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Ab Initio Description of Thermoelectric Properties Based on

the Boltzmann Theory

Nicki F. Hinsche, Martin Hölzer, Arthur Ernst, Ingrid Mertig, and Peter Zahn

10.1

Introduction

The conversion performance of a thermoelectric material is quantified by

the figure of merit

𝑍𝑇 = 𝜎S2

𝜅el + 𝜅ph
T , (10.1)

where 𝜎 is the electrical conductivity, S is the thermopower, and 𝜅el and

𝜅ph are the electronic and lattice contribution to the thermal conductivity,

respectively. From Equation 10.1 it is obvious that a higher𝑍𝑇 is obtained

by decreasing the denominator or by increasing the numerator, the latter

being called power factor PF = 𝜎S2.While 𝜎, S, 𝜅el and 𝜅ph can individually

be tuned by several orders of magnitude, the interdependence between

these properties impedes high values ofZT [1, 2]. Bi2Te3, Sb2Te3, and their

related alloys dominate the field of thermoelectrics with𝑍𝑇 around unity

from the 1950s until now [3–5].

The idea of thermoelectric superlattices (SL) allows for concepts that

could enable both the suppression of cross-plane thermal conductivity

[6–8] and the increase of the electronic power factor [9–12]. It suggests

that cross-plane transport along the direction perpendicular to the artifi-

cial interfaces of the SL reduces phonon heat conduction while maintain-

ing or even enhancing electron transport [13].

In 2001 a breakthrough experiment by Venkatasubramanian et al.

reported a record apparent 𝑍𝑇 = 2.4 for p-type Bi2Te3∕Sb2Te3 and

𝑍𝑇 = 1.4 for n-type Bi2Te3∕Bi2Te2.83Se0.17 superlattices [8, 14, 15],

although these values have not yet been reproduced to the best of our

knowledge.
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While considerable effort was undertaken in experimental research

[16–23], theoretical investigations on Bi2Te3∕Sb2Te3 SLs are rare.

Available theoretical works concentrate on the electronic structure and

transport properties of bulk materials [24–27], with some of them

discussing the influence of strain, which could occur at the SL interfaces

[28–30]. Based on density functional theory, Li et al. focused on the

calculation of the electronic structure for two distinct Bi2Te3∕Sb2Te3-SLs,
stating changes of the mobility anisotropy estimated from effective

masses [31, 32].

To clarify the open questions on the reduced mobility anisotropy

and the enhanced thermoelectric efficiency, we discuss in this chapter

the anisotropic thermoelectric electronic transport of seven different

Bi2Te3∕Sb2Te3-SLs, including the bulk materials, on the basis of density

functional theory and semiclassical transport calculations.

For this purpose, the chapter is organized as follows. In the remaining

part of Section 10.1 we discuss modern concepts to increase ther-

moelectric efficiency. In Section 10.2 we introduce our first principle

electronic structure calculations based on density functional theory

and the semiclassical transport calculations based on the solution of

the linearized Boltzmann equation. In Section 10.3.1 we present results

on the influence of strain on the TE properties of the bulk materials

Bi2Te3 and Sb2Te3. The influence of different SL periods on electrical

conductivity, thermopower, and the related power factor with a focus on

their directional anisotropies is discussed in Section 10.3.2. To estimate

the figure of merit, in Sections 10.3.3 and 10.3.4 results on the electronic

contribution to the thermal conductivity and the Lorenz function and its

deviation from the ideal value are presented. Section 10.3.5 is devoted to

the calculation and analysis of phonon spectra of Bi2Te3.

10.1.1

Low-Dimensional Thermoelectrics

In 1993, the pioneering work of Hicks and Dresselhaus [33, 34] renewed

the interest in thermoelectric (TE) research and became the inspiration

for many of the recent developments in the field of low-dimensional

thermoelectrics [35]. The basic idea is that quantum confinement of

electrons and holes could dramatically increase the figure of merit𝑍𝑇 by

increasing the power factor independently of the thermal conductivity.

Quantum confinement is available in low-dimensional geometries as
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zero-dimensional quantum dots (0D), one-dimensional nanowires (1D),

as well as two-dimensional quantum wells and superlattices (SL, 2D).

While infinite enhancements of the in-plane figure of merit were

predicted at vanishing layer thickness [33, 34, 36], electron tunneling

and thermal currents were suppressed between the layers by introducing

infinite potential barriers of zero width. Later on, it was shown that for

realistic barrier heights and widths the enhancement is rather moderate,

predicting 𝑍𝑇 values a few percentage larger than the corresponding

bulk materials [37–39]. Indeed, some groups found evidence for large

enhancements of the thermopower in SLs based on PbTe [11, 40–43] and

SrTiO3 [44–47]. However, the determination of the 2D charge carrier

concentration is sophisticated and led in at least two of the previous

experiments [41, 43] to quite large estimates of the thermopower [48]. In

some other model cases, the carriers had to be confined in delta-doped-

like layers with a maximum width of a unit cell to show an enhancement

up to 𝑍𝑇 ≈ 2 [44–46], while otherwise 𝑍𝑇 would have been only

marginally enhanced [49].

Several experiments have been performed on processing and character-

izing TE 1D nanowires [50–56]. Confinement effects on the power factor

PF = 𝜎S2 were negligible [39, 57]. While at very low wire diameters, d ≪

15 nm, enhancements of the power factor could be reached [39], the main

gain in 𝑍𝑇 for nanowires are caused by a strong reduction in the lattice

thermal conductivity. Here, phonon scattering at the boundaries is the rea-

son [51]. Unfortunately, at small diameters the latter effect causes a reduc-

tion in the phonon-drag effect and thus also in the thermopower [58].

If both phonon boundary scattering and phonon drag could be retained,

promising values of 𝑍𝑇 were found for TE nanowires [52].

Adding up the previous ideas, Mahan and Sofo [59] argued that sharp

features in the electronic density of states (DOS) alone could lead to

enhancements of the thermopower and the power factor. Recent exper-

imental proofs of principle showed this assumption to be achievable

already in bulk materials by the introduction of resonant defect levels

close to the chemical potential [60–63].

10.1.2

Phonon-Glass Electron-Crystal

Obviously, the figure of merit 𝑍𝑇 can be optimized either by enhancing

the power factor 𝜎S2 or by decreasing the thermal conductivity 𝜅el + 𝜅ph.
For a long time, alloying achieved the lowest thermal conductivities [64].
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The reduction of 𝜅ph is caused by the scattering of phonons by atomic

substitutions and is limited by the so-called alloy limit. Unfortunately,

the introduction of impurities leads also to electron-impurity scattering,

which in most cases lowers the power factor.

At best, electron and phonon properties are decoupled, allowing for

both maximizing the power factor and minimizing the lattice thermal

conductivity at the same time. Having this in mind, Slack proposed the

concept of phonon-glass electron-crystal in 1995 [65, 66]. The best TE

material should possess thermal properties similar to that of a glass

(𝜅300 K ≲ 1W/mK [67]) and electrical properties similar to that of a

perfect single-crystal material [68]. To date, several experimental and

theoretical studies supported this concept but differ in their approach.

