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In the context of the exact factorization of the electron-
nuclear wave function, the coupling between electrons and
nuclei beyond the adiabatic regime is encoded (i) in the
time-dependent vector and scalar potentials and (i) in the
electron-nuclear coupling operator. The former appear in the
Schrodinger-like equation that drives the evolution of the
nuclear degrees of freedom, whereas the latter is responsi-
ble for inducing non-adiabatic effects in the electronic evo-
lution equation. As we have devoted previous studies to the
analysis of the vector and scalar potentials, in this paper

we focus on the properties of the electron-nuclear coupling
operator, with the aim of describing a numerical procedure
to approximate it within a semiclassical treatment of the
nuclear dynamics.

1 Introduction

Modelling the dynamical coupling of electrons and
nuclei beyond the Born-Oppenheimer (BO), or adia-
batic, regime is currently among the most challeng-
ing problems in the fields of Theoretical Chemistry and
Condensed Matter Physics. Within the BO framework,
molecular systems are visualized as a set of nuclei mov-
ing on a single potential energy surface that represents
the effect of the electrons in a given eigenstate. Many
interesting phenomena, however, such as vision [1, 2],
charge separation in organic photovoltaic materials [3,
4] or Joule heating in molecular junctions [5, 6], occur
in non-adiabatic conditions. In these situations, solv-
ing exactly the time-dependent Schrédinger equation
(TDSE) for the coupled system of electrons and nuclear
is not feasible, as the computational cost scales exponen-
tially with the number of degrees of freedom. However,
since the full quantum treatment requires to represent
the problem in terms of adiabatic states and transitions
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among them in regions of strong non-adiabatic coupling,
wave packet propagation techniques have been devel-
oped, retaining the quantum character of the nuclear dy-
namics [7-20]. And these techniques are presently the
state of the art in quantum dynamics computational
methods, proving the benchmark for approximate meth-
ods. In fact, for large systems, the dimensionality of the
problem does not allow to employ a quantum mechan-
ical description, thus the only feasible approach is to
combine the classical approximation of the nuclei (or
ions) with a quantum treatment of a few other essen-
tial degrees of freedom, e.g. electrons or protons. In this
context, the question of how to model the coupling be-
tween the quantum and classical subsystems still re-
mains open, despite the fact that several schemes [20-39]
have been proposed in the literature trying to settle this
issue.

In recent work, we have addressed this problem in the
context of the exact factorization of the electron-nuclear
wave function [40, 41]. In such a treatment of quantum
dynamics, the solution of the TDSE is written as a sin-
gle product of a nuclear wave function and an electronic
factor, that parametrically depends on the nuclear con-
figuration. Several advantages of this reformulation have
been pointed out. First of all, it has been shown [42, 43]
that the nuclear wave function evolves according to a
modified TDSE where a time-dependent vector poten-
tial and a time-dependent scalar potential represent the
effect of the electrons on the nuclei, beyond the adia-
batic regime. When a classical treatment of the nuclear
degrees of freedom is introduced, the coupling to the
electrons is exactly represented by the force determined
from the gradient of the time-dependent potentials
[43, 44]. On the other hand, the electronic factor evolves
according to a (less standard) evolution equation,
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coupled to the nuclear TDSE, where the effect of the nu-
clei is represented by an electron-nuclear coupling oper-
ator explicitly depending on the nuclear wave function.
The analysis of the time-dependent potentials and of
the classical nuclear force has been the subject of previ-
ous work. We have been able to analyze a simple model
system to pinpoint some relevant features [42-44] of the
potentials that should be accounted for when develop-
ing approximations. Based on these observations, start-
ing from the exact formulation, we have proposed [45,
46] a novel mixed quantum-classical algorithm to solve
the coupled electronic and nuclear evolution equations
in a fully approximated way. The classical limit is consid-
ered as the lowest-order, in a h-expansion, of the nuclear
wave function in the complex-phase representation [47].
In the present paper, the focus is directed towards the
analysis of the electron-nuclear coupling operator that, in
the electronic equation, mediates the coupling to the nu-
clei and that depends explicitly on (the gradient of) the
nuclear wave function. It is fundamental to be able to
correctly approximate such term, as it is responsible to
induce electronic non-adiabatic transitions [45, 46] and
decoherence [48]. When a classical description of the nu-
clei is adopted, the concept of wave function is somehow
lost and problems arise when approximating this opera-
tor. If a distribution of trajectories [44] is used to mimic
the evolution of the nuclear wave function, its modu-
lus and phase cannot be smooth functions of space. The
numerical error thus introduced affects the calculations,
but it can be cured if refined approximations are consid-
ered. The goal of this paper is to describe a procedure
to avoid the above issue and to test its efficiency against
exact calculations for a simple model system. Therefore,
we propose here (i) to employ a representation of the
nuclear density in terms of evolving frozen gaussians
(FGs) [49], rather than trajectories, following the scheme
presented in Ref. [44] and (ii) to estimate the phase of
the nuclear wave function adopting such a FGs picture,
based on a simplified form of the semiclassical Herman-
Kluk [50-53] propagation scheme within the initial value
representation (IVR) theory [54-57]. The model system
for non-adiabatic charge transfer of Ref. [58] allows for an
exact numerical solution of the full quantum mechani-
cal problem, thus providing a benchmark to any approx-
imation that will be considered. Starting from these re-
sults, we will compute the exact time-dependent scalar
potential, also referred to as time-dependent potential
energy surface (TDPES), in a gauge where the vector po-
tential can be set to zero. The effect of the electrons is
then fully accounted for by this TDPES, that is adopted to
evolve the FGs. Since the electronic part of the problem
is solved exactly, the only source of error will be in this
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semiclassical approximation. It is worth stressing that
this procedure does not result in the development of a
new algorithm, butis a test of the performance of the FGs
approximation of the nuclear motion.

