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The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived
from the exact factorization of the electron-nuclear wave function. This new formalism offers an
exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular
wave function, similar to the complete-adiabatic approximation. The corrections depend on a small
parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart
from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the
intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the
NVPT and that only arises when the exact factorization approach is employed. Numerical results are
presented for chiral and non-chiral systems to test the validity of the approach. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4928578]

I. INTRODUCTION

Vibrational circular dichroism (VCD)1–3 in molecules re-
fers to the difference in absorption of left and right circularly
polarized light in the infrared region of the electromagnetic
spectrum. In contrast to circular dichroism, which originates
in electronic transitions, VCD is the difference in interaction
of a molecule with radiation of opposite circular polariza-
tions when it undergoes vibrational transitions. Experimen-
tally, VCD is employed to probe the absolute configuration of
chiral molecules in solution and provides detailed structural
information, thus being a very sensitive form of vibrational
spectroscopy.

From the theoretical point of view,4–21 the Born-
Oppenheimer (BO),22 or adiabatic, treatment of the coupled
motion of electrons and nuclei in molecular systems is
inadequate for predicting VCD. Since the intensity of the
VCD signal is proportional to the rotational strength for a
transition between two vibrational states, the calculation of
the electric current and of the magnetic dipole moment (and
of their scalar product) is required. The electric current and
the magnetic dipole moment contain both electronic and nu-
clear contributions, but when the BO approximation is em-
ployed, the electronic contributions identically vanish. This is
due to the fact that the ground-state electronic wave function is
real for a non-degenerate adiabatic state and therefore the
expectation values of the purely imaginary (Hermitian) electric
current23–28 and magnetic dipole moment operators vanish.18

a)A. Scherrer and F. Agostini contributed equally to this work.

Therefore, VCD appears a fundamentally non-adiabatic
(beyond-BO) process, thus requiring a theoretical approach
able to explicitly treat the dynamical coupling between elec-
tronic and nuclear degrees freedom in molecules.

A practical question29 arises at this point, as to whether
such coupling can be accounted for within a standard ab initio
molecular dynamics formulation. Among the most successful
ideas are in fact those resorting to the treatment of beyond-
BO effects as a perturbation to the BO problem, numerically
less expensive than a full non-adiabatic calculation but indeed
not consistent if strong non-adiabatic effects are expected,
e.g., in the presence of conical intersections. Examples are
the approaches proposed by Nafie,19 employing the complete-
adiabatic expression of the electron-nuclear wave function,
and by Stephens,20 introducing the magnetic field perturba-
tion theory. These methods allow to overcome the problems
encountered in the BO calculation of VCD, while exploiting
the advantages of the BO formalism like the product form of
the electron-nuclear wave function. Recently, VCD has been
calculated by developing and implementing a nuclear velocity
perturbation theory (NVPT)30 based on the complete-adiabatic
approach of Nafie.19 In this formulation, non-adiabatic cor-
rections to the electronic adiabatic ground-state are perturba-
tively taken into account and are induced by a “small” nuclear
velocity.

In this paper, we propose a novel approach to NVPT, based
on the exact factorization of the electron-nuclear wave func-
tion.31,32 The advantage of this formulation comes from using
a product form, like in the BO approximation, of the wave func-
tion, which is not the result of an approximation but an exact
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starting point. The electron-nuclear wave function is written as
a single product of an electronic many-body factor, parametri-
cally depending on the nuclear positions, and a nuclear wave
function. The latter can be interpreted as a proper nuclear wave
function since it leads to the exact nuclear density and current-
density. Moreover, when the product form is inserted into the
time-dependent Schrödinger equation (TDSE), two coupled
equations for the components of the full wave function are
derived, with the nuclear equation being a TDSE where a time-
dependent vector potential and a time-dependent scalar poten-
tial (or time-dependent potential energy surface, TDPES)33–37

represent the effect of the electrons on the nuclei beyond-BO.
Therefore, in this context, the electronic equation generates the
proper evolution expected when the coupling between elec-
trons and nuclei is fully accounted for and it allows to recover
the BO equation in a certain limit, as will be discussed in the
paper.

Two major results will be reported: (i) NVPT30 will be
rigorously derived, using as starting point the exact elec-
tronic equation from the factorization rather than the complete-
adiabatic approach19 and (ii) correction terms to the “standard”
expression of the rotational strength will naturally appear
in the new formulation due to the presence of the time-
dependent vector potential of the theory. Throughout the paper,
we will adopt a time-dependent picture, as this is crucial to
introduce the concept of nuclear velocity and, thus, to make
the connection with NVPT. In such a time-dependent picture,
we will have access to the instantaneous expectation values
of the electric current and of the magnetic dipole moment.
The corrections to those expectation values, and therefore
to the rotational strength, can be derived also in a static
picture referring to the time-independent formulation38 of
the factorization, but the direct link to NVPT would then be
missing.

The paper is organized as follows. In Section II A we
review the linear response theory approach to VCD, showing
the connection between rotational strength and intensity of the
spectrum. In Section II B, we recall the exact factorization
formalism. In Section III, we focus on the electronic equa-
tion from the exact factorization, showing how to recover the
BO limit and introducing non-adiabatic effects as a perturba-
tion to the adiabatic framework. The perturbation parameter is
identified as the nuclear velocity, exactly as in NVPT, if the
classical limit is considered. However, here we have access to
the quantum electronic evolution equation, thus the perturba-
tion parameter has a more general meaning since we are not
restricted to a classical treatment of the nuclei. We derive the
expressions of the quantities necessary to evaluate the VCD
spectrum in Section IV A, while in Section IV B we discuss
details on the practical calculation of the rotational strength
by applying density functional perturbation theory (DFPT).
In Section V A, we report numerical results for the calcula-
tion of rotational strengths and of their corrections for (S)-d2-
oxirane, a chiral system, in comparison to oxirane, a non-chiral
molecule. We also report the comparison between the NVPT
approach and the more standard magnetic field perturbation
theory20 in Section V B, for (S)-d2-oxirane, (R)-propylene-
oxide, and (R)-fluoro-oxirane. Our conclusions are stated in
Section VI.