Archetypical examples of bulk phonon-glass electron-crystal materials

are the skutterudites ((Co,Ni,Fe)(As,Sb)3 and related compounds) [68–71]

and the clathrates (e.g. Ba8Ga16Si30) [72–76].

A different approach to the phonon-glass electron-crystal concept was

recently proposed by the Snyder group. Toberer et al. suggested that the

lattice thermal conductivity scales inversely with the number of atoms in

the unit cell [77–79].This conjecture is supported in Figure 10.1(a), where

the dependence of the lattice thermal conductivity on the unit cell volume

is shown for different antimonides. With increasing unit cell volume, the

number of atoms N increases, and with that the 3(N − 1) optical phonon
branches dominate for complex crystals. The bandwidth of the acoustic

phonons thus reduces to Δ𝜔acoustic = N
1

3𝜔max. The authors noted that the

3(N − 1) optical modes have very small phonon group velocities and thus

are assumed to account only for a constant, small, glass-like thermal con-

ductivity within a Debye model [78, 80]. The latter assumption is rather

crude. It is known that optical phonon modes can have group velocities in

the same order as the acoustic modes and contribute significantly to 𝜅ph
[81, 82]. However, the experimental results of Snyder et al. [77–79]

for complex Zintl-phases showed a tremendous reduction of 𝜅ph ≈
0.2W∕mK along with 𝑍𝑇 ≈ 1.3 at high temperatures. Nevertheless,

the intrinsically low 𝜅ph might be caused mainly by the complex crystal

structures than by the proposed phonon velocity reduction.

The newest, maybe the most promising, member in the zoo of

phonon-glass electron-crystal materials is bulk p-type Cu2−xSe [83]. Most

interestingly, the Se atoms form a rigid face-centered cubic lattice pro-

viding a crystalline pathway for semiconducting holes, while the copper

ions are highly disordered around the Se sublattice and show liquid-like

mobility.This combination leads to a remarkable figure of merit𝑍𝑇 = 1.5
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Figure 10.1 Complex thermoelectric

materials within the phonon-glass electron-

crystal approach. (a) Dependence of lattice

thermal conductivity on the unit cell volume

for different Zintl-antimonides. The lattice

thermal conductivity rapidly decreases for

increasing unit cell volume. Figure adapted

with permission from Ref. [78]. Copyright

(2010) American Chemical Society. (b) Trans-

mission electron microscopy graphs (TEM) of

a 10Å/50Å Bi2Te3∕Sb2Te3-SL. Dark and light

grey areas highlight the layered structure.

For cross-plane transport (⊥) phonons (p)

are expected to be scattered at the artificial

interfaces, while electrons (e−) transmit with-

out losses. In the in-plane direction (||) quan-
tum confinement effects for electrons are

expected. Figure adapted with permission

from Ref. [14]. Copyright (1999) American

Institute of Physics.

together with 𝜅 = 0.8W/mK at 1000 K. As a result, Cu2−xSe can be seen

as an archetypical phonon-glass electron-crystal material.

10.1.3

Phonon-Blocking and Electron-Transmitting Superlattices

The very sophisticated TE concept of phonon-blocking and electron-

transmitting (PBET) SLs combines the phonon-glass electron-crystal

approach (Section 10.1.2 and the idea of quantum confinement in

low-dimensional systems (Section 10.1.1). Made available by state-of-the

art heteroepitaxy [13, 18, 84–87], SLs consist of alternating thin layers

of different materials stacked periodically. The most prominent material

combinations for TE SLs are Bi2Te3∕Sb2Te3 [15, 18, 86, 88, 89], Si/Ge

[90–92], and PbTe/PbSe [16, 41–43, 93, 94]. Other SLs based on Bi/Sb

[95] or skutterudites [96] showed no or only small enhancements of the

TE efficiency.

Despite being inspired by the approaches of a phonon-glass electron-

crystal and the idea of quantum confinement in low-dimensional systems,

the ansatz of a phonon-blocking electron-transmitting SL is very different.
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First, they differ in their quantum confinement. In low-dimensional 1D,

and 2D structures proposed by Hicks and Dresselhaus, the transport

is mostly perpendicular to the confinement, c.f. along the in-plane

direction of the SL, and can be assumed to be almost free-electron-like.

In a phonon-blocking electron-transmitting SL the thermal gradient is

preferably applied parallel to the confinement, c.f. electron and phonon

transport occur in cross-plane direction of the superlattice. The latter is

emphasized in Figure 10.1(b).

With no obvious enhancement of the cross-plane electronic transport to

be expected due to quantum confinement effects, the desired increase in

𝑍𝑇 has to stem entirely from a distinct reduction in the cross-plane lattice

thermal conductivity 𝜅ph,⊥. Indeed, exceptionally low thermal conductiv-

ities were found for phonon-blocking electron-transmitting SLs [8, 42,

90, 97–99]. Venkatasubramanian et al. reported 𝜅ph,⊥ = 0.22W∕mK for

Bi2Te3∕Sb2Te3 SL with a period of 50Å, which is about five times smaller

than the bulk values and significantly below the alloy limit [8].Those values

add up to the lowest room-temperature thermal conductivities in crys-

talline materials reported so far.

The physical reason for the low cross-plane thermal conductivity is

still being intensely debated using two models [13]. In the first, the

phonons are expected to be quasiparticles that are scattered specularly

or diffusely at the interfaces [7]. Experimental results from Touzelbaev

seem to support this model, as decreasing lattice thermal conductivity

was found for an increased interface roughness [85]. In the second

model, the phonons are expected to behave as coherent waves across the

interfaces. Reduction in the thermal conductivity then comes purely from

phonon dispersion effects, such as BZ downfolding, leading to decreased

group velocities and thermal conductivities [100, 101]. This model alone

is not sufficient to explain the magnitude of the thermal conductivity

reduction perpendicular to the film plane, and it fails completely to

explain the observed in-plane thermal conductivity reduction [13].

Venkatasubramanian proposed that coherent backscattering of phonons

at mirror-like interfaces could lead to standing phonon waves that do not

contribute to thermal transport. Depending on the SL period l, this leads

to a localization of certain phonon modes with wavelength λ ≤ l∕2 [8].

The goal of SL engineering is to choose the SL period in such a way that

low-frequency acoustic modes are localized and 𝜅ph is reduced.

At best, a phonon-blocking and electron-transmitting SL shows power

factors similar to that of the bulk, albeit at different optimal carrier con-

centrations. As will be shown in the following, these assumptions are per
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se rather optimistic but achievable under certain conditions. Summing up,

TE transport in the cross-plane direction of SLs has achieved the highest

values for the figure of merit so far. 𝑍𝑇 = 2.4 and 1.5 were predicted for

p-type and n-type Bi2Te3∕Sb2Te3 SLs at room temperature [14], while

𝑍𝑇 = 1.6 − 3.5 was reported for n-type PbSeTe-based quantum-dot

superlattices at T = 300 − 600 K [41–43]. Some of the measurements

have been corrected after publication by the authors [48]. The maximum

value of 𝑍𝑇 = 3.5 is highly unlikely, but 𝑍𝑇 ≫ 1 is expected for all the

samples.