The paper is organized as follows. In Section 2 we
briefly recall the factorization formalism and we focus on
the analysis of the electron-nuclear coupling (ENC) oper-
ator in the electronic evolution equation. Section 3 is de-
voted to a discussion on the apronximations employed
in the calculations. Numerical results are presented in
Section 4, by comparing situations with different non-
adiabatic coupling strengths and testing the approxima-
tions employed to evaluate the ENC term. Conclusions
are stated in Section 5.

2 The exact factorization framework

In the absence of an external field, the non-relativistic
Hamiltonian H = T, + Hpo describes a system of inter-
acting nuclei and electrons. Here, T, denotes the nu-
clear kinetic energy and Hpo(r,R) = T,(r) + V. ,.(r,R) is
the BO Hamiltonian, containfng the electronic kinetic
energy T,(r) and all interactions V. ,(r, R). As recently
proven [40, 41], the full wave function, \17(5, R, 1), solution
of the TDSE -

HY(r R 0 = ihd,¥(r. R 1), €]
can be written as the product
V(R 1) = Or(r, Ox R, 9, 2

of the nuclear wave function, x (R, 7, and the electronic
wave function, ®g(r, ), which pa?arnetrically depends of
the nuclear configuration [59, 60]. Throughout the paper
the symbols r, R indicate the coordinates of the N, elec-
trons and N, nuclei, respectively. Eq. (2) is unique under
the partial normalization condition (PNC)

fdg‘d@(g, t)‘2 =1VR ¢ 3)

up to within a gauge-like phase transformation. The evo-
lution equations for d>5 (g, 1) and X(E, 1,

(P = e®, 1) br(x, 0 = ind,dn(r. 0 (4)

H,x R, 1) = ihd,x R, 1), (5)

are derived by applying Frenkel’s action principle [61,
62] with respect to the two wave functions and are
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exactly equivalent [40, 41] to the TDSE (1). Egs. (4) and (5)
are obtained by imposing the PNC [63, 64] by means of
Lagrange multipliers.

The electronic equation (4) contains the electronic
Hamiltonian

Ho = Hpo(t, B) + U5 [®g, x1, 6)

which is the sum of the BO Hamiltonian and the ENC op-
erator Ug, " [®g, X1,

(7

2
. . [-inv, - AR 1]
Uen g [q)§’ xl= Zuil Mv 2

-1 v\) .
+< TV L AR, t)) (~inv, - AR, t))].
X 2 =
In Eq. (4), e(g, 1) is the TDPES, defined as

e®. 1) = (Op()]| Ay — ihd; | ox(0) ®)

I

USSP and e (R, 1), along with the vector potential A(R, 1),

AR, ) = (Pr()] —inV, Pr(0) )

.
mediate the coupling between electrons and nuclei in a
formally exact way. Here, the symbol (- | - ); stands for an
integration over electronic coordinates.

