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Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Cole-
man’s ensemble N-representability conditions. Recently, the topic of pure-state N-representability
conditions, also known as generalized Pauli constraints, received increased attention following the
discovery of a systematic way to derive them for any number of electrons and any finite dimension-
ality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement
of the pure-state conditions on the results of reduced density-matrix functional theory calculations.
In particular, we examine whether the standard minimization of typical 1-RDM functionals under the
ensemble N-representability conditions violates the pure-state conditions for prototype 3-electron
systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same
systems and functionals and compare the correlation energies and optimal occupation numbers
with those obtained by the enforcement of the ensemble conditions alone. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4918346]

I. INTRODUCTION

In Reduced Density Matrix Functional Theory1

(RDMFT), the total energy of an N-electron system is ex-
pressed as a functional of the one-body reduced density-
matrix (1-RDM) γ(r,r′) or its eigenfunctions φ jσ(r) and
eigenvalues n jσ, i.e., the natural orbitals and their occupation
numbers. To obtain the 1-RDM of the ground state, the total
energy is typically minimized under Coleman’s ensemble
N-representability conditions (EC),2

∞
j=1

n jσ = Nσ, 0 ≤ n jσ ≤ 1. (1)

These conditions ensure that the 1-RDM corresponds to
an ensemble of fermionic states. The advantage of the EC
is their simplicity when compared with the pure-state
N-representability conditions (PC). The PC are the necessary
and sufficient conditions for the 1-RDM to correspond to a pure
state and are also known as generalized Pauli conditions.3,4

Although some of the PC were known for a long time,5,6

a systematic way to derive all conditions for a given number
of particles N and finite size M of the Hilbert space (being
equal to the number of natural spin-orbitals) has been recently
demonstrated by Klyachko et al.3,4 Since the number of natural
spin-orbitals needs to be finite in any implementation, these
conditions can be derived for all practical purposes. As the
conditions depend on both N and M , we will refer to them
as the N-M conditions in the following. In practice, the
number of PC increases rapidly with the number of electrons
and natural spin-orbitals. For example, there are four 3-6
conditions while the number of 3-8 conditions is already 31.

All the PC can be written as inequalities for various subsets of
the occupation numbers. Geometrically, the set of conditions
defines a M-dimensional convex polytope. Investigations into
the relevance of the conditions for physical systems have
started recently7–10 focussing on the question whether the
solutions lie on the boundary of the M-dimensional polytope
or inside. In this work, we discuss the PC in the context of
approximate functionals in RDMFT calculations.

Several approximations of the total energy as an explicit
functional of the natural orbitals and the occupation numbers
(or the 1-RDM) have been introduced in the last decades11–28

and employed in electronic structure calculations in combina-
tion with the EC. In these approximations, the exact kinetic
and external potential energy functionals in terms of the
1-RDM are employed while the electron-electron interaction
is approximated. Among these approximations a central
position is held by the Müller functional11,12 where γ in the
exchange term of Hartree-Fock theory is replaced by γ1/2

(power in the operator sense). This approximation was shown
to overestimate correlation energies substantially and several
remedies were put forward. For example, Goedecker and
Umrigar,13 proposed a modified form of the Müller functional
where self-interaction terms (same index terms) are explicitly
excluded from the double index summations of the Coulomb
and exchange like energy terms.

Gritsenko et al.14 introduced a hierarchy of repulsive
corrections based on the separation of natural orbitals into
strongly and weakly occupied as well as bonding and anti-
bonding orbitals. The proposed BBCn (n = 1,2,3) functionals,
and in particular BBC3, reproduce quite accurately correlation
energies and the dissociation of diatomic molecules. A
modelling of the BBC3 approximation using a fitting formula

0021-9606/2015/142(15)/154108/7/$30.00 142, 154108-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.108.69.177 On: Mon, 17 Aug 2015 12:55:14

TH-2015-21

http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://dx.doi.org/10.1063/1.4918346
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4918346&domain=pdf&date_stamp=2015-04-16


154108-2 Theophilou et al. J. Chem. Phys. 142, 154108 (2015)

was introduced by Rohr et al.15 leading to the functional known
as Automatic Correction 3 (AC3).