II. THEORETICAL BACKGROUND

A. Vibrational circular dichroism

Vibrational spectroscopy probes the coupling of the nu-
clear degrees of freedom to applied electro-magnetic fields.
On the macroscopic level, the absorption process is described
phenomenologically by the Beer-Lambert law,39 where the
material specific attenuation of the radiation per unit length
is accounted for by the molar absorption coefficient ϵ . Micro-
scopically, and within the linear response regime, the energy
dissipated in the interaction between the medium and the radi-
ation is expressed in terms of the observable that couples to the
external field. In case of radiation in the infrared spectral range,
the multipole approximation and the long wavelength limit
can be applied39,40 to determine such coupling. The micro-
scopic and the macroscopic perspectives can be connected in
the framework of linear response theory.41 In the Heisenberg
formulation, the frequency dependent absorption coefficient
takes the form of the power spectrum of the dipole auto-
correlation.42,43

The specific feature of VCD is the different interaction
of chiral systems with polarized light. Linearly polarized light
encounters optical rotatory dispersion while circularly polar-
ized light encounters different absorptions for the different
handednesses of the radiation, VCD. Formally, this is ac-
counted for by the dependence of the refractive index of a chiral
system on the handedness of the radiation. While this effect is
not relevant for the mean infrared absorption, the difference
absorption gives rise to the VCD signal.

For the calculation of the absorption coefficient ϵ(ω) and
the difference absorption ∆ϵ(ω),3 a common approach in the
literature is to invoke the double harmonic approximation for
nuclear motion and dipole moment. This leads to the expres-
sions

ϵ(ω) = 8π3

3V hcn(ω)

k

Dkωδ(ω − ωk) (1)

and

∆ϵ(ω) = 4
8π3

3V hcn(ω)

k

Rkωδ(ω − ωk). (2)

The dipole strength Dk and rotational strength Rk of the vibra-
tional mode k, with frequency ωk, are evaluated as

Dk =
∂⟨ ˆ̇µ⟩
∂q̇k

· ∂⟨ ˆ̇µ⟩
∂q̇k

⟨q̇k⟩2, (3)

Rk =
∂⟨m̂⟩
∂q̇k

· ∂⟨ ˆ̇µ⟩
∂q̇k

⟨q̇k⟩2, (4)

respectively, with the time derivative of the dipole moment
ˆ̇µ, namely, the current, and the magnetic dipole moment m̂.
In Eqs. (1) and (2), V indicates the volume occupied by the
system, h = 2π~ is the Planck constant, c is the speed of light,
and n(ω) is the refractive index of the medium. Normal modes
will be indicated throughout the paper as q, with velocities
q̇.

The linear variations of the expectation values (over the
instantaneous state of the system) of the current and of the
magnetic dipole moment with respect to (w.r.t.) the mode qk
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around their equilibrium values are calculated from the total
(electronic and nuclear) atomic polar tensor Pν (APT) and
atomic axial tensorMν (AAT). The APT and AAT have elec-
tronic and nuclear contributions,3,30 namely,

∂⟨ ˆ̇µβ⟩
∂ Ṙν

α

≡ Pν
αβ = E

ν
αβ +N

ν
αβ, (5)

∂⟨m̂β⟩
∂ Ṙν

α

≡ Mν
αβ = I

ν
αβ + J

ν
αβ, (6)

with electronic partsE andI and nuclear partsN andJ . Here,
the indices α and β are used for the Cartesian coordinates,
while ν labels the nuclei. The dipole and rotational strengths
are related via the chain rule to the vibrational nuclear displace-
ment vector Sν

αk
which describes the displacement of nucleus

ν in direction α due to the kth normal mode qk,

Sν
αk =

∂ Ṙν
α

∂q̇k

�����q̇=0
=

∂Rν
α

∂qk

�����q=0
. (7)

B. Exact factorization of the electron-nuclear
wave function

The non-relativistic Hamiltonian describing a system of
interacting electrons and nuclei, in the absence of a time-
dependent external field, is

Ĥ = T̂n + ĤBO, (8)

where T̂n is the nuclear kinetic energy operator and

ĤBO(r,R) = T̂e(r) + Ŵee(r) + V̂en(r,R) + Ŵnn(R) (9)

is the standard BO electronic Hamiltonian, with electronic
kinetic energy T̂e(r), and with potentials Ŵee(r) for elec-
tron-electron, Ŵnn(R) for nucleus-nucleus, and V̂en(r,R) for
electron-nucleus interaction. The symbols r and R are used to
collectively indicate the coordinates of Ne electrons and Nn

nuclei, respectively.
It has been proved31,32 that the full time-dependent elec-

tron-nuclear wave function Ψ(r,R, t) which is the solution of
the TDSE,

ĤΨ(r,R, t) = i~∂tΨ(r,R, t), (10)

can be exactly factorized to the product

Ψ(r,R, t) = ΦR(r, t)χ(R, t), (11)

where 
dr|ΦR(r, t)|2 = 1 ∀ R, t . (12)

Here, χ(R, t) is the nuclear wave function and ΦR(r, t) is the
electronic wave function which parametrically depends on
the nuclear positions and satisfies the partial normalization
condition (PNC) expressed in Eq. (12). The PNC guarantees
the interpretation of | χ(R, t)|2 as the probability of finding the
nuclear configuration R at time t, and of |ΦR(r, t)|2 itself as the
conditional probability of finding the electronic configuration
r at time t, given the nuclear configuration R. Further, the
PNC makes factorization (11) unique up to within a (R, t)-
dependent gauge transformation,

χ(R, t) → χ̃(R, t) = e−
i
~ θ(R, t)χ(R, t),

ΦR(r, t) → Φ̃R(r, t) = e
i
~ θ(R, t)ΦR(r, t),

(13)

where θ(R, t) is some real function of the nuclear coordinates
and time.