The nuclear evolution is generated by the Hamilto-
nian

A v [-inv, + AR 0]
H®R =) L

v=1

+eR, 0, (10)

according to the TDSE (5).

The TDPES and the vector potential are uniquely de-
termined up to within gauge-like transformations [40,
41]. The uniqueness can be straightforwardly proven by
following the steps of the current density version [65]
of the Runge-Gross theorem [66]. In this paper, as a
choice of gauge, we introduce the additional constraint
A, (R, 1) = 0 (see Ref. [44] for a detailed discussion on how
this condition can be imposed) [67].

As discussed in the introduction, we study the prop-
erties of the ENC term —ihV, x/x that in the expression
of the operator Uy, [®g, x] explicitly depends on the nu-
clear wave function. This analysis is based on the interest
in developing a procedure to approximate it when a clas-
sical or semiclassical treatment of the nuclear motion
is adopted. For instance, in the classical limit, we have
derived [45, 46] its expression in terms of the nuclear
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momentum. This has been done by writing the nuclear
wave function as x (R, f) = exp [:.#(R, 1], with #(R, 1) a
complex function [47]. If we now suppose [45, 46] that
this function can be expanded as an asymptotic series
in powers of /i, namely R, 1) =), i*S,(R, 1), the ENC
term becomes N N

BALS LY an
- = @ = v N t s

xR, 1) =
at the lowest-order in . On the right-hand-side (RHS),
the function V, (R, f) is the classical nuclear momen-

tum evaluated alon?g the trajectory, since [45, 46] S, satis-
fies a Hamilton-Jacobi equation with Hamiltonian

2
NoIVLSR, )+ AR, D)
Hn=2|: — 2M, — ]

v=1

+eR 0. (12)

The vector potential appears in the above expression of
the classical Hamiltonian because this result has general
validity, not only in the gauge adopted in the following
calculations.

Alternatively, if the nuclear wave function is written in
terms of its modulus and phase, x = |x|e’%", the (exact)
expression of the ENC term becomes

—hV,

xR 1)

x® 1

— iV, x R, D

=V, SR, 0)+1i
xR, 9 =

. (13)

It is clear at this point that a good estimate of the ENC
term is only possible when both the modulus and the
phase of the nuclear wave function are correctly de-
scribed. A classical treatment, as in Eq. (11), only pro-
vides an approximation to the real part of the ENC
term, while the information about the imaginary part is
lost [68].

In the following, we will introduce a FG-based ap-
proach to determine an approximation to Eq. (13).
FGs [49] evolving on the exact TDPES are used to re-
construct the nuclear density, thus allowing to calculate
the second term on the RHS, as |x| is a smooth func-
tion of the nuclear coordinates. The phase information
is instead encoded in the classical action accumulated
over time and associated to each FG, as we will show in
Section 3.

Henceforth, we will drop the bold-double underlined
notation for electronic and nuclear positions as we will
deal with one-dimensional (1D) quantities.
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3 Semiclassical approximation
3.1 Nuclear density

According to the procedure presented in Ref. [44], a set
of independent classical trajectories evolving on the ex-
act TDPES are able to reproduce the nuclear density
in almost perfect agreement with quantum results. As
pointed out in the Introduction, however, constructing a
histogram from the distribution of the trajectories does
not allow to compute the second term on the RHS of
Eq. (13), that involves the gradient of |x |, without a large
numerical error. The reason is that the “classical” density
is not a smooth function of space. The solution proposed
here is to improve the previous approximation of nuclear
dynamics, by propagating the mean positions and mo-
menta of a set of FGs on the exact TDPES, rather than
classical trajectories.