Marques and Lathiotakis16 (ML) introduced an empirical
functional by replacing the square root dependence on the
occupations of the Müller functional with a Padé-type formula
with parameters fitted to reproduce the correlation energies of
a test set of molecules. Another approximation, called the
“Power functional,” targeting the study of periodic systems,
was proposed by Sharma et al.,18 by substituting the square-
root dependence on the occupations of the Müller functional
with a power α. A value of α = 0.578 was found to optimize
the performance for the functional for both finite and extended
systems.19 This functional was shown to reproduce quite
successfully the band gaps of semiconductors and insulators
including transition metal oxides.18,29

Based on the reconstruction of the two-body reduced den-
sity matrix in terms of the 1-RDM, Piris and coworkers devel-
oped a series of approximations20–23 termed PNOFn, n = 1,
. . . ,6 which were proven to be accurate in reproducing several
properties of molecular systems. Functionals that one could
classify as extensions of RDMFT are those that depend
explicitly on the phases of natural orbitals24 like, for example,
the exact functional for 2-electron systems of Löwdin and
Shull30 and the theory of the anti-symmetrized product of
strongly orthogonal geminals (APSGs).25 APSG accurately
predicts structural and vibrational properties of molecules as
well as single-bond breaking.26–28

Recently, and in order to address the large numerical
cost of the orbital minimization in RDMFT, local-RDMFT
was introduced31,32 which combines the non-idempotent
1-RDMs of RDMFT with a local, Kohn-Sham-like potential
in a variational manner.

One could argue that, in the minimization of the total
energy in RDMFT, PC should be enforced in addition
to the EC. For the exact functional, however, due to the
minimization principle, the EC are sufficient to guarantee that
the minimizing 1-RDM corresponds to a pure state, i.e., the
ground state, in all cases without ground-state degeneracy. For
approximate functionals, however, this is not the case. In other
words, in the minimization of an approximate functional of the
1-RDM, if one applies the EC alone or the PC in addition, there
is no guarantee that the optimal 1-RDMs will coincide.

In this paper, we assess how well different approximate
RDMFT functionals, combined with only the EC, satisfy pure-
state conditions for different 3-electron systems, namely the
lithium atom, the LiH+ and the He+2 ions, and the hydrogen
trimer, using 6 or 8 natural spin-orbitals in the calculation.
In addition, we perform RDMFT calculations for these 3-
electron systems enforcing the PC as additional constraints
and compare the results with and without enforcing them.
The goal of this work is to get a first feeling on whether
imposing the PC has any impact on the RDMFT results or if
the EC are sufficient. Three electron systems are the smallest
systems where one can investigate this question because for
closed-shell systems with time-reversal symmetry, the EC
are proven to be necessary and sufficient for pure-state
N-representability.6

In Sec. II, we briefly review the known conditions for
pure-state N-representability for 3-electron systems and for

Hilbert spaces of 6 and 8 natural spin-orbitals. We discuss
our results for the four different systems with and without
enforcing the PC in Sec. III and conclude our findings in
Sec. IV.

II. PURE STATE N -REPRESENTABILITY CONDITIONS

Similarly to the EC, the conditions for the pure-state
N-representability concern only the occupation numbers. To
express the PC, at least in the form known so far, occupation
number ordering according to their value is essential. Thus, in
order to write the PC, we have to map the set of occupation
numbers {n jσ} onto an ordered set {λk}, λ1 ≥ λ2 ≥ · · · ≥ λM

regardless of the spin they correspond to. As a realistic
example considered in this work, for the lithium atom, the
Müller functional with the EC alone and 6 natural spin-
orbitals, we obtain

n1↑ = 1.000 000, n2↑ = 0.865 779, n3↑ = 0.134 220,
n1↓ = 0.999 969, n2↓ = 0.000 027, n3↓ = 0.000 005,

