 3.0 1.8a 17.2 4.5 0.37a

14, 15 4.0 0.6a 21.1 6.5 0.61a

aThe values of ⟨N ⟩after and P(1)(∆∗) for the volumes 13 and 14, 15 are in italic to indicate
that the optimization procedure seems to be in these cases less efficient than for the other
domains: in the first case, the optimization appears not able to split the domains in two
parts; in the second case, the density of the liquid is probably too flat, thus preventing
from an efficient analysis.

The extent of the first solvation shell is up to about 3.5 Å.
The MPDs labeled from 5 to 12 (corresponding to the blue
and magenta lines in Fig. 6) only partially occupy the cavities
between the domains 1 and 4 of the first solvation shell, but they
extend to the second solvation shell. The coordination number
in the first solvation shell is 5.1, if computed as the integral of
the total RDF up to 3.5 Å, and 4.5, if computed as the sum of
the integrals of the partial RDFs. An extra-particle35 appears in
the first solvation shell, which does not occupy one of the four
domains of the tetrahedron, but it is delocalized in the intersti-
tial domains 5–12. Particularly interesting is the distribution of
particles in these interstitial domains since the partial RDFs,
although very flat, show peaks at about 3.5 Å. Similar maxima
have been already observed by Svishchev and Kusalik2 from
calculation of RDFs resolved in angle. This feature of the RDFs
suggests the presence of water molecules in non-tetrahedral
directions but still penetrating the first solvation shell.

B. Liquid water at ρ = 1.23 g/ cm3

The MD trajectory of 150 ps for liquid water at room
temperature is generated by employing the TIP4P32 model. The
system is composed of 4096 molecules in a cubic box with side
length 46.3 Å.

Bader analysis is applied to the two-particle SDF computed
for liquid water at the density ρ = 1.23 g/cm3 and 11 do-
mains are identified, in contrast to the previous case where
15 domains were defined by Bader analysis. The shapes and
positions of the initial domains are shown in Fig. 7 (left) along
with the MPDs (right). We will present here the results from
the MPD analysis in comparison to the observations reported
in Sec. V A.

1. Comparison with water at ρ0 based
on the MPD analysis

The first solvation shell is unaffected10,36 by the increase
of density. The remaining domains are arranged closer to the
central molecule and they are more localized in space. Since
the water molecules are more “packed” at higher density and
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FIG. 6. Oxygen-oxygen RDFs (col-
ored lines) computed within the MPDs,
compared to the total RDF of water at
density ρ0 (black line). Dashed verti-
cal lines are used to show that space
partitioning in terms of solvation shells
(from the minima of the oxygen-oxygen
RDF) or MPDs brings to a similar result
(for instance, the boundary between the
second and third solvation shell is not
exactly placed at the minimum of the
total RDF).

the maxima of the ρ(2)(R) are less sharp, Bader domains 5–10
from Fig. 4 merged into two domains, as shown in Fig. 8.

The MPDs can be grouped according to the correspond-
ing final probability of enclosing only one particle, shown
in Table II. If we use again Eq. (14) to estimate the value
of HBs per molecule, we find nHB = 3.41. Apart from this
aspect, the optimized domains in the first solvation shell are not
very much affected by the change of density. This observation
agrees10,36–39 with the literature, namely, the MPDs analysis
confirms that the first solvation shell is quite rigid under density
increase.

Looking at the one-particle occupancy probability of the
MPDs 5 to 11, listed in Table II, the optimization procedure
seems to be more effective in this case of higher density. Also,
the average number of particles found in each MPD is very
close to one for all domains. This effect can be interpreted as a
stabilization of the molecules in the second solvation shell due
to the packing imposed by the higher density.

Comparing the distances of the MPDs from the central
molecule at the two densities, ρ0 and ρ, we observe a major
difference in the behavior of domains 5 and 6, found at a
distance of 3.7 Å as shown in Table II, from the behavior of

FIG. 7. Case of water at ρ = 1.23
g/cm3. Left: Bader domains for water
at ρ = 1.23 g/cm3. Only one domain
of those labeled 5 and 6 (one of these
two domains is shown as the black filled
area in Fig. 8) is shown, in order to
make the central water molecule visi-
ble. Right: MPDs.
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FIG. 8. Comparison of Bader domains for water at density ρ0= 1.0 g/cm3

(color grids) and at density ρ = 1.23 g/cm3 (black filled areas).