Given a set of N, initial positions and momenta,
Ry, By, sampled as described in Section 4, complex gaus-
sians, also referred to as coherent states, are constructed
as

g (R; Ri Py, y) = (%)Z e*%(R*Rz.o)er%;,PI.o(RfRz‘o)! (14)

with width y to be determined below. Each FG is also as-
sociated to a “weight”,

w = / dRg" (R RioPio. ) xo(R), (15)

corresponding to the projection of the initial nuclear
wave function xo(R) on the FGs. The nuclear density at
each time is then obtained as

Mra/’

X (R, D= lwl® g (R RO (D), ), (16)
=1

where R;(?), P(?) are the time-evolved positions and mo-
menta of Rjo, P. In comparison to the purely classical
approximation, Eq. (16) allows not only to reproduce the
nuclear density in very good agreement with quantum
results, as will be shown in Section 4, but also to calcu-
late (analytically) the gradient of the nuclear density (or
of the modulus, as it appears in Eq. (13)).

Itis important to notice that Eq. (16) is an approxima-
tion to the nuclear density when the nuclear wave func-
tion is represented as a superposition of coherent states.
In fact, coherent states form an overcomplete basis and,
in writing Eq. (16), we neglect the overlaps of coher-
ent states. The reason for this further approximation is
related to the choice of the initial set of positions and
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momenta, the mean positions and mean momenta of the
FGs. On one hand, we want to maintain the same choice
of initial conditions done for the classical propagation
(see Section 4), in order to be able to directly compare
classical and FG results. On the other hand, we want to
obtain an initial nuclear density as close as possible to
the exact density. We have thus computed the root mean
square deviation (RMSD) for the nuclear density when
either (1) Eq. (16) is employed or (2) the full expression is
considered, i.e. with overlap terms. The best agreement
achieved in case (1) is for y = 7.0 a; 2 (used in Section 4),
with RMSD = 0.020, 0.017, 0.006 for N;4; = 2000, 5000,
10000, respectively, whereas in case (2) is for y = 3.0 a; 2
with RMSD = 0.037, 0.024 0.0013. It is evident that the
better agreement at the initial time is obtained for case
(1), namely when the approximation in Eq. (16) is used,
for all the values of N;,j. Once the parameters defin-
ing the coherent states are selected, namely R;, P, v, the
weights wj; associated to each FG are automatically de-
termined by Eq. (15) and kept constant throughout the
propagation.

3.2 Nuclear phase

The phase of the nuclear wave function will be deter-
mined according to

Sxsc(R, 1]

S(R, ) ~ arctan —————,
R xsc(R, )]

(17)
where xsc(R, t) is a semiclassical approximation to the
exact x (R, 1). Following the Herman-Kluk procedure [50-
53] to approximate the quantum propagator, the expres-
sion of the time-evolved wave function at time tis

dRydP,
xsc(R, 1) = / Qct

. By)er S, id
2 (Ro, By)er

(RIR; P, y) (Ro Py, v1xo).  (18)

Here, (Ry Py, y|xo0) denotes the projection of the initial
nuclear wave function on the coherent states, similarly
to Eq. (15), while (R| R, P, y) is an alternative expression
for the coherent states (see Eq. (14)). R, P; are the (classi-
cally) evolved positions and momenta corresponding to
the initial conditions Ry, Py. S(Ry, Py; t) is the classical ac-
tion accumulated up to time ¢ along the trajectory whose
initial conditions are Ry, Py. The Herman-Kluk pre-factor
is indicated here with the symbol C;(Ry, B) [50-53], but
it will be set equal to unity throughout the calcula-
tions. Therefore, the symbol xsc(R, ) will be replaced by
xrG(R, B), since we will use a FGs approximation rather
than a rigorous semiclassical approximation.
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Figure1 Schematic representation of the model system described
by the Hamiltonian (21).

In the procedure employed here, the semiclassical
nuclear wave function is estimated as a sum over trajec-
tories of time-evolved coherent states, namely

]Vrmj LS]

en
Rp=> R; R0, Pi(D), y), 19
xrG(R, 1) 2 wzzﬂhg( 10, Pi(1), y) (19

where the [-th classical action is calculated as

¢ 2
S = /0 dr <le](\;) —e(Ri(1), 1.')) . (20)

Here, the (exact) TDPES is evaluated, at time 7, at the
classical position R;(r) and its expression is obtained by
solving the TDSE for the full wave function ¥ and by di-
rectly calculating Eq. (8) once the factorization (2) is ap-
plied.