(2)

which are then mapped according to

n1↑ → λ1, n2↑ → λ3, n3↑ → λ4,

n1↓ → λ2, n2↓ → λ5, n3↓ → λ6.
(3)

We note that using three occupation numbers for each spin
channel is a question of choice. One could choose an
unbalanced distribution of the 6 occupation numbers into the
two channels. For systems of 3 electrons, and for a Hilbert
space of 6 natural spin-orbitals, there are 4 conditions which
are given in Table I. The first three of the conditions are
originally inequalities, like all Klyachko’s conditions, with
the left-hand-side being less or equal to one; however, they
reduce to equalities due to the ensemble N-representability
condition (1) which the occupation numbers have to satisfy
as well. As one can see, for the example above, only the first
and the third conditions are well satisfied while the second is
violated slightly and the fourth quite severely.

The conditions in Table I were originally formulated
by Borland and Dennis in the 1970s.5 For a 3 electron
wavefunction expressed in terms of 6 natural spin-orbitals,
φ1 · · · φ6, (three for each spin channel) one can form 9
Slater determinants that could contribute to the wavefunction.
Borland and Dennis found numerically that only four of these
determinants have non-zero coefficients. These determinants
are |φ1φ2φ3|, |φ1φ4φ5|, |φ2φ4φ6|, and |φ3φ5φ6|. We label the
expansion coefficients of these determinants with c1, c2, c3,
and c4, respectively. Forming the corresponding 1-RDM, we
can associate every occupation number λi with two expansion
coefficients ci because each orbital is present in only two
Slater determinants. For example, λ1 = |c1|2 + |c2|2 and λ6

TABLE I. 3-6 PC, i.e., for 3 electrons in a space of 6 natural spin-orbitals.5

No. Condition

1 λ1+λ6= 1,
2 λ2+λ5= 1,
3 λ3+λ4= 1,
4 λ5+λ6−λ4 ≥ 0.
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TABLE II. 3-8 PC, i.e., for 3 electrons in a space of 8 natural orbitals. Spaces
distinguish different types of conditions.34

No. Condition

1 λ1+λ2+λ4+λ7 ≤ 2
2 λ1+λ2+λ5+λ6 ≤ 2
3 λ2+λ3+λ4+λ5 ≤ 2
4 λ1+λ3+λ4+λ6 ≤ 2

5 λ1+λ2−λ3 ≤ 1
6 λ2+λ5−λ7 ≤ 1
7 λ1+λ6−λ7 ≤ 1
8 λ2+λ4−λ6 ≤ 1
9 λ1+λ4−λ5 ≤ 1
10 λ3+λ4−λ7 ≤ 1

11 λ1+λ8 ≤ 1

12 λ2−λ3−λ6−λ7 ≤ 0
13 λ4−λ5−λ6−λ7 ≤ 0
14 λ1−λ3−λ5−λ7 ≤ 0

15 λ2+λ3+2λ4−λ5−λ7+λ8 ≤ 2
16 λ1+λ3+2λ4−λ5−λ6+λ8 ≤ 2
17 λ1+2λ2−λ3+λ4−λ5+λ8 ≤ 2
18 λ1+2λ2−λ3+λ5−λ6+λ8 ≤ 2

19 λ1+λ2−2λ3−λ4−λ5 ≤ 0
20 λ1−λ2−λ3+λ6−2λ7 ≤ 0

21 λ1−λ3−λ4−λ5+λ8 ≤ 0
22 λ1−λ2−λ3−λ7+λ8 ≤ 0

23 2λ1−λ2+λ4−2λ5−λ6+λ8 ≤ 1
24 λ3+2λ4−2λ5−λ6−λ7+λ8 ≤ 1
25 2λ1−λ2−λ4+λ6−2λ7+λ8 ≤ 1
26 2λ1+λ2−2λ3−λ4−λ6+λ8 ≤ 1
27 λ1+2λ2−2λ3−λ5−λ6+λ8 ≤ 1