TABLE II. List of the MPDs (first column), average number of particles in
each volume before (Bader analysis, second column) or after the optimization
(third column), their volumes (fourth column), distances of their centers
of mass from the central oxygen atom (fifth column), and the one-particle
occupancy probability (sixth column). In the same line of the first column,
we have put equivalent domains.

Domain
label ⟨N ⟩before ⟨N ⟩after

Volume
(Å3)

Distance
(Å) P(1)(∆∗)

1, 2 0.7 0.9 12.6 2.7 0.93
3, 4 1.7 1.0 12.0 2.8 0.78
5, 6 5.1 1.3 14.5 3.7 0.74
7, 8 2.7 1.3 15.0 4.0 0.72
9 2.4 1.0 15.8 4.7 0.68
10, 11 5.0 0.9 16.1 5.6 0.70

the set of domains at a distance between 4 and 5 Å reported
in Table I. This result is extremely interesting, as it seems
that we have been able to identify, in terms of the MPDs,
the location of the interstitial oxygen atoms that are mainly
affected by the increase of the density. As proven in Fig. 9,
not all the interstitial domains are strongly affected by the
change of density (see the difference between the blue and
the magenta curves). The pronounced peak (blue line in the
figure) in the partial RDFs corresponding to the MPDs 5 and
6 at around 3.3 Å contributes to the shoulder in the total
oxygen-oxygen RDF at the same distance (highlighted in the
figure by the circle). In the previous analysis, we showed

FIG. 9. Oxygen-oxygen RDFs com-
puted within each MPD, compared to
the total RDF of water at density
1.23 g/cm3. In the upper panel, the
shoulder in the highlighted region is
produced by the curves in the lower
panel which are indicated by the arrow.
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FIG. 10. Case of sodium diluted in water. MPDs in the first and second sol-
vation shells of Na+. From a snapshot of the trajectory, some water molecules
in the vicinity of the central ion are also shown. We see that each domain is
occupied by only one molecule (indicated by the arrows).

that all domains in these regions, namely, those labeled 5–12,
have similar partial RDFs (blue and magenta lines in Fig. 6).
Instead, we observe here that the partial RDFs calculated
inside the domains 5, 6 show a more pronounced peak than
the domains 7, 8. In general, we can observe that the MPDs
5–8 enclose the four molecules10 that in non-tetrahedral direc-
tions2,38 mainly contribute to modifications of the second
solvation shell at increasing density. The hypothesis10 that,
as the density increases, the second solvation shell does not
continuously collapse on the first shell but interstitial mole-
cules, that are not H-bonded to the first shell molecules, get
closer to the central water is consistent with our results.

C. Na+ in water

The MD trajectory of 110 ps for a sodium ion in liquid
water, at room temperature, is generated by employing the

TABLE III. List of properties of the MPDs calculated for Na+ in water.
In the first column, we list the position of the domain, in one of the two
solvation shells around the sodium ion; in the second, we calculate the
volumes occupied by the domain; in the third column, we report the distance
of the center of mass of the domain from the central ion; in the fourth column,
we show the solid angle occupied by the domain; and in the fifth column,
the coordination number associated to it. In parenthesis, we compare the
value of the coordination number determined by integrating the RDF up to
R = 3.3,5.6 Å. In the sixth column, the values of the one-particle occupancy
probability are given.

Shell
Volume

(Å3)
Distance

(Å)
Ω

(deg2) nΩ P(1)(∆∗)
I 12.0 2.3 135.6 5.3 (5.9) 0.78
II 16.2 4.4 39.9 18.1 (19.3) 0.62

TIP4P32 model for water. The system is composed of 1024
molecules in a cubic box with side length 31.5 Å.