10.2

Transport Theory

Based on the knowledge of the microscopic electronic structure of a

material, the macroscopic TE transport properties can be obtained within

the Boltzmann transport formalism [102, 103].The generalized electronic

transport coefficients are deduced in detail by solving a linearized

Boltzmann equation in Section 10.2.1. With this, the thermoelectric

transport processes are expressed and discussed by means of generalized

forces and fluxes in Section 10.2.2. Solving the Boltzmann equation for

the phonon distribution function provides insight into the lattice thermal

conductivity (Section 10.3.5).

10.2.1

Linearized Boltzmann Equation and Relaxation Time Approximation

We restrict the following considerations to a time-independent external

electric field ℰ and a temperature gradient ∇T . Applying weak external

fields, one can expect that a system in steady state will only slightly differ

from its equilibrium distribution. Hence, it is appropriate that the occupa-

tion function fk in the steady state can be separated into the equilibrium

contribution f 0
k
given by the Fermi–Dirac distribution at temperature T

and chemical potential 𝜇 and a modest perturbation gk :

fk = f 0
k
+ gk with f 0

k
= 1

e(Ek−𝜇)∕kBT + 1
. (10.2)

The semiclassical equation ofmotion for the position 𝐫 and thewave vec-
tor 𝐤 can be used to describe the collision integral as the temporal change

in the fk due to the action of the external electric field ℰ [102]. Assuming

weak fields and small temperature gradients only, a linearized Boltzmann
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equation is obtained. Assuming furthermore that the collision integral is

proportional to the perturbation gk divided by the relaxation time τk , the
solution of the Boltzmann equation can be written as

gk = τk𝐯k
[|e|ℰ +

E𝐤 − 𝜇
T

∇T
] ∂f 0

k

∂E
(10.3)

The derivativexs ∂f 0
k
∕∂E of the Fermi-Dirac distribution function indi-

cates that only electrons within an energy shell in the order of kBT near the

Fermi surface can respond to the external forces. Those states have unoc-

cupied states in their vicinity and are redistributed in 𝐤-space, as shown
in Figure 10.2.

10.2.2

Transport Coefficients

While it has been discussed in the last section as to how a weak electric

field and a thermal gradient alter the population of electronic states, one

may conclude what electrical and heat currents 𝐣 and𝐐 occur in the steady

state. Considering that fk = f 0
k
+ gk and that there is no spontaneous net

current flow in equilibrium, only gk of the perturbed occupation func-

tion fk causes a current flow. Using Equation 10.3 the currents can be

kx

ky ky

εx

θ θ

−(π/a) (π/a)

(a) (b)

∇T

kx

−(π/a) (π/a)

Figure 10.2 Schematic view of the distri-

bution functions gk on a slice cut through

the k-space (kz = 0) for a spherical Fermi sur-

face. Two situations of electronic transport

are considered. In (a), for an applied elec-

tric field along the negative x-direction; in

(b) for a temperature gradient in the neg-

ative x-direction. The newly populated and

depleted Brillouin zone areas are marked in

grey. Note the distinction between the large-

angle scattering (the so-called horizontal

processes) in (a) and small-angle scattering

connected with a change in the electron’s

energy (the vertical processes) in (b). The

scattering angle between an initial and a

final state is 𝜃 = (𝐤, 𝐤′) Original color figure
can be found in http://digital.bibliothek.uni-

halle.de/urn/urn:nbn:de:gbv:3:4-10116.

http://digital.bibliothek.uni-halle.de/urn/urn:nbn:de:gbv:3:4-10116
http://digital.bibliothek.uni-halle.de/urn/urn:nbn:de:gbv:3:4-10116
http://digital.bibliothek.uni-halle.de/urn/urn:nbn:de:gbv:3:4-10116
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expressed by the generalized conductance moments ℒ (n)
⊥,||(𝜇,T), where n

is the moment’s order

ℒ (n)
(||,⊥)(𝜇,T) = ∫ dE Σ(||,⊥)(E) ⋅ (E − 𝜇)n

(
−
∂f 0

k
(𝜇,T)
∂E

)
Ek=E

, (10.4)

involving integrations over surfaces of constant electron energy E in recip-

rocal space:

Σ(||,⊥)(E) = 1

ℏ(2𝜋)3 ∮
Ek=E

dS|𝐯k|τk(𝐯k(||,⊥))2. (10.5)

The directional indices ‘||’ and ‘⊥’ denote the transport properties within
and perpendicular to the basal plane of the layered systems considered

here. For isotropic or cubic systems, this difference vanishes.

Σ(||,⊥)(E) is the zeroth moment at vanishing temperature and coincides

with the transport distribution function Σ(||,⊥)(E) ≡ ℒ (0)
(||,⊥)(E,T = 0) as

introduced to thermoelectrics by Mahan and Sofo [59].

Using the above definitions, the electric and heat current densities can

be written in terms of the generalized conductance moments

𝐣 = e2ℒ (0)ℰ − e

T
ℒ (1)∇T , (10.6)

𝐐 = eℒ (1)ℰ − 1

T
ℒ (2)∇T . (10.7)

Depending on the boundary conditions certain transport coefficients

can be derived, connecting acting fields and resulting quantities.

At a constant temperature, an electric current 𝐣 flows in the material in

response to an applied external electric fieldℰ . Comparing Equation 10.6

with Ohm’s law one reads

𝐣 = 𝜎ℰ with 𝜎 = e2ℒ (0), (10.8)

where 𝜎 is the electric conductivity tensor. Here, 𝜎𝑥𝑥,𝑧𝑧 = 𝜎||,⊥ are the

diagonal components within and perpendicular to the basal plane,

respectively.

Assuming an electrical open circuit 𝐣 = 0 and applying a steady thermal

gradient along the sample, the resulting electric fieldℰ = S∇T is given by

ℰ = 1

𝑒𝑇

ℒ (1)

ℒ (0) 𝛁T with S = 1

𝑒𝑇

ℒ (1)

ℒ (0) . (10.9)

S is called the Seebeck coefficient or thermopower.

Combining the thermopower in Equation 10.9 with the electrical con-

ductivity in Equation 10.8, for the thermoelectric power factor reads

PF = 𝜎S2 = 1

T2

(ℒ (1))2

ℒ (0) , (10.10)
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which states the electrical power throughput of a material at a given

temperature difference. The power factor strongly depends on the charge

carrier concentration of the thermoelectric material and should be

optimized to maximize the figure of merit ZT.

The electronic part of the total thermal conductivity accounts to

𝜅el,(⊥,||) = 1

T
(ℒ (2)

⊥,||(𝜇,T) −
(ℒ (1)

⊥,||(𝜇,T))2
ℒ (0)

⊥,||(𝜇,T)
), (10.11)

with the heat current Q⊥,|| = −𝜅el(⊥,||)∇T .
The second term on the r.h.s. of Equation 10.11 introduces corrections

due to the Peltier heat flow that can occur when bipolar conduction takes

place [104, 105]. Using Equations 10.9 and 10.11 and the abbreviation

𝜅0
el⊥,|| = 1

T
ℒ (2)

⊥,||(𝜇,T) [59], we find the Lorenz function as

L⊥,|| = 𝜅el,(⊥,||) ⋅ (𝜎⊥,|| ⋅ T)−1, (10.12)

L⊥,|| = 𝜅0
el,(⊥,||)
𝜎
⊥,||T

− S2
⊥,|| . (10.13)

It clearly shows that in the low temperature regime the Lorenz function

L consists of a constant term and a negative term of order T2.