28 2λ1−2λ2−λ3−λ4+λ6−3λ7+λ8 ≤ 0
29 −λ1+λ3+2λ4−3λ5−2λ6−λ7+λ8 ≤ 0
30 2λ1+λ2−3λ3−2λ4−λ5−λ6+λ8 ≤ 0
31 λ1+2λ2−3λ3−λ4−2λ5−λ6+λ8 ≤ 0

= |c3|2 + |c4|2. Since the wavefunction has to be normalized,
λ1 + λ6 has to be one, which is the first Borland–Dennis
condition. In the same way, one obtains the second and third
conditions. Moreover, every |ci |2 has to be non-negative from
which the fourth condition follows. In this way, Borland and
Dennis proved the sufficiency of their conditions and referred
to a work by Ruskai and Kingsley for their necessity. This
work, however, was only published 35 yrs later by Ruskai.33

The number of conditions increases dramatically with
the number of natural spin-orbitals that one includes in the
calculation. Using invariant theory and representation theory,
Klyachko and coworkers derived and proved an algorithm for
computing all such Pauli-like constraints for a given number of
electrons and natural spin-orbitals. For the case of 8 orbitals,
they obtained 31 conditions that need to be enforced which
are shown in Table II.34

III. RESULTS

We perform all the calculations using the cc-PVTZ
Gaussian basis set with the HIPPO computer code.35 For
the 3-electron doublet state, we used the assumption that
the natural spin-orbitals appear in pairs with identical spatial

dependence,36 i.e., the spin dependence enters only through
the occupation numbers. This restriction is not expected to
influence the findings of the present work since both PC and
EC concern the occupation numbers only. We performed two
kinds of calculations: (i) standard RDMFT calculations using
the Müller,11,12 BBC3,14 ML,16 and PNOF017,20 functionals to
examine whether, and to what extend, PC are satisfied by the
optimal occupations, and (ii) RDMFT calculations with the
3-6 or 3-8 PC enforced in addition. We note that only 3 or
4 spatial orbitals (6, 8 natural spin-orbitals) were assumed to
have non-zero occupation even in case (i) in order to conform
with the Hilbert space restrictions of the PC and to allow for
fair comparisons. We also note that the large size of the basis
set allows for the use of the optimal M-dimensional Hilbert
space in each calculation. Occupation number and orbital
optimizations were performed with customized sequential
quadratic and conjugate gradient methods, respectively. Our
calculations are for testing purposes, since 6 spin-orbitals are
generally not enough to describe dynamic correlations in 3-
electron systems. However, they are still reasonable, because
for 8 spin-orbitals, the smallest occupation number is typically
of the order of 10−5-10−6.

We first examine whether the occupation numbers ob-
tained with standard RDMFT calculations, i.e., by enforcing
only the EC, satisfy the PC. In Fig. 1, we show the violation of
the 3-6 PC in electrons for Li, LiH+, He+2 , and H3. As the first 3
of the 3-6 conditions are equalities, the quantity we refer to as
“violation” is the sum of the relevant occupation numbers
minus 1 (the rhs of all equalities). The fourth condition
is violated when λ5 + λ6 − λ4 < 0 and the violation is the
difference of the lhs of the condition from zero, i.e., the
minimum value of the lhs satisfying the condition. In a similar
way, we determine the violation of the 3-8 conditions. For
the 3-6 conditions, we found that, for all functionals and
all systems apart from H3, the fourth condition is always
violated and has the highest violation. While for H3 all violated
conditions are of the same order of magnitude, for the rest of
the systems, the fourth condition is violated the most by at least
an order of magnitude. In all cases, the ML functional appears
to give the smallest violations among the approximations
employed. Interestingly, when both the first and the second
conditions are violated, as in Li and LiH+, they are violated
by the same amount. Due to the enforcement of the ensemble
N-representability conditions and the pinning of the largest
occupation number to one, mapping (3) implies that both the
first and the second conditions reduce to n3↓ = 0. Hence, they
are violated by the same amount. For the hydrogen trimer
and the He+2 molecule, the mapping onto ordered occupation
numbers is different than in Eq. (3). As a result, the first
and the third conditions reduce to n3↓ = 0 and are, hence,
equally violated. For Li and LiH+, due to the pining of
the first occupation number, λ1 = 1, the third condition is
automatically satisfied since the total number of electrons with
spin up equals λ1 + λ3 + λ4 = 2.