The sodium-oxygen SDF is spherically symmetric and it
does not contain more information than the sodium-oxygen
RDF; therefore, the MPDs will have the same spherical distri-
bution around the central ion. The position and shape of the
initial domains can be chosen totally arbitrarily, since Bader
analysis is not efficient in this situation, where the local max-
ima of the two-particle SDF cannot be properly located (max-
ima of the density are distributed on a sphere, they are not
isolated points in 3D space). Also, if the initial domains are
chosen within a distance of less than about 2.2 Å, where the
RDF (see Fig. 11) is very small, the optimization procedure is
not efficient, and the MPDs cannot be identified. This problem
is related to the fact that in empty regions, where the proba-
bility of finding one particle vanishes, a small variation of the
region itself does not change this probability, thus fulfilling
the optimization condition |P(1)(∆τ) − P(1)(∆)| ≤ δ without an
effective modification of the domain. Here, we have considered
only domains ∆ that are enclosed in the region of non-zero
probability density. We then choose, as initial domains, spheres
of different radii, randomly located around the central ion and
at distances between 2.5 Å and 4.5 Å from it.

As in the previous applications, we will first show the
MPDs and then we will introduce some analysis tools to deter-
mine the properties of the MPDs.

FIG. 11. Total and partial (calculation
restricted to each given domain) ion-
oxygen RDF. The blue and red curves
are determined by calculating the RDF
in the domains shown in Fig. 10 and by
multiplying it by the corresponding nΩ
(from Table III).
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1. Analysis of the MPDs

The optimization procedure identifies two sets of MPDs,
associated to the first and second solvation shells of water
around the central sodium ion. They are shown in Fig. 10 as
blue and red grid volumes, with distances from the central
ion of 2.3 and 4.4 Å, respectively. These values are listed in
Table III, along with the other properties associated to the two
MPDs.

The coordination number nΩ in the two shells is deter-
mined as the ratio of the solid angle occupied by the domainΩ
and the total solid angle, whose values are shown in Table III. In
particular, the coordination numbers nΩ are in very good agree-
ment with those determined by integrating the RDF up to the
distances 3.3 and 5.6 Å, for the first and second solvation shells,
respectively. As also observed in the case of water, slightly
smaller values are determined by our analysis, if compared to
the integral of the RDF. The total RDF can be reconstructed
by determining its value inside the MPDs. The comparison
between the total RDF and the partial ones (in each domain)
is shown in Fig. 11. The curves calculated in the two domains
are multiplied by the corresponding nΩ in order to obtain the
contribution from the whole shell.

VI. CONCLUSIONS

We extended the study of the structure of a liquid system
by the identification of MPDs, borrowing the idea from what
is now routinely done in electronic structure analysis, and we
developed a first application to few case studies. We derived
the formalism necessary to define the probability of finding
one and only one particle in a certain region of space ∆,
and we developed an algorithm for the optimization of this
region under the request that the probability is maximized. The
geometric optimization is formulated in terms of shape deriv-
atives, thus allowing to use the LSM to solve the optimization
problem.

The case study obtained the features of the MPDs for water
at different densities and for a solvated sodium ion in water.
A qualitative analysis of the domains in water has allowed us
to describe the modification of the second solvation shell by
increasing pressure. More quantitative observations have also
illustrated the presence of water molecules in the interstitial
spaces of the first solvation shell that are not H-bonded to the
central molecule. These molecules contribute to the modifica-
tion of the second solvation shell of water at increasing density.
Looking at the RDFs restricted to the MPDs, we have been able
to indirectly achieve a 3D resolution that is totally lacking in
the (standard) full oxygen-oxygen RDF, since we know exactly
the spatial organization of the MPDs. Therefore, this result
proves that this new approach adds to standard techniques,
providing structural 3D information on liquids. In the case of
a sodium ion in water, we reconstructed the sodium-oxygen
RDF from the partial contributions evaluated inside the opti-
mized domains and we determined the coordination numbers
associated to these domains. We used a criterion to identify the
solvation shells, based on the identification of regions where
the partial RDFs, calculated within the MPDs, are close to zero,
rather than on the identification of the minima of the total RDF.

Notice that, even though we started the research for the MPDs
around the sodium ion from the information obtained from the
RDFs (but only as input in the analysis, the distance from the
central ion of the maxima of the sodium-oxygen RDF), we
have extracted the full 3D shape of the domains containing
the oxygen atoms around the sodium ion. In this case, in fact,
the sodium-oxygen SDF cannot provide this information, since
the problem has spherical symmetry.