The stationary variations44 of the quantum mechanical
action w.r.t.ΦR(r, t) and χ(R, t) lead to the equations of motion

�
Ĥel(r,R) − ϵ(R, t)�ΦR(r, t) = i~∂tΦR(r, t), (14)

Ĥn(R, t)χ(R, t) = i~∂t χ(R, t), (15)

where the PNC is inserted by means of Lagrange multi-
pliers.45,46 Here, the electronic and nuclear Hamiltonians are
defined as

Ĥel(r,R) = ĤBO(r,R) + Ûcoup
en [ΦR, χ] (16)

and

Ĥn(R, t) =
Nn
ν=1

[−i~∇ν + Aν(R, t)]2
2Mν

+ ϵ(R, t), (17)

respectively, with the “electron-nuclear coupling operator”

Ûcoup
en [ΦR, χ] =

Nn
ν=1

1
Mν

 [−i~∇ν − Aν(R, t)]2
2

+

(
−i~∇ν χ

χ
+ Aν(R, t)

)
× (−i~∇ν − Aν(R, t))  . (18)

The time-dependent potentials are the TDPES, ϵ(R, t), implic-
itly defined by Eq. (14) as

ϵ(R, t) = ⟨ΦR(t)| ĤBO + Ûcoup
en − i~∂t |ΦR(t)⟩r, (19)

and the vector potential, Aν (R, t), defined as

Aν (R, t) = ⟨ΦR(t)| − i~∇νΦR(t)⟩r. (20)

The symbol ⟨ · ⟩r indicates an integration over electronic
coordinates only. Under gauge transformation (13), the scalar
potential and the vector potential transform as

ϵ̃(R, t) = ϵ(R, t) + ∂tθ(R, t), (21)

Ãν(R, t) = Aν(R, t) + ∇νθ(R, t). (22)

In Eqs. (14) and (15), Ûcoup
en [ΦR, χ], ϵ(R, t) and Aν (R, t) are

responsible for the coupling between electrons and nuclei in a
formally exact way. It is worth noting that the electron-nuclear
coupling operator, Ûcoup

en [ΦR, χ] in electronic equation (14)
depends on the nuclear wave function and acts on the para-
metric dependence of ΦR(r, t) as a differential operator. This
“pseudo-operator” includes the coupling to the nuclear subsys-
tem beyond the parametric dependence in the BO Hamiltonian
ĤBO(r,R).

Nuclear equation (15) has the particularly appealing form
of a Schrödinger equation that contains TDPES (19) and vec-
tor potential (20) governing nuclear dynamics and yielding
the nuclear wave function. The scalar and vector potentials
are uniquely determined up to within a gauge transformation,
given by Eqs. (21) and (22). As expected, the nuclear Hamilto-
nian in Eq. (15) is form-invariant under such transformations.
χ(R, t) is interpreted as the nuclear wave function since it leads
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to an N-body nuclear density and an N-body current-density
which reproduce the true nuclear N-body density and current-
density32 obtained from the full wave function Ψ(r,R, t). The
uniqueness of ϵ(R, t) and Aν(R, t) can be straightforwardly
proved by following the steps of the current-density version47

of the Runge-Gross theorem,48 or by referring to the theorems
proved in Ref. 31.

III. NUCLEAR VELOCITY PERTURBATION THEORY

Before showing the derivation of the velocity-dependent
corrections to the BO wave function within the exact factor-
ization approach, let us present a procedure that allows us
to recover the BO limit of electronic equation (14). Suppose
first that the electron-nuclear wave function is given as a BO
product,

Ψ (r,R, t) = ΦR(r, t)χ (R, t) = ϕ
(0)
R (r) χ (R, t) . (23)

Here, ϕ(0)
R (r) indicates the real and not degenerate BO ground-

state. Using Eq. (20), it follows that the vector potential van-
ishes identically, Aν(R, t) ≡ 0.49 This can be interpreted as a
choice of gauge.50 With this assumption, the electron-nuclear
coupling operator from Eq. (18) becomes

Ûcoup
en [ΦR, χ] =

Nn
ν=1

−~2∇2
ν

2Mν
+
−i~∇ν χ(R, t)

Mν χ(R, t) · (−i~∇ν) . (24)

The first term on the right hand side (RHS), containing the
Laplacian51–53 w.r.t. nuclear coordinates, will be neglected
from now on. It can be shown, as reported in Refs. 54–56,
that this term contributes with second-order non-adiabatic cou-
plings to the electronic equation, but being explicitly O(M−1

ν )
its effect can be neglected if compared to the remaining (and
leading) term. Following again Refs. 54–56, the term that
depends on χ can be approximated to zero-th order in an
~-expansion57 of the nuclear wave function as the classical
nuclear velocity, namely,

1
Mν

−i~∇ν χ(R, t)
χ(R, t) =

Pν(R, t)
Mν

= Ṙν(t). (25)

We have invoked here the classical limit in order to directly
relate our results to the NVPT30 and to justify the condition
of “small nuclear velocity” that allows a treatment of effects
beyond-BO within perturbation theory. The procedure, how-
ever, does not rely on the classical limit and the “small” pertur-
bation parameter will be denoted as

λν(R, t) = 1
Mν

−i~∇ν χ(R, t)
χ(R, t) . (26)

Eq. (26) contains the variations in space of the phase and of
the modulus of the nuclear wave function,58 and when both
variations are “small” then the approach considered here can
be applied. We have justified the former hypothesis (small vari-
ations of the phase) by employing the classical approximation
and we are now assuming valid also the latter (small variations
of the modulus).