4 Numerical results

The expression of the TDPES according to Eq. (8) is de-
termined by calculating the electronic wave function
O g(r, ©) from the full wave function ¥(r, R, £), which is
known at all times by solving the TDSE (1) for the model
Hamiltonian

- 192 1 92 1
H R ==se “amare " 1i—g " ter @
_erf(‘R};/,") B erf('r;é') - erf('r;l%)
[R—1] |r =3l r+3

This system has been introduce by Shin and Metiu [58]
as a prototype for non-adiabatic charge transfer. The sys-
tem is 1D and consists of three ions and a single elec-
tron, as depicted in Fig. 1. Two ions are fixed at a dis-
tance of L = 19.0 ap, the third ion and the electron are
free to move in 1D along the line joining the two fixed
ions. Here, the symbols r and R are the coordinates of the
electron and the movable ion measured from the cen-
ter of the two fixed ions. The ionic mass is chosen as
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strong coupling

weak coupling

v 7
LA T L
\ A
/

€go (€n)

/ Py ——
05 | P2 + -

BO population
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time (fs) time (fs)

Figure 2 Upper panels: Lowest four BO surfaces, as functions
of the nuclear coordinate, for strong (left) and weak (right) non-
adiabatic coupling strengths. The first (red line) and second (green
line) surfaces correspond to the adiabatic states that are popu-
lated during the dynamics, whereas the third and fourth surfaces
(dashed black lines) are shown for reference. The squared modulus
(reduced by ten times and rigidly shifted in order to superimpose
it on the energy curves) of the initial nuclear wave packet is also
shown (thin black line). Lower panels: Populations of the two low-
est adiabatic states (p; and py) as functions of time. The arrows
represent the time-steps shown in the following figures.

M = 1836, the proton mass, whereas the other parame-
ters are tuned in order to make the system essentially a
two-electronic-state model. We present here the results
obtained by choosing two different sets of parameters,
producing strong and weak non-adiabatic couplings, be-
tween the first, egg, and the second BOPES, egz), around
the avoided crossing at R, = —1.90 a;. The values of
the parameters in the Hamiltonian (21) are: Ry = 5.0 a,
R; = 3.1 a9 and R, = 4.0 ay, for the strong coupling case;
Ry =3.8ay, R =29aand R, = 5.5 ay, for the weak cou-
pling case. The BO surfaces are shown in Fig. 2 (upper
panels).

We study the time evolution of this system by choos-
ing the initial wave function as the product of a real-
valued normalized Gaussian wave packet, centered at
R. = —4.0 ay with variance o = 1/4/2.85 g (thin black
line in Fig. 2, upper panels), and the second BO elec-
tronic state. To calculate the TDPES, we first solve the
TDSE (1) for the complete system, with Hamiltonian (21),
and obtain the full wave function, ¥(r, R, ?). This is done
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by numerical integration of the TDSE using the split-
operator-technique [69], with time-step of 2.4 x 1073 fs
(or0.1 a.u.).

The mean positions and momenta of the FGs
evolve along classical trajectories, generated according
to Hamilton’s equations

Ri()) = P(8)/M; P(t) = —dre (R, 1) (22)

|R1(t)’
integrated by using the velocity-Verlet algorithm with a
time-step of 12.0 x 1072 fs (or 0.5 a.u.). The initial condi-
tions are sampled from the Wigner phase-space distribu-
tion corresponding to the initial nuclear wave function.
The initial coherent states used in Eq. (15) are thus con-
structed to determine the (complex-valued) weights w;.
Numerical results have been obtained for sets of N4; =
2000, 5000, 10000 trajectories, with the value [70] y =
7.0 a,” for the width of the FGs. The coherent states used
to represent the nuclear wave function form an overcom-
plete basis, therefore the sum in Eq. (16) has to be trun-
cated. In order to choose the adequate number of ba-
sis functions to include in the sum, energy conservation
has been tested and confirmed for all values of Nj;,;. The
results will be presented only for the case N, = 5000.
We have computed the RMSD between the exact nuclear
density and its approximation in Eq. (16) for a set of val-
ues of y and we have chosen the value of this parameter
for which the RMSD is minimum (see also the discussion
at the end of Section 3.1), but clearly other values can be
selected.