We investigated the properties of the MPDs that are deter-
mined from the maximization of the one-particle occupancy
probability. Along similar lines, one could analyze probabil-
ities associated to more than one particle or focus on other
atoms (hydrogens, for instance). This could be used to give a
many-body definition of solvation shells.

The proposed method results to be an efficient tool to
complement the standard analysis techniques used in the study
of the structure of a liquid system and to give the 3D image of
the organization of the space around a given molecule, atom, or
ion. To conclude, let us say that despite the somehow elaborate
mathematical construction presented in the paper, the physical
interpretation of the MPD approach is simple. It allows to
identify at 3D level the statistical meaning of the positions
of particles surrounding a given central molecule or ion. To
do that, it looks at new and different (from those in standard
use) probabilities, allowing to better isolate the 3D statistical
arrangement of the observed particles.
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APPENDIX A: PROBABILITY DENSITY

We have illustrated how to use the MPDs to investigate
the local structure of a liquid around a given center. In the
examples discussed in the paper, the center was chosen as a
water molecule, in the case of liquid water, and as the sodium
ion, in the case where we analyze the structure of the water
solvation shells around this ion. Therefore, the probability
density ρ(RN) introduced in Eq. (1) has to be identified as the
conditional probability density of the configuration RN of the
N oxygen atoms, given a certain configuration {R0,R

H1
0 ,RH2

0 }
of the central water molecule,

ρ(RN) = ρ
(
RN | R0,R

H1
0 ,RH2

0

)
, (A1)

or of the central sodium ion {RNa+
0 },

ρ(RN) = ρ
(
RN | RNa+

0

)
. (A2)

We explicitly discuss below only the case of water, while the
expressions for sodium in water are obtained by replacing
{RNa+

0 } to {R0,R
H1
0 ,RH2

0 }.
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Here, we label with “0” the positions of the oxygen
atom and the two hydrogen atoms of the central molecule.
To be more explicit on the relation between the density in
Eq. (A1) and the standard configurational canonical density
ρcan(R0,RN ,RH1

0 ,RH2
0 ,RH1N ,RH2N), that is a function of all

atomic positions, i.e., oxygens and hydrogens, we give the
following expression of ρ(RN):
ρ(RN) =


dRH1N dRH2N

×
ρcan

(
R0,RN ,RH1

0 ,RH2
0 ,RH1N

1 ,RH2N
)

Pm

(
R0,R

H1
0 ,RH2

0

) . (A3)

Since ρ(RN) is a conditional probability density, the denomi-
nator represents the marginal probability of finding the central
molecule in the configuration {R0,R

H1
0 ,RH2

0 }, namely,

Pm

(
R0,R

H1
0 ,RH2

0

)
=


dRN dRH1N dRH2N

ρcan
(
R0,RN ,RH1

0 ,RH2
0 ,RH1N ,RH2N

)
.

(A4)

APPENDIX B: THE LEVEL SET METHOD

We present here in detail the LSM, defining the shape
derivative of P(1)(∆) and introducing the level set function.

1. Shape derivative

P(1)(∆) belongs to a specific class of what is normally
called a set function. We now introduce few analysis tools used
when treating, in general, set functions.

The shape derivative of a set function of the form

F(∆) =

∆

dR f (R) (B1)

is defined as the variation with respect to the integration
domain ∆. In other words, F(∆) can be written in terms of
a “density,” f (R), and in Appendix B 2, we give the explicit
definition of the f (R), interesting us, from Eq. (4).

If the deformation law of ∆ is given as

∆ → ∆τ = {Rτ = R + v(R)dτ | R ∈ ∂∆} , (B2)

where dτ is a fictitious time step and v(R) is a velocity field
(to be specified below), the time derivative of F(∆) can be
calculated according to

dF(∆)
dτ

= lim
dτ→0

1
dτ


∆τ

dRτ f (Rτ) −

∆

dR f (R)

. (B3)

Performing, in the first term in square brackets, the change of
variable

Rτ = R + v(R)dτ,
dRτ = dR

�
1 + ∇ · v(R)dτ + O(dτ2)� (B4)

and expanding, for small time increment dτ, f (Rτ) around R

f (Rτ) = f (R) + v(R) · ∇ f (R)dτ, (B5)

Eq. (B3) becomes

dF(∆)
dτ

=


∆

dR∇ · (v(R) f (R)) (B6)