The electronic Hamiltonian from Eq. (16) becomes

Ĥel(r,R) = ĤBO +

Nn
ν=1

λν(R, t) · (−i~∇ν) (27)

and the TDPES reads

ϵ(R, t) = 
ϕ
(0)
R
��� ĤBO +

Nn
ν=1

λν(R, t) · (−i~∇ν) ���ϕ
(0)
R


r

= ϵ
(0)
BO(R), (28)

i.e., only the ĤBO term survives, since the second term does not
contribute to the TDPES. Notice that here the term ⟨ΦR(t)| − i~
∂t |ΦR(t)⟩r identically vanishes, because the electronic wave
function is the time-independent BO wave function. In order
to recover from Eq. (27) the electronic equation within the BO
approximation, one should impose λν(R, t) = 0, or similarly
Ṙν(t) = 0 ∀ ν as the electronic equation in BO is solved for
fixed nuclei (meaning that their velocity is zero).

To summarize, in order to construct the Hamiltonian in
Eq. (27), (i) we treat the nuclei classically, thus we consider the
nuclear wave function up to within O(~0) terms, (ii) we derive
corrections to the BO Hamiltonian that are proportional to the
nuclear velocity, thus recovering the BO electronic equation
if the nuclear velocity is zero (condition of fixed nuclei), (iii)
we “relax” the hypothesis of classical nuclei by introducing
λν(R, t) as the perturbation parameter.

Combining Eqs. (27) and (28) will provide the electronic
equation within the new formulation of NVPT. In contrast to
the formulation based on the complete-adiabatic approach,19

the perturbative scheme presented here directly applies to the
electronic equation rather than to the full TDSE. Using pertur-
bation theory,30 where ĤBO is the unperturbed Hamiltonian and
the second term on the RHS of Eq. (27) is the perturbation, we
find the solutions of the equation


ĤBO − ϵ (1) − i~

Nn
ν=1

λν(R, t) · ∇ν

ϕR(r, t) = 0 (29)

as

ϕR(r, t) = ϕ
(0)
R (r)

+

e,0


ϕ
(e)
R

�
−i~


ν,α λ

ν
α(R, t)∂να ϕ(0)

R


r

ϵ
(0)
BO (R) − ϵ (e)BO (R)

ϕ
(e)
R (r) (30)

up to within linear-order in the perturbation, with the index ν
running over the Nn nuclei and with α running over the three
Cartesian coordinates. The symbol ∂να is used to indicate a
spatial derivative along the α direction of the position of the
νth nucleus and e labels the (unperturbed) adiabatic excited
states. The TDPES, up to within first-order terms, is labeled
ϵ (1). It is worth noting that in writing Eq. (29), we are discarding
the variations in time of the first-order correction to the BO
wave function, adopting a previously assumed30 hypothesis
that these variations are smaller than the perturbation itself,
thus negligible at the given order. We re-write Eq. (30) as

ϕR(r, t) = ϕ
(0)
R (r) +


ν,α

iλνα(R, t)ϕ(1)
R,να(r), (31)
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introducing the definition of the first-order perturbation to the
BO ground-state

ϕ
(1)
R,να(r) =


e,0

de0,να (R)
ωe0(R) ϕ

(e)
R (r) . (32)

Here, de0,να (R) is the αth Cartesian component of the non-
adiabatic coupling vector, corresponding to the ν-th nucleus,
between the unperturbed ground-state and the excited state e,
whereas the frequencyωe0(R) is the energy difference (divided
by ~) between the excited (e) and the ground (0) states. When
the adiabatic states are real, Eq. (32) is real as well and the
second term in Eq. (31) is purely imaginary. Moreover, the
correction term in Eq. (31) depends on time only implicitly, via
its dependence on λν(R, t), and ϕ(1)

R,να(r) is orthogonal to ϕ(0)
R (r).

This last property can be interpreted as a choice of gauge.
For instance, by imposing the condition that ⟨ϕ(0)

R |ϕR(t)⟩r is
real ∀R, t, which is allowed as gauge condition, we imply
the orthogonality of ϕ(1)

R,να(r) and ϕ
(0)
R (r), namely, ⟨ϕ(0)

R |ϕ(1)
R,να⟩r

= 0. It easy to prove that the PNC remains valid up to within
O(λνα), using the orthogonality of ϕ(0)

R (r) and ϕ
(1)
R,να(r).

The first-order approximation to the TDPES is

ϵ (1)(R, t) = ϵ
(0)
BO (R) − i


ν

O(λν(R, t)) (33)

but the second term on the RHS is identically zero, as can
be proved by either inserting Eq. (31) in the definition of
the TDPES given in Eq. (19) or by considering the fact that
ϵ (1)(R, t) must be real while the correction is purely imaginary.