In Fig. 2, we show the violation of the 3-8 conditions.
As we see, the conditions with numbers 9, 10, 20, and 28 in
Table II are always satisfied while those with numbers 5, 18,
and 26 are always violated. For weakly correlated systems,
where λ1–λ3 are close to one and all remaining occupations
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FIG. 1. Violation in electrons (e) of the 3-6 PC for Li, H3, LiH+, and He+2 , with different RDMFT functionals minimized under the EC alone. On the horizontal
axis, the conditions are numbered in the order shown in Table I. A missing symbol implies that the particular condition is not violated by the corresponding
functional.

FIG. 2. Violation in electrons (e) of the 3-8 PC for the Li atom, and the H3, LiH+, and He+2 molecules with different RDMFT functionals minimized under
the EC alone. On the horizontal axis, the conditions are numbered in the order shown in Table II. A missing symbol implies that the particular condition is not
violated by the corresponding functional.
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TABLE III. Absolute correlation energy, |E (E)
c |, for the EC using 6 or 8 natural spin-orbitals, and its change,

∆Ec, when the 3-6 or 3-8 PC are enforced in addition. All energies are given in mHa.

Müller BBC3 ML PNOF0

|E (E)
c | ∆Ec |E (E)

c | ∆Ec |E (E)
c | ∆Ec |E (E)

c | ∆Ec

A. For the 3-6 conditions

Li 12.2 11.0 10.0 9.2 2.4 1.2 2.8 2.0
H3 45.5 2.1 24.1 2.5 17.1 0.5 20.2 0.5
LiH+ 16.1 1.5 7.7 5.6 19.1 15.5 11.8 0.5
He+2 81.7 39.1 71.4 43.3 25.8 2.0 32.8 7.5

B. For the 3-8 conditions

Li 23.4 20.0 16.5 15.2 4.8 1.3 5.6 3.6
H3 53.8 0.7 29.1 2.3 23.3 0.2 25.0 0.4
LiH+ 19.9 1.0 10.3 6.2 22.2 1.8 15.2 3.2
He+2 90.7 38.0 76.6 42.4 34.3 1.3 37.9 6.3

are close to zero, it is clear that conditions 20 and 28 will
always be satisfied. Condition 5 is always violated because
we find that λ1 is pinned to one for all systems and functionals
considered here, which implies that the only way to satisfy
the condition is λ2 = λ3 which is actually not the case. For
the set of 3-8 conditions, again the ML functional gives the
smallest violation, with PNOF0 coming next, while between
the Müller and BBC3 functionals there is no clear order. These
two functionals, however, show a similar violation for many
of the conditions for all systems except H3. Due to the larger
number of conditions, there are also several conditions that
are violated to a similar extend, i.e., contrary to the 3-6 case,
there is not one dominant violation.