=


∂∆

ds n(R) · v(R) f (R) ≡ DSF(∆), (B7)

where the divergence theorem has been used to derive Eq. (B7)
from Eq. (B6). In the last line, ds is the surface element of the
boundary ∂∆ of ∆ and n(R) is the unit vector normal to the
surface at R. Equation (B7) defines the shape derivative, indi-
cated by the symbol DS, of F(∆) and expresses the variation
of F(∆) with respect to the variation of ∆. The change in the
domain ∆ is expressed in terms of a global deformation of the
boundary ∂∆, which, in turn, is determined by the velocity field
v(R). For our purpose, that is the maximization of F(∆), we
can choose the field v(R) such thatDSF(∆) ≥ 0 and follow the
evolution of such a field up to find the final DSF(∆) = 0. The
condition DSF(∆) ≥ 0 is automatically satisfied if we choose
the velocity field as

v(R) = n(R) f (R). (B8)

2. Shape derivative for the MPDs

The comparison between Eqs. (1) and (B1) shows that
when we express the probability P(1)(∆) in terms of a density
function similar to f (R), such density depends on ∆c, i.e., on
∆. Therefore, when calculating the variations of F(∆) from
Eq. (B1) with respect to ∆, we need to include also variations
of f (R) with respect to ∆c, i.e., ∆. In our case, then, the
transformation in Eq. (B4), restricting ourselves to the case
v j(R) = v(R j), becomes

R j,τ = R j + v(R j)dτ with j = 1, . . . ,N (B9)

and the volume elements are

dR j,τ = dR j

(
1 + ∇R j

· v(R j)dτ
)
. (B10)

The time derivative of the probability P(1)(∆) under the varia-
tion ∆ → ∆τ is

dP(1)(∆)
dτ

= lim
dτ→0

1
dτ

N
i=1


∆τ

dRi,τ
*
,

N
l,i


∆c,τ

dRl,τ
+
-

× ρ(RN
τ ) −


∆

dRi
*
,

N
l,i


∆c

dRl
+
-
ρ(RN)


, (B11)

where ∆c,τ is the complementary volume to ∆τ, dRN−1
τ

= dR2,τ . . . dRN,τ (similarly for dRN−1) and RN
τ = R1,τ, . . . ,

RN,τ. Using Eq. (B10) and the expansion of the density ρ(RN
τ )

up to linear order (see Eq. (B5)) in the displacement from RN ,

ρ(RN
τ ) = ρ(RN) +

N
j=1


∇R j

ρ(RN) · v(R j)dτ, (B12)
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the shape derivative of P(1)(∆) becomes

dP(1)(∆)
dτ

=

N
i=1


∆

dRi
*
,

N
l,i


∆c

dRl
+
-

×

∇Ri

·
(
ρ(RN)v(Ri)

)
+

N
j,i

∇R j
·
(
ρ(RN)v(R j)

)
. (B13)

The first term on the right-hand-side can be treated exactly as
we have done in Eq. (B6), leading to

∆

dRi
*
,

N
l,i


∆c

dRl
+
-
∇Ri

·
(
ρ(RN)v(Ri)

)
=


∂∆

dsi n(Ri) · v(Ri) *
,

N
l,i


∆c

dRl
+
-
ρ(RN)

=


∂∆

ds n(R) · v(R)


dRi δ (Ri − R)

× *
,

N
l,i


∆c

dRl
+
-
ρ(RN). (B14)

The third line is obtained from the second by introducing a δ-
function in order to change the variable Ri to R in the surface
integral. Notice now that the integral over the variable Ri is
performed over the whole space.

The second term in Eq. (B13) has still to be appropriately
simplified. The N − 1 integrals of the second term in square
brackets are transformed, one by one, in N − 1 surface inte-
grals over ∂∆c with ∇R j

· replaced by the normal vector to the
surface, nc(R j) = −n(R j) (when the volume ∆ changes in the
direction indicated by n, the volume∆c changes in the direction
−n, since the boundaries of ∆ and ∆c are the same, being them
complementary volumes to each other). Therefore, we write
explicitly each term of the sum over the index j in Eq. (B13),
∆

dRi
*
,

N
l,i


∆c

dRl
+
-

N
j,i

∇R j
·
(
ρ(RN)v(R j)