As in the NVPT approach based on the complete-adiabatic
form of the electron-nuclear wave function,19 the first-order
perturbation to the electronic wave function represents the
effect of the non-adiabatic coupling between the ground and
the excited electronic states. Within a fully non-adiabatic
approach,59–68 it would be possible to compute Eq. (32). How-
ever, it has been shown in Ref. 30 that within DFPT the
perturbation can be determined by the knowledge of only
ground-state properties. Eq. (29) is solved by inserting the
chosen expression for electronic wave function (31) and by
solving for each order in the perturbation λν(R, t). At the zero-
th order, we obtain


ĤBO − ϵ (0)BO(R)ϕ(0)

R (r) = 0, (34)

and at the first-order,

ĤBO − ϵ (0)BO(R)ϕ(1)

R,να(r) = ~∂ναϕ(0)
R (r) ∀ ν,α. (35)

Eq. (34) is simply the eigenvalue problem associated to the BO
Hamiltonian; Eq. (35) is solved in the framework of DFPT as
illustrated in the Section IV B.

The TDPES of the theory based on the exact factorization
remains unaffected if compared to the BO case, up to within
the first-order perturbation, as shown in Eq. (33). The vector
potential, which is identically zero in the adiabatic treatment,
becomes

Aν(R, t) = −2~

ν′,α

λ
ν′
α (R, t) ∇νϕ(0)

R
���ϕ

(1)
R,ν′α


r
. (36)

This expression is obtained by using Eq. (31) in the definition
of the vector potential given in Eq. (20). Using Eq. (35) in
Eq. (36), an alternative expression is derived, which is used

in actual calculations, namely,

Aν
α(R, t) = −


ν′, β

λ
ν′
β (R, t)Aνν′

αβ (R) (37)

= −2

ν′, β

λ
ν′
β (R, t) ϕ(1)

R,ν′β
��� ĤBO − ϵBO(R)���ϕ

(1)
R,να


r
,

(38)

where we have introduced the definition of the matrixAνν′
αβ (R)

and the symbol Aν
α stands for the α Cartesian coordinate of

the vector potential corresponding to the ν-th nucleus. It is
instructive to give an alternative formula for the evaluation of
the vector potential matrix in Eq. (37), namely,

Aνν′
αβ (R) = 2~


e,0

de0,ν′β(R)de0,να(R)
ωe0(R) , (39)

which is obtained by using Eq. (32) in Eq. (38) and acting
with the BO Hamiltonian on its eigenstates. This expression
is useful to determine the vector potential by combining the
NVPT with (explicit) non-adiabatic calculations. In general,
evaluating the vector potential from the full electronic wave
function in Eq. (11) is difficult because the exact electronic
state is not known, thus approximations have to be invoked.
Here, we have derived an expression that can instead be used
in actual calculations. However, in the present paper we focus
on Eq. (38) and we estimate it within DFPT.

IV. OBSERVABLES

A. Current and magnetic dipole moment

In a time-dependent picture, the expectation values of the
current and of the magnetic dipole moment on the instanta-
neous state of the system are employed to evaluate the rota-
tional strength giving access to the VCD spectrum in the linear
response regime. We will derive their expressions employing
the factorized form of the full wave function when calculating
explicitly the expectation values.

The current and magnetic dipole moment operators are
defined as

ˆ̇µ = ˆ̇µe
+ ˆ̇µn

= −
Ne
i=1

e
m

p̂i +

Nn
ν=1

Zνe
Mν

P̂ν (40)

and

m̂ = m̂e + m̂n = −
Ne
i=1

e
2mc

r̂i × p̂i +

Nn
ν=1

Zνe
2Mνc

R̂ν × P̂ν,

(41)

respectively. Here, −e is the electronic charge, Zνe is the
nuclear charge, m and Mν are the electronic and nuclear
masses, and c is the speed of light. The position and momentum
operators for the electronic subsystem are indicated as r̂i and
p̂i, respectively, and similar symbols are used for the nuclear
operators, R̂ν and P̂ν. As expected, the vector potential does not
appear in Eqs. (40) and (41) since we are not yet calculating
an expectation value. However, since the nuclear momentum
operator in position representation acts as a derivative w.r.t.
the nuclear coordinates R, the vector potential appears (only)
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when the derivative acts on the parametric dependence of the
electronic wave function. Indeed, if the factorization is not
introduced, such vector potential will never be present.

The expectation values of the operators in Eqs. (40)
and (41) on Ψ(r,R, t) are indicated with the symbol ⟨ · ⟩Ψ,


 ˆ̇µ
�
Ψ
=


dRχ∗(R, t)
ΦR(t) � ˆ̇µe�

ΦR(t)�r

+ ˆ̇µn
+

Nn
ν=1

Zνe
Mν

Aν (R, t)  χ(R, t) (42)

and

⟨m̂⟩Ψ =


dRχ∗(R, t)

⟨ΦR(t) |m̂e|ΦR(t)⟩r

+ m̂n +

Nn
ν=1

Zνe
2Mνc

R̂ν × Aν(R, t)

χ(R, t). (43)

We will now introduce the following symbols for the expec-
tation values of the electronic contributions to the current
and magnetic dipole moment on the (exact) electronic wave
function:

µ̇e
R(t) =



ΦR(t) � ˆ̇µe�

ΦR(t)�r, (44)

me
R(t) = ⟨ΦR(t) |m̂e|ΦR(t)⟩r. (45)

If the BO electronic wave function is used to approximate
ΦR(r, t), both equations, i.e., the electronic contributions to the
expectation values, vanish, as well as the vector potential in
Eqs. (42) and (43), as mentioned above. It is, however, now
possible to insert the NVPT approximation to the electronic
wave function, Eq. (31), and this leads to the following expres-
sions for the expectation values:


 ˆ̇µ
�
Ψ
≃


µ̇e,(1)

R (t)
χ
+

Nn
ν=1

Zνe
Mν


P̂ν + Aν(R, t)

χ
, (46)

⟨m̂⟩Ψ ≃

me,(1)

R (t)
χ
+

Nn
ν=1

Zνe
2Mνc


R̂ν ×


P̂ν + Aν(R, t)

χ
.