In order to assess the impact of the PC on RDMFT calcu-
lations, we performed energy minimizations implementing
the PC as additional constraints. A sensible comparison is
that of the correlation energies E(E)

c for the EC alone and
E(P)
c when the PC are additionally enforced and defined as

E(E)
c = E(E) − E(HF) and E(P)

c = E(P) − E(HF), where E(E) and
E(P) are the total energies obtained with the enforcement
of the EC alone and the PC in addition, respectively, and
E(HF) is the Hartree-Fock total energy. The enforcement of
the PC as additional constraints raises the total energy by the
difference ∆Ec = E(P)

c − E(E)
c which will be zero only in those

cases where the minimization without PC enforcement fulfills
all the PC. No such case was found, however, in the systems
and functionals we considered. In Table III, we include the
absolute correlation energies |E(E)

c | without the PC, as well as
∆Ec for the different systems and functionals. Enforcing the
PC for the Li atom, and for He+2 raises the correlation energy
by an amount ∆Ec which is of the same order of magnitude as
the correlation energy E(E)

c itself, for almost all functionals. For
the other two systems, the effect of the PC on the correlation
energy varies depending on the system and the functional
but it is generally smaller. In general, however, ∆Ec is quite
substantial. As expected, the ML functional which was found
to violate the PC less than the other functionals yields smaller
∆Ec. The trends we observe are similar for the 3-6 and the 3-8
PC.

State pinning, i.e., the existence of natural spin-orbitals
with border occupations (1 or 0) is very common within

RDMFT approximations. More specifically, with the enforce-
ment of the EC alone there exist many spin-orbitals (core
states) that are pinned at one while pinning at zero is rather
unlikely, i.e., there is an “over-pinning” of core states at
one for many approximations. However, this inaccuracy is
not a severe flaw in most cases, since these natural spin-
orbitals have an occupation very close to one anyway, and
they are usually core states not affecting the chemical bonding.
Although the existence of pinned states in the exact 1-RDM
of interacting electron systems is not an easy question, simple
3-electron systems like those studied in this work should not
have pinned states. However, with only the EC enforced, for
all the functionals employed here λ1 = 1 for all systems.
Interestingly, as we see in Table IV, applying the 3-6 PC
in addition, λ1 becomes fractional in all cases apart from one
(LiH+with the BBC3 functional). Moreover, imposing the 3-8
conditions leaves no pinned states and in most cases unpins
λ1 even more than the 3-6 conditions for the corresponding
system and functional. This is due to enforcing condition 5
which, as discussed above, cannot be satisfied if λ1 = 1 unless
λ2 = λ3. As the latter is not the case in any of our systems, the
only way to satisfy this condition is the unpinning of λ1.

In addition to artificially pinning states, many approx-
imate functionals are also known to overestimate the

TABLE IV. Deviation from pinning for the largest occupation number,
1−λ1, with the 3-6 or 3-8 PC enforced. With the enforcement of the EC
alone, this occupation number is pinned to 1 in all cases considered.

Müller BBC3 ML PNOF0

A. For the 3-6 conditions

Li 9.6 × 10−5 1.7 × 10−7 1.1 × 10−4 3.6 × 10−5

H3 4.2 × 10−3 4.8 × 10−4 8.5 × 10−4 1.1 × 10−3

LiH+ 1.3 × 10−4 0 3.4 × 10−5 1.1 × 10−6

He+2 4.1 × 10−4 9.6 × 10−5 3.4 × 10−4 1.6 × 10−4

B. For the 3-8 conditions

Li 6.1 × 10−4 3.0 × 10−4 1.5 × 10−4 2.2 × 10−4

H3 1.1 × 10−3 2.9 × 10−4 5.0 × 10−4 3.6 × 10−4

LiH+ 9.1 × 10−4 4.6 × 10−4 7.8 × 10−4 9.4 × 10−4

He+2 3.6 × 10−3 1.6 × 10−3 6.0 × 10−4 1.5 × 10−3
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TABLE V. Sum of the occupation numbers (×100) of weakly occupied orbitals with or without enforcing the 3-6
or 3-8 PC.