)
=


∆

dRi


∂∆c

ds1
*.
,


l,i,1


∆c

dRl
+/
-

nc(R1) · v(R1)ρ(RN)

+


∆

dRi


∂∆c

ds2
*.
,


l,i,2


∆c

dRl
+/
-

× nc(R2) · v(R2)ρ(RN) + · · · (B15)

obtaining
∆

dRi
*
,

N
l,i


∆c

dRl
+
-

N
j,i

∇R j
·
(
ρ(RN)v(R j)

)
=


∆

dRi

N
j,i


∂∆c

ds j
*.
,


l,i, j


∆c

dRl
+/
-

× nc(R j) · v(R j)ρ(RN). (B16)

We introduce now a δ-function, in order to make a change of
variable R j → R and to write the above integral in compact

form, namely,
∆

dRi
*
,

N
l,i


∆c

dRl
+
-

N
j,i

∇R j
·
(
ρ(RN)v(R j)

)
=


∆

dRi

N
j,i


∂∆c

ds nc(R) · v(R)


dR j δ
�
R j − R

�

× *.
,


l,i, j


∆c

dRl
+/
-
ρ(RN) (B17)

= −

∆

dRi

N
j,i


∂∆

ds n(R) · v(R)

×


dR j δ
�
R j − R

� *.
,


l,i, j


∆c

dRl
+/
-
ρ(RN). (B18)

From Eq. (B17), we have obtained Eq. (B18) by replacing nc

with −n and by using the property that the boundary of ∆c is
the boundary of ∆. As previously observed for Eq. (B14), the
integral over the variable R j is performed over the whole space.

Combining the results in Eqs. (B14) and (B18), we derive
the expression for the shape derivative of the one-particle
occupancy probability as

dP(1)(∆)
dτ

=


∂∆

ds n(R) · v(R)
 N

i=1


dRi δ (Ri − R)

× *
,

N
l,i


∆c

dRl
+
-
−


∆

dRi

N
j,i


dR j δ

�
R j − R

�

×
(
l,i, j


∆c

dRl

)
ρ(RN)


. (B19)

The characteristic functions Υ∆(R j) and Υ∆c(R j) = 1 − Υ∆
(R j) ∀ j are used in order to extend the integrals over ∆ and
∆c to the whole space. We then obtain

dP(1)(∆)
dτ

=


∂∆

ds n(R) · v(R) f∆(R) (B20)

with

f∆(R) =
 N
i=1


δ (Ri − R)

N
l,i

(1 − Υ∆(Rl))

−
N
j,i

Υ∆(Ri)δ �R j − R
� N
l,i, j

(1 − Υ∆(Rl))

. (B21)

If the arbitrary velocity field in Eq. (B20) is chosen to be
v(R) = n(R) f∆(R) as in Eq. (B8), the condition DSP(1)(∆)
= dP(1)(∆)/dτ ≥ 0 is again automatically satisfied. To evaluate
the microscopic observable in Eq. (B21), we proceed as fol-
lows.

• First term on the right-hand-side of Eq. (B21): if Ri = R
and all the other N − 1 particles are in ∆c, then the term
is 1, irrespective of whether R is in∆ or in∆c; otherwise
it is 0.

• Second term on the right-hand-side of Eq. (B21): if
∃ j , i such that R j = R, while Ri ∈ ∆ and the other
N − 2 Rl ∈ ∆c, then the term is 1, irrespective of
whether R is in ∆ or in ∆c; otherwise it is 0.
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3. Level set function

In order to regularize the mathematical treatment of the
characteristic functions, it is useful to introduce a family of
regular functions collectively defined as level set functions. A
level set function φ(R, τ) is defined by the property

φ(R, τ)



< 0, R ∈ ∆
= 0, R ∈ ∂∆

> 0, R < ∆
∀ τ, (B22)

such that ∂∆ is identified as the set of zeros of φ(R, τ). The
normal vector to the iso-surfaces of this smooth function is
defined as

n(R) = ∇φ(R, τ)
|∇φ(R, τ)| , (B23)

and in particular, for the iso-surface, φ(R, τ) = 0, n(R) is the
normal vector to the boundary of ∆ that appears in Eq. (B20).