(47)

Here, we have written the expectation values (on the left hand
sides) on Ψ, the full electron-nuclear wave function, in terms
of expectation values of new observables on χ, the nuclear
wave function only. Therefore, the vector potential naturally
appears in the equations. In addition, since the electronic wave
function has been approximated, as stated above, by using
Eq. (31), we obtain that the current and the magnetic dipole
moment contain an electronic contribution that is first-order
(1) in the perturbation. The second terms in both equations,
containing the vector potential, correct the nuclear contribu-
tion to both expectation values and these corrections shall
be considered within NVPT since they are first-order in the
perturbation parameter λν(R, t) (see Eq. (37)). Standard ap-
proaches do not consider these correction terms, because the
vector potential is a quantity that has been introduced only
in the context of the exact factorization. We will compute
explicitly these corrections in Section V, but we can already
anticipate that while the first (standard) term is O(λν), because
of the P̂ν/Mν term, the correction is O(λν/Mν) since the vector

potential itself has a linear dependence on the perturbation
parameter.

It is worth mentioning here that the advantage of intro-
ducing expectation values on the nuclear wave function, rather
than on the full wave function, becomes clear when the clas-
sical approximation for the nuclear subsystem is considered.
In this case, due to the properties of the nuclear wave function
in the factorization framework (χ is a proper wave function,
as it evolves according to a TDSE, and leads to the density
and current-density calculated from the full wave function), the
classical limit can be performed by imposing that the nuclear
density infinitely localizes, at each time, at the classical posi-
tion denoted by the trajectory. The second terms on the RHS
of Eqs. (46) and (47) then become simply functions of phase-
space variables. It is important to notice, however, that the
vector potential has to be taken into account to appropriately
relate the nuclear velocity and momentum.

B. Rotational strengths from density functional
perturbation theory

The direct numerical solution of Eqs. (34) and (35) is
very expansive for systems with more than a few degrees of
freedom. Already, the calculation for small chiral molecules
requires an approximate treatment of the electronic structure
problem. In our implementation, we resort to standard Kohn-
Sham (KS) density functional theory (DFT)69–71 with gener-
alized gradient approximation to the exchange-correlation
functional.72,73 For simplicity, we will limit our discussion to
the case of spin saturated closed shell systems and drop the
explicit notation of the parametric dependence on the nuclear
positions.

In the framework of single determinant KS-DFT, Eq. (34)
directly translates to the standard BO ground-state electronic
structure problem


Ĥ (0)

KS
− ϵ (0)o


φ
(0)
o (r) = 0, (48)

with the unperturbed KS Hamiltonian Ĥ (0)
KS

and the unper-
turbed KS orbitals φ

(0)
o and KS energies ϵ

(0)
o of the occupied

electronic states o. In DFPT,74–78 the calculation of the non-
adiabatic correction to the ground-state orbitals can be done
without explicit knowledge of the unoccupied states via a
Sternheimer equation,79

−P̂e


Ĥ (0)

KS
− ϵ (0)o


P̂eφ

(1)
o (r) = P̂eĤ (1)

KS
[{φo}]φ(0)o (r), (49)

with a projector on the manifold of the unoccupied states P̂e

= 1 −
o |φo⟩⟨φo |. The perturbation Hamiltonian on the RHS,

Ĥ (1)
KS

[{φo}], can depend on the electronic density response
and hence implicitly on the perturbed orbitals on the left hand
side. This is the case for electric field or nuclear displace-
ment perturbations and requires a self-consistent solution.
Explicitly, Eq. (49) for a nuclear displacement perturbation j
reads

−P̂e


Ĥ (0)

KS
− ϵ (0)o


P̂e

∂φ
(0)
o (r)
∂Rj

= P̂e
∂ĤKS

∂Rj
[{φo}]φ(0)o (r). (50)

The perturbed KS orbitals ∂R j
φ
(0)
o (r) are the gradient of the

KS orbitals φ(0)o (r) w.r.t. a nuclear displacement j. They can be
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used for the calculation of the electronic APT in the position
form.3,30

The corresponding translation of Eq. (35) to DFPT reads

P̂e


Ĥ (0)

KS
− ϵ (0)o


P̂eφ

(1)
o, j(r) = P̂e~∂R j

φ
(0)
o (r) ∀ j. (51)

Also this equation is reminiscent of a Sternheimer equation.
However, instead of an explicit perturbation Hamiltonian act-
ing on the unperturbed KS orbitals, the RHS is proportional to
the gradient of the ground-state wave function w.r.t. a nuclear
displacement. As already discussed, this gradient is accessible
via Eq. (50). This method requires two response calculations,
a self-consistent one for the nuclear displacement perturbation
and another for the nuclear velocity perturbation.

Recently, a related approach to the calculation of NVPT
has been reported29 which relies on an iterative finite-differ-
ences scheme for the construction of the intermediate nuclear
gradient information.

With the imaginary correction to the BO electronic wave
function in Eq. (31), it is possible to calculate the electronic
APT E in the velocity form,

Eναβ =
∂⟨ ˆ̇µeβ⟩
∂ Ṙν

α

= 2

o

⟨φo | ˆ̇µeβ |φ(1)o,(ν,α)⟩ (52)

and the electronic AAT I,

Iν
αβ =

∂⟨m̂e
β⟩

∂ Ṙν
α

= 2

o

⟨φo |m̂e
β |φ(1)o,(ν,α)⟩. (53)

For the calculation of the magnetic moment, a choice of the
origin of the position operator has to be made. This poses
additional complications for the calculation of observables in
the condensed phase where periodic boundary conditions are
used. For a detailed discussion, we refer to the literature3,30 and
to the Appendix.