Boltzmann’s transport theory can also be applied to phonons by simply

taking into account the Boson occupation function

n0q =
1

e
ℏ𝜔q

kBT − 1

, (10.14)

where 𝜔q is the phonon energy dispersion, and q is a shorthand notation

for the wave vector and the phonon branch number. Similar to the path

described in section 10.2.1, one can derive the linearized phonon Boltz-

mann equation in relaxation time approximation (RTA) [102, 106–108].

Equivalent to Equation 10.5, the phonon heat conductivity 𝜅ph,(||,⊥)(T) can
be expressed as

𝜅ph(T) = ∫ d𝜔 Σph(𝜔) CV (𝜔,T), (10.15)

involving integrations over surfaces of constant phonon frequency 𝜔,

Σph(𝜔) =
1

8𝜋3 ∮
𝜔q=𝜔

dS|𝐯q|τq𝐯2q. (10.16)

These properties are analogous to the electronic case in Equation 10.5

and include the phonon DOS ℱ (𝜔). Furthermore, the specific thermal

heat at constant volume and temperature T is defined as

CV (𝜔,T) =
(ℏ𝜔)2

kBT
2
n0𝜔(n0𝜔 + 1). (10.17)
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10.3

Results

10.3.1

Influence of Strain

Before considering the Bi2Te3∕Sb2Te3-SLs, the influence of strain on the

thermoelectric properties of the bulk materials is discussed.

To this end, we used the experimental lattice parameters and relaxed

atomic positions [109] as provided for the hexagonal Bi2Te3 crystal struc-

ture. The layered structure itself is represented by three quintuple units,

Te1 − Bi − Te2 − Bi − Te1.The hexagonal lattice parameters are chosen to

be ahex
BiTe

= 4.384Å and chex
BiTe

= 30.487Å. The main difference between the

lattices of Bi2Te3 and Sb2Te3 is mostly a decrease in the in-plane lattice

constant with an accompanying decrease in cell volume. So, a change

between the two lattice constants can be related to either compressive or

tensile in-plane strain. Previous studies revealed that a larger in-plane lat-

tice constant, c.f. ahex
BiTe

> ahex
SbTe

, is favorable for an enhanced cross-planeTE

transport [26, 30, 110]. For this purpose, the experimental lattice param-

eters of Bi2Te3 were chosen for the heterostructures studied. To study SLs

with different layer periods comparable to the experiments of Venkatasub-

ramanian et al.we subsequently substituted the Bi sites by Sb, startingwith

six Bi sites in hexagonal bulk Bi2Te3 (see Figure 10.3(a)). For instance, sub-

stituting two atomic layers of Bi with Sb leads to a (Bi2Te3)x∕(Sb2Te3)1−x
SL with x = 2

3
, that is, two quintuples Bi2Te3 and one quintuple Sb2Te3

(see Figure 10.3(b)). The latter case coincides with a (20Å/10Å)-

(Bi2Te3∕Sb2Te3) superlattice in the experimental notation of Ref. [15].

The dependence of anisotropy of the electrical conductivity on the in-

plane conductivity 𝜎|| for unstrained Bi2Te3 is shown in Figure 10.4(a).The

temperature is fixed at 300K, the upper and lower parts of the loops refer

to electron- and hole-doping, respectively. Based on a comparison with

experimental data the in-plane relaxation time is determined to be τ|| =
1.1 × 10−14s for Bi2Te3. The calculated dependencies of electrical conduc-

tivity on the thermopower and the electrical conductivity on the applied

doping were matched to fit experiments [112–114]. With that, we find

strong anisotropies for the electrical conductivity
𝜎||
𝜎⊥
≫ 1, clearly prefer-

ring the in-plane transport. For the strongly suppressed cross-plane trans-

port, p-type conduction is more favorable than n-type conduction. Pure

band structure effects (solid lines in Figure 10.4(a)) result in overestima-

tion of the measured anisotropy ratio [112] of the electrical conductivity.
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Figure 10.3 Shown are three pos-

sible hexagonal unit cells of the

(Bi2Te3)x∕(Sb2Te3)1−x superlattices. (a) x=1,
which is bulk Bi2Te3, (b) x =

2

3
, and (c) x = 1

6
.

A concentration of x=0 would coincide with

bulk Sb2Te3 in the lattice of Bi2Te3; with per-

mission from Ref. [111], Copyright (2012)

APS.

With an assumed anisotropy of the relaxation time of
τ||
τ⊥
= 0.47 the experi-

mental values are reproduced very well. This means that scattering effects

strongly affect the transport, that is, electrons traveling along the basal

plane direction are scattered more strongly than electrons traveling per-

pendicular to the basal plane. The origin of this assumed anisotropy has

to be examined by defect calculations and the resulting microscopic tran-

sition probabilities and state-dependent mean free path vectors. It is well
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Figure 10.4 Ratio 𝜎||∕𝜎⊥ of the electri-

cal conductivities at 300K for (a) unstrained

Bi2Te3 and (b) strained Bi2Te3 in the lattice

structure of Sb2Te3. Electron doping refers to

the upper parts of the loops, while the lower

parts refer to hole doping. The dashed line

in panel (a) present the ratio obtained with

an anisotropic relaxation time
τ||
τ
⊥

= 0.47,

while all other results are obtained with an

isotropic relaxation time. Experimental data

(circles) from Ref. [112] are given for compar-

ison; with permission from Ref. [119], Copy-

right (2011) APS.

known that in Bi2Te3 mainly antisite defects lead to the inherent conduc-

tion behavior [115–117]. We have shown in Ref. [118] that integration of

the transport integrals in Equation 10.5 in anisotropic k-space requires

large numeric effort. Tiny regions in the k-space close to the band gap

have to be scanned very carefully and the texture in the k-space has a

drastic influence on the obtained anisotropy values, if integrals are not

converged with respect to the k-point density. As shown, some integra-

tion methods tend for the given k-space symmetry to underestimate the

ratio
𝜎||
𝜎⊥

in a systematicmanner and thereforewould shift anisotropy closer

to the experimental observed values, without representing the real band

structure effects.

For unstrained Bi2Te3, the electrical conductivity anisotropy is highest

for low values of 𝜎|| , that is, small amounts of doping and bipolar conduc-

tion. For larger charge carrier concentrations, that is, the chemical poten-

tial shifts deeper into either conduction or valence band, the in-plane

conductivity 𝜎|| increases, and the ratio
𝜎||
𝜎⊥

decreases. Values for
𝜎||
𝜎⊥

will

lower from 7 to 2 for p-type conduction and 9 to 3 for n-type conduction.

However, cross-plane electrical transport is always more suppressed for

n-type carrier conduction.

In order to understand the experimental findings on the in-plane

and cross-plane transport, the anisotropies of the thermopower and
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the related power factor of bulk Bi2Te3 are discussed in the following.

Bulk Bi2Te3 is known to be inherently electron conducting, while hole

doping is experimentally achievable for bulk systems [112, 113, 120, 121].