We will confirm below that the semiclassical FG
scheme, adapted to the factorization approach, is an
accurate and efficient way to approximate the nuclear
wave function. Before presenting the FG results, let us
first show different snapshots taken along the dynam-
ics, showing the TDPES. Its features have been exten-
sively discussed in previous work [42-44], but for the sake
of completeness, we report here a few configurations.
Moreover, we would like to underline that here results for
different non-adiabatic coupling strengths will be pre-
sented, in order to test the efficiency of the method also
in the weak coupling regime.

Fig. 3 shows the gauge-invariant (GI) and gauge-
dependent (GD) components of the TDPES, namely the
two terms that can be identified in Eq. (8) as eg; (R, 1) =
(Pr(D| HalPr(D)r and egpR, 1) = (Pr(2)| — ihd| Pr(D)y.
The snapshots shown in Fig. 3 are taken along the evolu-
tion at the times indicated by the arrows in Fig. 2 (lower
panels) and the two lowest adiabatic surfaces are shown
for reference. As previously discussed [42-44], before the
splitting of the nuclear wave packet, the GI part of the
TDPES is diabatic, whereas the GD part is constant, and
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strong coupling weak coupling

T T T T
t=4.841s

energy (ep,)

energy (ep,)

Figure 3 TDPES at different time-steps, as indicated by the arrows
in Fig. 2, for strong (left) and weak (right) non-adiabatic coupling
strengths. The two lowest BO surfaces (black) are plotted for refer-
ence. The Gl part of the TDPES (red) presents the well-studied [42,
43] dynamical steps that bridge piecewise adiabatic shapes poten-
tial energy surface, whereas the Gl part [44] (cyan) is piecewise
constant. The nuclear density (blue) is shown for reference.

after the splitting the GI component develops steps that
bridge between different adiabatic surfaces, whereas the
GD part is piecewise constant. The TDPES is only calcu-
lated in the regions where the nuclear density is (numer-
ically) not zero. The lack of reliable information beyond
the regions shown in the figures is not an issue when clas-
sical trajectories or FGs are employed to mimic the nu-
clear density, as the regions where the exact density is ex-
ponentially small are not, or are poorly, sampled.

It is evident from Fig. 3 that we will discuss results
for short dynamics, limited to the first half of the oscil-
lation period of the nuclear wave packet in the poten-
tial well. Interesting dynamics may arise at later times,
when for instance the nuclear wave packet crosses a sec-
ond time the non-adiabatic coupling region. However,
here we focus on the initial non-adiabatic event and test
how the FG approximation capture this process. Due to
the fact that the analysis reported below is the first at-
tempt to incorporate semiclassically nuclear quantum
effects in the exact factorization formalism, we study a
simple situation that nonetheless captures the main fea-
tures of a non-adiabatic event. Also, situations where, for
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Figure 4 Nuclear density for strong (left) and weak (right) non-
adiabatic coupling strengths. Exact results (cyan) are compared
with the semiclassical density (red), expressed as sum of FGs, and
with the histogram (green) constructed from the distribution of
classical positions along the trajectories.

instance, reproducing tunneling dynamics might repre-
sent a problem for classically evolving FGs [71-74] will
be the subject of further study and not addressed here.

A first set of results is shown in Fig. 4, where we
compare the nuclear density, |x (R, 1)|?, from three dif-
ferent calculations: quantum (cyan), employing the full
electron-nuclear wave function; classical (green), where
the histogram is constructed from the distribution of
classical trajectories evolving on the TDPES according
to Egs. (22) (as in Ref. [44]); FG (red), with the nuclear
density given in Eq. (16). As expected from previous cal-
culations [44], the use of classical trajectories seems to
be enough accurate to reproduce the nuclear density. It
is however important to stress again, that these results
are not obtained by solving a fully approximate form of
the coupled electronic and nuclear equations (4) and (5).
They only represent a benchmark for any quantum-
classical algorithm, since the effect of the electrons, via
the TDPES, is treated exactly. The semiclassical den-
sity, constructed as the weighted sum of FGs given in
Eq. (16), is also accurate. In comparison to the classical
histogram, the gain here is the smoothness of the den-
sity, not achievable with purely classical trajectories. This
feature is extremely important for the calculation of the
ENC term containing the gradient of the nuclear density,
via the term —ihV, |x|/|x| in Eq. (13).
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strong coupling weak coupling