The nuclear AATJ is decomposed into its “conventional”
contribution and the correction due to the presence of the vector
potential

J ν
αβ =

Zνe
2c

ϵαβγRν
γ + ∆J ν

αβ, (54)

where we used Einstein’s summation convention for repeated
indices. The correction due to the additional term in the nuclear
magnetic moment in Eq. (47) is given by the derivative of

⟨∆mn
β⟩ =

Zνe
2Mνc

ϵ βγδRν
γAν

δ =
Zνe

2Mνc
ϵ βγδRν

γAνν′
δη λ

ν′
η (55)

w.r.t. Ṙν
α. Written in this form, the correction to the mag-

netic moment depends linearly on the nuclear velocities, via
the identification λν

′
η = Ṙν′

η . However, this dependence can be
removed in the picture of the nuclear AAT. To see this, we
evaluate the vector potential matrix of Eq. (38) as

Aν′ν
δη = 2


o

⟨φ(1)
o,(ν′,δ)|Ĥ (0)

KS
− ϵ (0)o |φ(1)

o,(ν,η)⟩ (56)

and take the derivative of Eq. (55) w.r.t. a nuclear velocity. This
gives the correction to the nuclear AAT as

∆J ν
αβ =

Zν′e
2Mν′c

ϵ βγδRν′
γAν′ν

δα . (57)

This expression illustrates two features of the correction.
First, it is non-local in the nuclear contributions, i.e., all nuclei
contribute to the AAT of a single nucleus. Second, the pre-
factor contains the inverse nuclear mass, while the conven-
tional contribution does not.

V. NUMERICAL RESULTS

The presented NVPT has been implemented in our devel-
opment version of the CPMD30,80 electronic structure package.
The calculations have been performed using DFPT76–78 with
Troullier-Martins81 pseudo-potentials and the BLYP72,73 func-
tional. We have employed a plane wave cutoff of 100 Ry. The
fluorine pseudo-potential with a radius rc = 1.2 has been used.
The geometry optimizations, harmonic analysis, and magnetic
field perturbation20 calculations were done using the electronic
structure program Gaussian 09 Revision D.0182 employing
aug-cc-pVTZ basis set83 and BLYP functional.

A. (S)-d2-oxirane vs. oxirane

The vector potential from Eq. (37) has been calculated for
a small rigid chiral molecule, (S)-d2-oxirane shown in Fig. 1.
As will be clear from the numerical results, the vector potential
contributes only a small fraction to the rotational strengths Rk

(with k = 1, . . . ,15 for the (S)-d2-oxirane and oxirane), as it is
computed within a perturbation theory approach. The vector
potential is first-order in the perturbation parameter λν(R, t)
and it appears as an explicit O(M−1

ν ) term in the expressions
of the current and of the magnetic dipole moment. Further
analysis, currently under investigation, is focussing on the
calculation of corrections due to the vector potential in explicit
non-adiabatic molecular dynamics, in order to estimate the
actual effect of the vector potential on observable properties
as the VCD signal.

Before presenting the results for (S)-d2-oxirane, let us first
discuss the case of oxirane, a non-chiral molecule. Oxirane dif-
fers from (S)-d2-oxirane in the deuterium atoms, which are re-
placed by hydrogen atoms. In Fig. 2, we draw as blue arrows84

the velocities corresponding to normal modes at 1127 cm−1

(upper panel) and at 1489 cm−1 (lower panel), which have been
selected as examples among the 15 total modes. Perturbations
parallel to these velocities are used in Eq. (37) to construct
the vector potential, which are shown as red arrows in the
figure. It is very interesting to notice that in the case of a
non-chiral system, the vector potential maintains the same
symmetry of the vibrational modes and is nearly anti-parallel
to the nuclear displacement: this is what one would expect, if

FIG. 1. (S)-d2-oxirane.
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FIG. 2. Vibrational modes at 1127 cm−1 (upper panel) and at 1489 cm−1

(lower panel) for oxirane, with nuclear velocities indicated as blue arrows.
The corresponding vector potential is shown as red arrows.

the vector potential is not to affect the VCD properties, i.e.,
current and magnetic dipole, and thus the rotational strength
of the molecule.

In the case of (S)-d2-oxirane, the results are quite different,
as shown in Fig. 3. Again, the velocities corresponding to the
normal modes are indicated as blue arrows, whereas the vector
potential is drawn in red. The selected modes are at 896 cm−1

and at 1089 cm−1. It is clear in this case that (i) a well-defined
symmetry of the vector potential cannot be identified and, as a
consequence, (ii) it is not simply (anti-)parallel to the normal
mode velocities, as was the case for oxirane. This behavior

FIG. 3. Vibrational modes at 896 cm−1 (upper panel) and at 1089 cm−1

(lower panel) for (S)-d2-oxirane, with nuclear velocities indicated as blue
arrows. The corresponding vector potential is shown as red arrows.

TABLE I. Normal modes for (S)-d2-oxirane. The frequencies of the modes
are indicated in the first column, the rotational strengths R are listed in the
second column, from Eq. (4), the corrections ∆R due to the vector potential
are reported in the third (absolute value) and fourth (relative correction)
columns.