Figure 10.5 shows the variation of the anisotropic thermopower for

unstrained Bi2Te3 in a wide temperature range. The extrinsic charge

carrier concentration was fixed at N = 1 × 1019cm−3. Experimental

values for single crystalline material at the same doping conditions

are given as a reference and excellent agreement is found. It is worth

noting that within Equation 10.9 the calculation of the thermopower

is completely free of parameters. The in-plane thermopower reaches

a maximum of S|| ∼ −200𝜇VK−1 at 300 K, while the maximum for the

hole-doped case is shifted to slightly higher temperatures of 350 K with

a maximum value of S|| ∼ 225𝜇VK−1. We note that the temperature

of the maximum is slightly overestimated. This might be caused by

the missing temperature dependence of the energy gap, which was

determined as Eg = 105meV for unstrained Bi2Te3. Anisotropy of the

thermopower is more pronounced for the p-doped case. Here, the

cross-plane thermopower S
⊥
is always larger than the in-plane part S||

for the given doping concentration. The sole available experimental

data do not show noticeable anisotropy for the thermopower in the

hole-doped case [122]. For the electron-doped case the situation is more

sophisticated. While up to 340 K the overall anisotropy is rather small,

with values
S||
S
⊥

≈ 0.9, a considerable decrease in S
⊥
at higher temperatures

leads to high values of
S||
S
⊥

for temperatures above 400K. This tendency

could also be revealed by experiments [115, 123]. The crossing point of

S|| and S
⊥
near room temperature could explain the varying measured

anisotropies for the thermopower at 300K. Here, anisotropy ratios of
S||
S
⊥

= 0.97 … 1.10 were reported [115, 120]. The maximum peak of the

thermopower near room temperature can be explained by the position

of the chemical potential 𝜇 as a function of temperature at a fixed carrier

concentration. For T values much smaller than 300K the chemical poten-

tial is located in either the conduction- or valence band with the tails

of the Fermi–Dirac function in Equation 10.4 only playing a subsidiary

role. For rising temperatures, the chemical potential shifts toward the

band edges and S maximizes. Under these conditions, the conduction is

mainly unipolar. For higher temperatures the chemical potential shifts

into the band gap and conduction becomes bipolar, leading to reduced

thermopower.
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Figure 10.5 Anisotropic thermopower

for bulk (a) Bi2Te3 and (b) Sb2Te3 in their

unstrained bulk lattice structure. Electron

doping refers to the thick lines in the lower

part of the figure, while thin lines refer to

hole doping and positive values of the ther-

mopower. Solid lines show the in-plane part

S|| of the thermopower, while dashed lines

show the cross-plane part S
⊥
. The extrinsic

charge carrier concentrations of Bi2Te3 and

Sb2Te3 were fixed at N = 1 × 1019cm−3 and

N = 1 × 1020cm−3, respectively. Experimen-

tal data (squares, diamonds, circles, trian-

gles) from Ref. [120, 122, 124] are given for

comparison; with permission from Ref. [119],

Copyright (2011) APS.

For the case of Sb2Te3, shown in Figure 10.5(b), the situation is different.

Because of the ten times higher inherent doping and the smaller energy

gap of Eg = 90meV, the chemical potential is located deeply in the bands

for the entire relevant temperature range.Therefore, the functional behav-

ior can be understood in terms of the well-known Mott relation, where

Equation 10.9 qualitatively coincides with S ∝ T ⋅ d ln 𝜎(E)
dE

|E=𝜇 for the

thermopower in relaxation time approximation [125]. With increasing

temperature the thermopower increases almost linearly. The anisotropy

of the thermopower for the hole-doped case is around
S||
S
⊥

= 0.91, almost

temperature-independent and slightly underestimates the available

experimental values [114, 126]. The anisotropy of the hole-doped case

varies only weakly with temperature showing
S||
S
⊥

= 0.48 … 0.52 over the
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Power factor at 300K for (a) Bi2Te3 in the

Bi2Te3 structure and (b) Bi2Te3 in the Sb2Te3
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as thick (thin) line. The charge carrier con-
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from Ref. [119], Copyright (2011) APS.

whole temperature range. While bulk Sb2Te3 shows a strong p-character

due to inherent defects, we note here again that n-doping is available in

heterostructures combining Bi2Te3 and Sb2Te3 [15].

In Figure 10.6(a) the doping-dependent anisotropic power factor of

unstrained Bi2Te3 at room temperature is shown. Thick and thin solid

lines represent the in-plane power factor PF|| under electron doping and

hole doping, respectively. The corresponding cross-plane power factor

PF
⊥
values are shown as dashed lines. Under p-doping, the unstrained

material shows a maximum power factor near carrier concentrations

of N ∼ 4 × 1019cm−3. An absolute value of 35 μW/cmK2 was found for

unstrained Bi2Te3, which is in good agreement with experimental and

theoretical findings [17, 29, 127]. Under electron doping the absolute

values of PF|| (thick lines in Figure 10.6) were found to be substantially

smaller. This is due to smaller absolute values of the thermopower

for electron doping compared to hole doping (see Figure 10.5) and

apparently smaller in-plane electrical conductivities 𝜎|| at fixed carrier

concentrations. As a result, a power factor of 18 μW/cmK2 is obtained

under optimal electron doping.
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Under applied in-plane compressive strain (cf. Figure 10.6(b)) decreases

in the maximal power factor PF|| of about 27% and 23% for n-doping and

p-doping were found, respectively. At a carrier concentration of about

N ≈ 3 × 1019cm−3 the decrease in PF|| is about 17% and 28% for n- and

p-doping, respectively, while in the work of Park et al. a slight increase

of PF|| under strain and hole doping is reported [29]. Obviously, this

trend can be understood by analyzing the constituent parts 𝜎|| and S|| , as
discussed in Ref. [119].

10.3.2

Superlattices

While considerable effort was undertaken in experimental research

[16–23], theoretical investigations on Bi2Te3∕Sb2Te3 SLs are rare [31, 32].
Available theoretical works concentrate on the electronic structure and

transport properties of the bulk materials [24–27], with some of them

discussing the influence of strain, which could occur at the SL interfaces

[28–30]. To clarify the open questions on the reducedmobility anisotropy

and the enhanced thermoelectric efficiency, we are going to discuss in the

following the anisotropic thermoelectric electronic transport of seven

different Bi2Te3∕Sb2Te3-SLs, including the bulk materials.

Here, we consider SLs (Bi2Te3)x∕(Sb2Te3)1−x SLs starting with x = 0,

which is tensile strained bulk Sb2Te3, and ending at x = 1, which is bulk

Bi2Te3. An increasing number of Bi layers in the SLs does not drastically

change the band structure topology. Only slight variations were found for

the in-plane banddirections. Adetailed discussion in given inRef. [111]. In

Figure 10.7 the dependence of the calculated band gap on the superlattice

period is shown. Applying an extended tetrahedronmethod [128, 129] and

very dense k-meshes in the Brillouin zone, the band gap values were deter-

mined within an uncertainty better than 1%. We obtain an indirect gap of

Eg = 140meV for the in-plane tensile strained Sb2Te3, which fits well with

experimental values between Eg = 150 − 230meV [130, 131]. For Bi2Te3
as well as for all Bi2Te3∕Sb2Te3 SLs indirect band gaps are obtained, too.