Müller BBC3 ML PNOF0

w/o with w/o with w/o with w/o with

A. For the 3-6 conditions

Li 13.42 0.11 11.64 0.09 0.17 0.08 0.61 0.04
H3 10.89 9.85 6.41 5.26 0.52 0.49 1.93 1.91
LiH+ 1.04 0.33 1.09 0.15 0.18 0.12 0.42 0.17
He+2 14.56 3.72 13.78 2.86 0.54 0.35 2.26 1.20

B. For the 3-8 conditions

Li 22.23 0.29 15.53 0.12 0.35 0.18 1.36 0.10
H3 11.79 11.30 6.50 5.33 0.63 0.62 2.22 2.21
LiH+ 1.51 0.67 1.24 0.18 0.27 0.25 0.53 0.33
He+2 15.03 4.23 13.85 2.79 0.64 0.46 2.34 1.33

TABLE VI. Saturated 3-8 conditions, i.e., those conditions where the set of
the optimal occupations lies on the boundary of the polytope when enforced.
For the numbering convention, see Table II.

Müller BBC3 ML PNOF0

Li 1, 5 2, 5, 6, 16 5 1, 5
H3 2, 5, 7, 11, 2, 5, 7, 11, 5, 11, 18, 26 4, 7, 11, 18,

18, 25, 26 18, 25, 26 23, 25
LiH+ 1, 2, 4, 5, 1, 2, 3, 4, 2, 6, 10 2, 3, 6, 7

7, 18 5, 6, 7, 8,
10, 12, 14, 16,

17, 18, 31
He+2 2, 5, 7, 18 2, 5, 7, 18 2, 5, 7, 18 2, 5, 7, 18

occupation of the weakly occupied states.37 Due to the
unpinning of the largest occupation number, one might expect
that the occupation of those states is further increased.
However, for both the 3-6 conditions and the 3-8 conditions
(see Table V), this is clearly not the case. For all systems, and
all functionals, the occupation of the weakly occupied orbitals
is actually decreased in some cases even quite significantly.

Since all the 3-8 constraints are inequalities, one distin-
guishes between those constraints that lie on the boundary of
the polytope when being enforced, i.e., where the lhs is equal
to the rhs, and those constraints that lie inside the polytope, i.e.,
where the lhs is truly smaller than the rhs. Physically, being
on the boundary implies that any further reduction of the total
energy will come at the cost of violating at least one of these
constraints. In Table VI, we list those conditions that are lying
on the boundary for each system and functional. As one can
see, the smallest number of boundary constraints appears for
the ML functional which also showed the smallest violation
of the constraints when they were not enforced.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we examined if the additional enforcement
of the pure-state N-representability conditions, also known
as generalized Pauli constraints, has an impact on RDMFT

calculations. More specifically, we checked if the standard
RDMFT optimization for a few representative approximations
under the EC of Coleman respects the PC conditions for 3-
electron systems, namely, the Li atom, the linear Hydrogen
trimer, and the positive ions of the He2 and LiH molecules. We
found that in all cases, at least some of the pure-state conditions
are violated. We then applied the 3-6 and 3-8 PC as additional
constraints in the minimization and found that the increase in
the total energy corresponds to a significant fraction of the
correlation energy obtained with the EC alone. In addition,
we found that the optimal 1-RDM is qualitatively improved
by the enforcement of PC since the pathology of state pinning
is alleviated and the total charge occupying weakly occupied
orbitals is reduced. Finally, we found that, in analogy to state
pinning of the EC, many PC are saturated, i.e., the optimal
1-RDM lies on several boundaries of the polytope of pure-
state N-representability. Thus, in conclusion, we can claim
that the enforcement of PC has a significant impact on the
results of RDMFT approximations that could potentially be
explored to define better approximations.

Unfortunately, the number of N-M PC for large number of
electrons N and sizes of the Hilbert space M can be quite large
and difficult to handle in practical implementations. However,
the existence of a systematic way to derive these conditions for
arbitrary N and M and their linear form should facilitate their
adoption in more general applications of RDMFT in the future.
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