To define the evolution of the set, we ask that the level set
function φ(R, τ) be such that its total time-derivative is 0. This
results in the following evolution equation:

0 =
dφ(Rτ, τ)

dτ
=

∂φ(Rτ, τ)
∂τ

+ v(Rτ) · ∇φ(Rτ, τ), (B24)

where the velocity field v(R) at Rτ will be chosen to be

v(Rτ) = n(Rτ) f∆(Rτ) = ∇φ(Rτ, τ)
|∇φ(Rτ, τ)| f∆(Rτ). (B25)

Equation (B24) guarantees that the iso-surface φ(Rτ, τ) =
0 mimics the evolution of the boundary of ∆ according to
the deformation law determined by imposing the condition
DSP(1)(∆) ≥ 0 on the shape derivative of the one-particle occu-
pancy probability. It is important to underline that imposing
Eq. (B24) means that, at the boundary of ∆, the value of
the level set function does not change in time. Therefore,
we are able to identify at all times the set of points defining
∂∆τ. Further, by imposing that Eq. (B24) is valid everywhere
in space, we are obtaining the deformation law ∆ → ∆τ by
evolving the auxiliary level set function. The advantages are
the possibility of calculating the normal vector n(R), being
φ(R, τ) a smooth function of R by construction, and of being
able to identify at each time the domain ∆τ (the characteristic
function is constructed by knowing where φ(R, τ) is positive).
We approximate the right-hand-side of Eq. (B24) by a finite
difference

φ(Rτ, τ + dτ) = φ(Rτ, τ) − dτ f∆(Rτ) |∇φ(Rτ, τ)| , (B26)

using Eq. (B23) for the unitary vector normal to the boundary
of ∆ (or to the iso-surface φ(Rτ, τ) = 0). This equation is then
transformed in an algorithm that determines the evolution of
the domains∆i, given an initial condition for the level set func-
tion corresponding to the choice of initial domains discussed
in the text.

APPENDIX C: THE IDEAL GAS

The probability P(1)(∆) can be analytically evaluated for
the ideal gas. For a non-interacting system, P(1)(∆) does not
depend on the shape of the domain ∆ but only on its volume

v . Thus, there is total degeneracy in the shape when looking
for an optimal domain because only the volume (and not the
shape) of the MPD can be determined from the maximization
of the one-particle occupancy probability. This fact will reduce
the calculation of the MPD to a trivial analysis exercise which
we will give below.

Equation (1) in this case becomes

P(1)(∆) = 1
V N

(
N
1

) 
v

dR1

V−v

dRN−1

= N
(
v

V

) (
1 − v

V

)N−1
, (C1)

where V N is the configurational partition function for the ideal
gas. Here, we have indicated the complementary volume of v
as V − v . The thermodynamic limit is now easily obtained by
observing that

lim
N→∞

P(1)(∆) =
(
v

v0

)
lim
N→∞

(
1 − v

v0

1
N

)N−1

=
v

v0
e−

v
v0 , (C2)

where v0 = V/N is kept constant and we have eliminated any
dependence on V . It is natural to ask at this point what is
the volume v that maximizes this probability and what is
the value of this maximum probability. We can answer these
questions by just differentiating Eq. (C2) with respect to v ,
since in this case, the shape derivative reduces to the standard
derivative. We find that dP(1)(v)/dv = 0 if v = v0. For the value
of the probability at the optimal volume, we find P(1)(v0) = e−1

= 0.37.
The values of the one-particle occupancy probability for

the MPDs and the volumes of the MPDs have been shown in
the main text. We observe in the three examples that the one-
particle occupancy probability in the absence of interactions
is much smaller than those calculated for water. The interac-
tions among the particles of the liquid, indeed, stabilize their
distribution and it is, in particular, the repulsion that prevents
the occupation of a MPD by more than one particle (that would
lead to the decrease of the value of the probability). Moreover,
the average volumes per particle v0 calculated for water at
ρ0 is 30.0 Å3, for water at ρ = 1.23ρ0 is 24.2 Å3, and for
sodium diluted in water is 30.5 Å3. These values represent
also the volumes of the MPDs in the ideal gas at the same
densities. The volumes predicted for the ideal gas are larger
than all those calculated for water in the examples, suggesting
that interactions make the particles less mobile than what is
expected in a non-interacting situation.
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