The calculated bulk band gap of Eg = 105meV for unstrained bulk

Bi2Te3 is in agreement with the experimental value of Eg = 130meV [130].

As is well known, Bi2Te3 and Sb2Te3 exhibit band inversion at certain

areas in the Brillouin zone [132] where the strength of the spin orbit inter-

action controls the size of the band gap. Fortuitously, overestimated spin-

orbit coupling effects and underestimated Density functional theory band

gaps tend to cancel each other, leading to good results for the band gap size
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tal findings [130] for (Bi2Te3)x∕(Sb2Te3)1−x

alloys, which were adapted to the bulk val-

ues to allow for comparison with our results

(adapted with permission from Ref. [111]),

Copyright (2012) APS.

and wave function character.The band gap difference between unstrained

Bi2Te3 and strained Sb2Te3 accounts for about 35meV, in very good agree-

ment with the proposed value from experiment [15]. This is of particular

importance for the discussion of quantumwell effects below. An inclusion

of temperature-dependent experimental band gaps will only have a minor

influence, shifting the maxima of the thermopower, power factor, and

resulting ZT (cf. Figure 10.9) to slightly larger values of the temperature.

While our calculated bulk band gaps are in very good agreement with

other calculations [133–135], data on the SLs are rare [31]. To allow for a

comparison of theoretical and experimental band gaps in Figure 10.7 the

experimental values are scaled to agree with the theoretical ones for the

bulk systems, that is, x = 0 and x = 1.

In the following, quantum well effects in the electronic structure are

discussed. In the early 1990s concepts were presented to enhance in-plane

thermoelectric properties by quantum-confinement effects in SLs [33,

34, 36]. While huge enhancements on the in-plane figure of merit were

predicted, the authors neglected electron tunneling and thermal currents

between the layers. Later on, it was shown that for realistic confinement

parameters the enhancement is rather moderate [37, 136].

Our results show that a substitution of Sb and Bi in Bi2Te3 or Sb2Te3,

respectively, affects the character of the valence band states only

marginally, and almost bulk-like electronic structure and transport prop-

erties can be expected in the SLs. Bi2Te3 and Sb2Te3 show a theoretical

band gap difference of about 35meV; Thus, a band offset in the SL is

expected. Our calculations reveal that this difference is mostly located in

the conduction bands, which sets up potential barriers in the superlattice
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Figure 10.8 Site-resolved probability ampli-

tude for (a) bulk Bi2Te3, (b) bulk Sb2Te3,

and (c) a (Bi2Te3)x∕(Sb2Te3)1−x superlat-

tice with x = 2

6
. In the same manner, the

site-resolved cross-plane electrical conduc-

tivity 𝜎
⊥
(in units of (Ωcm)−1) is shown for

(d) bulk Bi2Te3, (e) bulk Sb2Te3, and (f ) a

(Bi2Te3)x∕(Sb2Te3)1−x superlattice with x = 2

6
.

The temperature is fixed at 300 K and the

charge carrier concentration is set to N = 3 ×
1019cm−3, with permission from Ref. [111],

Copyright (2012) APS.

leading to confinement effects. Therefore, the site-resolved probability

amplitude for the two bulk tellurides, as well as for the superlattice,

which showed the highest conductivity anisotropy, that is, 10Å/20Å

Bi2Te3∕Sb2Te3 SL (x = 2

6
), is shown in Figure 10.8(a)–(c). For Bi2Te3 the

conduction band edge is dominated by contributions of the Te1 followed

by the Bi sites. A localization of states at the van der Waals gap is already

visible in the bulk system. Areas of the BZ where no band inversion

occurs dominate the CBM. For Sb2Te3 this is quite different. Most of the

contributions to the conductivity arise from an area around the Γ point,

where the band inversion favors the Sb character. As can be seen from

Figure 10.8(b) the contributions to the DOS are equally distributed over

all positions in the unit cell, while slightly being enlarged on the Sb sites.

For the (Bi2Te3)x∕(Sb2Te3)1−x SL at x = 2

6
(cf. Figure 10.8(c)) we found

quantum well states, which localize about half of the density in the Bi2Te3
quintuple, while the density in the two Sb2Te3 quintuples is strongly

depleted.
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As shown in Figure 10.8(f ), the quantum confinement is reflected in the

contribution to the cross-plane electrical conductivity.Here, the local con-

tribution to the cross-plane conductivity 𝜎⊥(𝐫) is calculated as introduced
in Ref. [137], by weighting the contributions to ℒ (0)

⊥,||(𝜇,T) with the nor-

malized probability amplitude |Ψ(𝐫)|2 of the electronic states at chemical

potential 𝜇. Summing up 𝜎⊥(𝐫) over all sites in the unit cell gives the total

electrical conductivity 𝜎⊥ (cf. Figures 3(a) and 4(a) in Ref. [111]).

Nevertheless, sites in the Bi2Te3 quintuple with more accumulated

density carry a larger contribution to the conductivity 𝜎
⊥
; the total

contribution compared to the bulk tellurides is strongly suppressed

(cf. Figure 10.8(d),(e)). This can be affirmed by a picture that electrons

traveling in the cross-plane direction are governed by suppression of the

probability amplitude in the Sb2Te3 quintuples. This clearly leads to a

diminished cross-plane group velocity of the electronic states. Further-

more, comparing Figures 10.8(d) and (e), even the localization inside

the quintuple in bulk Bi2Te3 can lead to reduced cross-plane electronic

transport, reflected in larger total anisotropies of about
𝜎||
𝜎⊥
= 8 for bulk

Bi2Te3 compared to
𝜎||
𝜎⊥
= 5 for bulk Sb2Te3.

10.3.3

Thermal Conductivity - Toward the Figure of Merit

With the electronic transport properties discussed in the previous

sections, we now focus on the electronic and lattice part contribution

to the thermal conductivity 𝜅el + 𝜅ph to give some estimations for ZT.

As has been stated already, the main benefit from a superlattice struc-

ture for ZT is expected from a reduction of the cross-plane thermal

conductivity at retained electronic transport properties. Today, the

reduction of the cross-plane lattice thermal conductivity in thermo-

electric superlattices has been widely and successfully proved [90, 91,

97, 98]. In the past, thermal conductivity reduction in crystalline or

polycrystalline bulk thermoelectric materials was traditionally achieved

by alloying. However, one reaches the so-called “alloy limit” of thermal

conductivity, which has been difficult to surpass by nanostructuring

[2]. Nevertheless, for Bi2Te3∕Sb2Te3 SLs cross-plane lattice thermal

conductivites of 𝜅ph = 0.22W∕mK were reported for certain SL periods,

which is a factor of two below the alloy limit [8]. It is obvious, that at

thermoelectrically relevant charge carrier concentrations and tempera-

ture ranges, the electronic contribution 𝜅el can be in the same order of

magnitude.
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Figure 10.9 Temperature dependence of

the thermal conductivity and figure of merit

for the (Bi2Te3)x∕(Sb2Te3)1−x SLs. Shown are

(a) total cross-plane thermal conductivity

𝜅⊥ = 𝜅el,⊥ + 𝜅ph,⊥ and (b) cross-plane figure

of merit. The charge carrier concentration

is fixed at N = 3 × 1019cm−3, and different

line types correspond to different SL periods.