20 T T T T T T

FG
15 Ft=4.84f1s -
trajectories

Figures Real part of the ENC term for strong (left) and weak (right)
non-adiabatic coupling strengths. The nuclear density (black) is
shown for reference. Exact results (cyan) are compared with semi-
classical calculations (red) and with the classical phase-space
points (green).

The second important characteristic of the semiclas-
sical approach is that each FG contributes a phase fac-
tor to the full nuclear wave function, thus allowing to
determine also the first term on the RHS of Eq. (13).
We show this term, i.e. V,S(R,t), in Fig. 5, compar-
ing once again exact results with the corresponding FG
and classical approximations. The semiclassical value
of V,S(R, 1) is determined as the gradient of the phase
in Eq. (17), whereas the function V,S(R, ) is classically
interpreted as the nuclear momentum evaluated along
each trajectory. While the agreement between quantum
and FG results is remarkable, the phase-space points
corresponding to the classical trajectories do not al-
low to reconstruct a smooth function of R. Even if the
number of classical trajectories is increased, the phase-
space points are too “noisy” to allow for reconstructing a
smooth function. A smoothing algorithm should then be
employed, but the numerical efficiency of the whole pro-
cedure might become questionable.

Fig. 6 shows the imaginary part of the ENC term from
Eq. (13) at different time-steps during the dynamics, as
in previous figures. The exact results (cyan) are com-
pared only with the approximation (red) based on the
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Figure 6 Imaginary part of the ENC term for strong (left) and
weak (right) non-adiabatic coupling strengths. The color code is
the same as in Fig. 5.

semiclassical propagation of FGs. Even if we employ a
simplified form of the Herman-Kluk propagator, where
the pre-factor is set to 1, semiclassical results are in satis-
factory good agreement with exact results.

One could consider improving the approach devel-
oped here by, for instance, explicitly computing the
Herman-Kluk pre-factor, at the expenses of increasing
the computational cost.

5 Conclusion

We have reported our first semiclassical procedure
adapted to the formalism of the exact factorization of the
electron-nuclear wave function [40, 41]. The approach
has been used to estimate the ENC term that explic-
itly depends on the nuclear wave function (gradient of
its modulus and phase) in the electronic equation. In
previous work [45, 46] on the development of a mixed
quantum-classical algorithm in the context of the exact
factorization, such term has been treated fully classically
and identified as the nuclear momentum. However, we
observed that, despite the fact that this approximation is
widely used in the literature [23, 26, 27], correction terms
naturally arise in the factorization framework. The extent

© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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and role of the corrections may depend on the process
that we intend to study, therefore we have shown in the
present paper how to evaluate such corrections based on
the semiclassical propagation of FGs, for a simple model
case of non-adiabatic charge transfer. The main gain in
using FGs, rather than a purely classical approach, lies
in the possibility of obtaining smooth functions whose
gradients can be easily determined without introducing
large numerical errors.

The semiclassical results shown in the paper have
been obtained by evolving FGs on the exact TDPES,
that is known for the simple model system studied here
as the outcome of exact calculations based on the nu-
merical solution of the full TDSE. This procedure is a
test, since the only approximation is the semiclassical
treatment of the nuclear dynamics, whereas the elec-
trons are treated exactly, via the information encoded
in the TDPES. Moreover, this study provides a bench-
mark for future development, aiming at improving the
initial, and lowest-order, mixed quantum-classical algo-
rithm derived from the factorization [45, 46]. The proce-
dure described here can be easily implemented in an al-
gorithm, as we will present elsewhere [48], resulting in a
novel mixed quantum-semiclassical scheme for solving
coupled electron-nuclear dynamics.
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