Lines in the upper part refer to electron dop-

ing, while lines in the lower part refer to

hole doping. The electronic part 𝜅el was cal-

culated, while the lattice part 𝜅ph was taken

from literature [8, 15]; with permission from

Ref. [111] (color online), Copyright (2012)

APS.

Experimental findings for the lattice part 𝜅ph of the thermal conduc-

tivity are added to the calculated electronic contribution 𝜅el to present

some estimations on the cross-plane ZT⊥ in Figure 10.9. In particular

𝜅ph,⊥ = 1.05W/mK, 𝜅ph,⊥ = 0.96W/mK, and 𝜅ph,⊥ = 0.22W/mK at room

temperature were used for bulk Bi2Te3, Sb2Te3, and the Bi2Te3∕Sb2Te3
SLs [8], respectively. Recently, Winkler et al.[23] measured for a p-type

(Bi0.2Sb0.8)2Te3∕Sb2Te3 SL the total cross-plane thermal conductivity

𝜅⊥ to be about 0.45 − 0.65W/mK for different annealing temperatures,

which are smaller values than found in Ref. [15].This is caused by a strong

electrical conductivity anisotropy
𝜎||
𝜎⊥
. Hence, the charge and electron

heat transport in the perpendicular direction is noticeably suppressed.

Additional obstacles for phonon heat transport are the nanocrystallinity

of the samples and interface roughness, which is most likely caused by

interdiffusion processes during the growth of Bi2Te3∕Sb2Te3 SLs within
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the concept of “nanoalloying” [18, 23]. Temperature-dependent results for

the cross-plane figure ofmeritZT are shown for the (Bi2Te3)x∕(Sb2Te3)1−x
SLs at electron/hole concentration of N = 3 × 1019cm−3 in Figure 10.9.

Owing to the lack of detailed experimental data, we assumed a conven-

tional 1

T
dependence for the lattice thermal conductivity [138], while we

note that temperature-independent 𝜅ph were confirmed experimentally

for other thermoelectric SLs [90, 91, 139]. Models show that 𝜅ph should

diminish at low periods[140], while experiments reveal a saturation

toward the alloy limit for SL periods below 50Å [8].

Combining the results for 𝜅ph,⊥ with the temperature-dependent power

factor PF
⊥
discussed in Figure 6(d) of Ref. [111] we find the temperature

dependence of the cross-planeZT⊥ values of the superlattices as presented

in Figure 10.9b). Focusing on the more promising p-type SLs we found

enhanced values for ZT⊥ clearly above unity for temperatures of 400 −
500 K.The largest cross-plane figure of merit is found to be ZT⊥ = 1.27 at

about 470 K for a (Bi2Te3)x∕(Sb2Te3)1−x SL at x = 1

6
and a hole concentra-

tion ofN = 3 × 1019cm−3. We want to mention that in the experiments of

Ref. [15] the maximal ZT⊥ under hole doping was stated at a SL period of

x = 1

6
, too. The best value for an n-type SL is ZT⊥ = 0.25 at about 360 K

for a SL period of x = 5

6
.

In summary, the figure ofmerit can be slightly increased in SL structures

if the electronic transport is maintained at the level of the bulk materials

such as here for the hole-doped case, and the thermal transport is reduced

by the layered structure.

10.3.4

Lorenz Function of Superlattices

We want to start our discussion of the Lorenz function with a model con-

sideration. The Lorenz function L and the corresponding electronic ther-

mal conductivity 𝜅el in dependence on the chemical potential 𝜇 are shown

for a spherical two band model (SBM) in Figure 10.10. Results for varying

effectivemass ratios
m𝐶𝐵

m𝑉 𝐵

at a fixed temperatureT = 450 K are shown.mCB

and mVB are the isotropic effective masses of the conduction band (CB)

and valence band (VB), respectively. Setting the valence bandmaximum to

zero and Eg the band gap size, the transport distribution function scales as

ℒ (0)
VB
(𝜇, 0) ∼

√
mVB(−𝜇)3∕2 andℒ (0)

CB
(𝜇, 0) ∼

√
mCB(𝜇 − Eg)3∕2 for the VB

and CB, respectively. From Equations 10.11 and 10.13 it is obvious that

within a SBM deviations for L and 𝜅el from the metallic limit will merely

occur near the band gap, where the thermopower S changes significantly.
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Figure 10.10 Lorenz function L (thick lines,

ref. to left scale) and electronic contribu-

tion 𝜅el to the total thermal conductivity

(thin lines, ref. to the right scale) in depen-

dence on position of the chemical poten-

tial 𝜇 within a spherical two band model.

Results are shown for a fixed temperature

T = 450 K and varying effective mass ratios

mVB∕mCB = 1 … 100. The band gap is fixed

at Eg = 0.1eV (gray shaded area) and the

Lorenz function is related to the metallic

limit L0 = 2.44 × 10−8WΩK−2.

Near the band edges the thermopower increases approximately as S ∼ −1
𝜇T

.

Thus L, as well as 𝜅el, minimizes and theminimumdecreaseswith decreas-

ing temperature, while shifting toward themiddle of the gap (cf. Figure 1(a)

in Ref. [141]). At a temperature of 100 K L

L0
takes values of about 0.8 at the

band edges. In the intrinsic regime
L

L0
and 𝜅el increase, whereas the ther-

mopower is reduced due to bipolar contributions. In other words, this

contribution to heat conductivity arises from the common electron and

holemovement, transporting energy but not carrying any net charge [104].

According to Goldsmid [142] and Price [143] the maximum deviation of

the Lorenz number from the metallic limit in the intrinsic regime holds to

some extent
L

L0
= 1 + 1

2

mCBmVB

(mCB+mVB)2

(
Eg

kBT
+ 4

)2

. Therefore, assuming a fixed

charge carrier concentration,
L

L0
achieves very large values at small temper-

atures and/or large band gaps. Assuming the above approaches [142, 143],

together with mCB = mVB and Eg = 0.1eV one achieves L

L0
≈ 9 at room

temperature for 𝜇 located deep in the gap. If mVB > mCB, as shown in

Figure 10.10, the intrinsic regimeNn = Np andwith that themaximal value

of
L

L0
and 𝜅el at bipolar conduction shifts toward the CBM.With increasing

mVB and hence due to the enhanced electrical conductivity 𝜎 in the VB it

is obvious that 𝜅el under hole doping will increase, too.
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Figure 10.11 Lorenz function L (solid lines,

ref. to left scale) and electronic contribution

to the total thermal conductivity 𝜅el (dashed

lines, ref. to the right scale) in dependence

on the position of the chemical potential 𝜇

for bulk Bi2Te3 for the in-plane (thick lines)

and cross-plane (thin lines) transport direc-

tion. The Lorenz function is given relative to

the metallic limit L0 = 2.44 × 10−8WΩK−2.
Superimposed onto the Lorenz function in

the in-plane direction is a color code refer-

ring to the charge carrier concentration.

The cross in the middle marks the change

from hole to electron doping for smaller

and larger values of 𝜇, respectively. The

temperature was fixed at 300 K. Thin verti-

cal dash-dotted lines give the position of

the chemical potential for a charge carrier

concentration of N = 3 × 1019cm−3 under

n and p doping (right and left vertical line,

respectively). The CBM is located at 0.105eV.

Open circles show experimental values from

Ref. [104] for 𝜅el,|| for an n-type Bi2Te3 sin-

gle crystal; adapted with permission from

Ref. [141] (color online), Copyright (2012)

APS.

Figure 10.11 shows the room temperature doping-dependent electronic

part of the thermal conductivity, in the in-plane (thick dashed lines, right

scale) and cross-plane direction (thin dashed lines, right scale), for bulk

Bi2Te3, to offer insight into the principle dependencies. Furthermore, the

Lorenz function defined via Equation 10.13 is shown for the in-plane

(thick solid line, left scale) and cross-plane parts (thin solid line, left

scale), respectively. As can be seen, 𝜅el minimizes for energies near the

band edges. Here, at N ≈ 3 × 1018cm−3, the thermopower S maximizes

at appropriate values for the electrical conductivity 𝜎; hence, the second

term in Equation 10.11 increases leading to small values for 𝜅el. At

small intrinsic charge carrier concentrations, the chemical potential
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shifts into the gap and the total thermopower is strongly reduced due to

bipolar diffusion. This leads to an enhanced contribution to the electrical

thermal conductivity at intrinsic charge carrier concentrations and is

known as the bipolar thermodiffusion effect [104, 144, 145]. At charge

carrier concentrations of N = 3 × 1019cm−3 we find 𝜅el|| to be about

0.6 − 0.8W/mK for n/p-type bulk Bi2Te3, in very good agreement with

experimental (cf. open circles in Figure 10.11) and theoretical results

[20, 27, 142]. The cross-plane component of 𝜅el is substantially smaller,

especially for n-type conduction, reflecting here the electrical conduc-

tivity anisotropy discussed earlier. The bipolar thermodiffusion effect is

furthermore responsible for the suppression of the Lorenz function to

values below the metallic limit L0 (L0 = 2.44 × 10−8WΩK−2) for values of

the chemical potential near the band edges (cf. Figure 10.11 solid lines,

left scale). At optimal charge carrier concentrations ofN = 3 × 1019cm−3,

the in-plane Lorenz numbers reach minimal values of L|| ≈ 0.7L0 under

hole doping (left dashed dotted vertical line) and L|| ≈ 0.8L0 under

electron doping (right dashed dotted vertical line). The cross-plane

Lorenz function L⊥ is approximately L0 at this level of p- and n-type

doping. Reaching the intrinsic doping regime the Lorenz function reaches

substantially large values of L|| ≈ 6.5L0 and L⊥ ≈ 8L0. Such a behavior

has been already described in literature [27, 146] and might strongly

influence the determination of the thermal conductivity. The Lorenz

number is generally used to separate 𝜅el and 𝜅ph. At typical charge carrier

concentrations applying the metallic value L0 to determine the lattice

thermal conductivity could lead to an overestimation of the electronic

thermal conductivity, and consequently to underestimation of the lattice

contribution. In the worst case, this can even result in non-physical

negative values for 𝜅ph [147]. The Lorenz function of thermoelectric het-

erostructures can show further anomalies, which are discussed in detail

in Ref. [141].

10.3.5

Phonons

The phonon dispersion (cf. Figure 10.12 (a)) and the corresponding

phonon density of states (PDOS) have been calculated using a plane

wave code (VASP[148, 149]) and the phonon Green function method,

respectively. Accurate force calculations for Bi2Te3 supercells of 40 atoms

have been performed to obtain the dynamical matrix and thus the phonon

frequencies and the eigenvectors of the vibrational modes.
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Figure 10.12 (a) Phonon dispersion of bulk

Bi2Te3 obtained by a DFT supercell calcu-

lation. (b) Partial (dashed lines) and total

phonon DOS of bulk Bi2Te3. Circles repre-

sent the corresponding neutron scattering

measurements. (c) Directionally and spa-

tially resolved phonon DOS for the two

inequivalent Te sites. Straight lines show

the in-plane components of the PDOS and

dashed lines show the component parallel to

z direction. The theoretical data in (b) and

(c) have been convoluted with a Gaussian

for better comparability with the measured

curve.

Figure 10.12 (b) shows the calculated (solid line) and measured (circles,

[150]) total PDOS of bulk Bi2Te3. The theoretical data have been con-

voluted with a Gaussian of full width 1.5 meV (experimental resolution)

for better comparability. The overall correspondence between theory and

experiment is quite good, with the exception of the acoustic bandwidth

being overestimated by the calculations. The main peaks above 7 meV are

in good agreement. Compared to other experimental methods, namely,

ultrasonic studies [151] and recent synchrotron radiation measurements

by Bessas et al. [152], even the acoustic branch is in good agreement with

experiments. The dashed lines in (b) show the element-resolved partial

PDOS of Bi and Te, respectively. Clearly, the locally resolved contribu-

tions to the acoustic branches and the lower optical modes below 10 meV

are dominated by Bi, whereas the higher parts of the spectrum are dom-

inated by Te oscillations. A view on the directional PDOS provides more

insight into the main components of the optical frequencies. As example,

Figure 10.12 (c) shows the in-plane and out-of plane components of the
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partial PDOS of the Te1 as well as the Te2 site. The peaks of the PDOS at

10 meV and 12 meV mainly originate from the respective transverse and

longitudinal oscillations of these atoms perpendicular to the c axis. In par-

ticular, the directional PDOS of Te2 reflects the strong bonding within the

Te layers, compared to the relatively weak interplanar forces at the van der

Waals gap.

The presented methods help calculate accurate vibrational modes for

Bi2Te2 from first principles, which are in good agreement with experi-

mental data. However, it stays a challenge to evaluate the phonon-phonon

coupling matrices and relaxation times necessary for obtaining the ab-

initio lattice thermal conductivity.

10.4

Summary

The thermoelectric transport properties of bulk Bi2Te3 and Bi2Te3∕Sb2Te3
superlattices are analyzed by means of first principles calculations and

semiclassical Boltzmann transport theory. The anisotropy of the thermo-

electric transport under electron and hole-doping is discussed in detail

for different superlattice periods at various temperature and charge car-

rier concentrations. For bulk Bi2Te3 the power factor is found to decrease

under applied in-plane strain. With the thermoelectric transport proper-

ties of bulk Sb2Te3 being robust under applied strain, a substrate favoring

Bi2Te3 should be chosen when growing Bi2Te3∕Sb2Te3 superlattices. A

clear preference for thermoelectric transport under hole-doping, aswell as

for the in-plane transport direction is found for all superlattice periods. At

hole-doping the electrical transport anisotropies remain bulk-like for all

investigated systems, while under electron-doping quantum confinement

leads to strong suppression of the cross-plane thermoelectric transport at

several superlattice periods. In addition, insights on the Lorenz function,

the electronic contribution to the thermal conductivity, and the result-

ing figure of merit are given. As no reduction in the electrical transport

anisotropies compared to bulk can be manifested theoretically, values of

ZT aroundunity at room temperature for themost efficient Bi2Te3∕Sb2Te3
superlattices are found. The presented results on the vibronic structure

of Bi2Te3 are in excellent agreement with recent synchrotron radiation

measurements and encourage the possibility of engineering a low thermal

conductivity material by means of first principles calculations.
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