ν̃ (cm−1) R (10−44 esu2 cm2) ∆R (10−44 esu2 cm2) ∆R/R (%)
647.50 −0.45 −0.003 0.67
733.42 10.54 0.016 0.15
769.76 3.29 0.001 0.05
856.38 2.70 0.002 0.09
894.67 −3.89 0.006 0.15
936.33 −20.26 0.001 0.01
1088.21 8.34 −0.027 0.32
1093.95 −4.97 0.004 0.09
1210.44 10.45 −0.029 0.28
1326.86 −0.76 0.0002 0.03
1377.38 −8.17 0.025 0.31
2235.16 −22.90 −0.010 0.04
2244.19 16.78 0.011 0.07
3047.68 −32.59 −0.063 0.19
3054.15 47.04 0.047 0.10

thus results in an actual contribution of the vector potential
to the VCD properties of (S)-d2-oxirane. Such contribution is
quantitatively estimated by calculating the correction to the
rotational strengths in Eq. (4) of (S)-d2-oxirane, due to the
vector potential terms in Eqs. (46) and (47). Table I lists, for all
modes in the (S)-d2-oxirane, these rotational strengths Rk and
the corrections ∆Rk due to the presence of the vector potential
in the current and in the magnetic dipole moment.

As discussed above, we notice from the results reported
in Table I that, despite the fact that the vector potential is non-
zero, its effect is quite small, being of the orderO(M−1

ν ). In fact,
while the M−1

ν dependence in Eqs. (46) and (47) is removed
in the first contributions, being these first terms proportional
to the momentum, the second terms are actually O(M−1

ν ).
We recall, however, that in the procedure developed in this
paper, the vector potential is evaluated within the NVPT, thus
being first-order in the perturbation. In a situation where the
electronic wave function has a strong non-adiabatic character,
namely, where the correction to a BO-type wave function is
not small in the nuclear velocity, a larger contribution may be
expected. Moreover, in the cases where the vector potential
is singular, e.g., for adiabatic states that are locally degen-
erate in R-space, this correction may become very important.
However, further studies are required to develop a scheme that
allows for the calculation of the vector potential beyond the
NVPT.

B. Comparison with magnetic field
perturbation theory

Further molecular systems have been investigated, namely
(R)-propylene-oxide and (R)-fluoro-oxirane shown in Figs. 4
and 5.

In this section, we report the dipole D and rotational R
strengths calculated by employing NVPT, indicated with the
symbols DNVP and RNVP in Tables II–IV, and we compare these
results with the magnetic field perturbation (MFP) theory,20
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FIG. 4. (R)-propylene-oxide.

FIG. 5. (R)-fluoro-oxirane.

TABLE II. Normal modes, dipole and rotational strengths, for (S)-d2-
oxirane.

DMFP DNVP RMFP RNVP

ν̃ (cm−1) (10−40 esu2 cm2) (10−44 esu2 cm2)

647.50 0.55 0.85 −0.35 −0.45
733.42 123.35 124.88 8.73 10.54
769.76 53.44 51.77 3.17 3.29
856.38 145.31 145.55 4.31 2.70
894.67 9.78 10.24 −3.37 −3.89
936.33 39.73 39.24 −19.14 −20.26
1088.21 3.79 4.44 6.95 8.34
1093.95 1.41 1.71 −3.98 −4.97
1210.44 26.26 26.09 9.56 10.45
1326.86 0.34 0.37 −0.91 −0.76
1377.38 11.65 10.78 −7.50 −8.17
2235.16 49.17 50.88 −22.60 −22.90
2244.19 12.63 12.81 16.80 16.78
3047.68 11.43 11.66 −32.80 −32.59
3054.15 58.64 60.16 46.63 47.04

DMFP and RMFP in the tables. Such comparison has been carried
out also for (S)-d2-oxirane (Table II). Furthermore, Tables III
and IV show the corrections ∆R to the rotational strengths due
to the vector potential term in Eq. (37), as already presented
for the case of (S)-d2-oxirane in Section V A. In all tables the
first column indicates the normal mode frequency, the second
and third columns are the dipole strengths from MFP and
NVP theories, the forth and fifth columns show the rotational
strengths from MFP and NVP theories. In Tables III and IV, the
sixth and seventh columns are the corrections computed from
(37), which in general are the same order of magnitude as the
corrections reported in Table I for (S)-d2-oxirane.

TABLE III. Normal modes, dipole and rotational strengths (with correc-
tions), for (R)-propylene-oxide.

DMFP DNVP RMFP RNVP ∆R ∆R/R

ν̃ (cm−1) (10−40 esu2 cm2) (10−44 esu2 cm2) (10−44 esu2 cm2) (%)

202.12 6.91 7.12 3.54 3.47 −0.001 0.03
355.33 45.22 46.63 −12.84 −12.56 0.008 0.06
398.40 38.74 38.86 −3.72 −3.79 0.004 0.11
717.36 55.11 52.51 13.88 13.21 0.005 0.04
795.26 217.23 219.15 2.47 1.62 0.007 0.44
875.72 18.54 17.25 26.36 26.99 0.039 0.14
929.21 51.55 51.53 −35.52 −37.03 −0.049 0.13
1008.29 24.84 26.62 2.88 4.53 −0.004 0.09
1089.09 18.53 19.17 −6.03 −6.56 0.006 0.09
1112.88 7.92 7.79 6.65 7.50 0.023 0.31
1126.68 11.68 12.56 −13.44 −14.67 −0.034 0.23
1150.27 1.51 1.40 1.54 1.23 0.003 0.24
1246.96 19.77 19.85 −8.06 −8.01 −0.004 0.05
1371.08 10.35 9.83 3.30 3.53 0.007 0.19
1388.57 60.08 60.10 13.99 15.15 0.007 0.05
1447.69 13.15 14.16 1.34 1.45 0.005 0.32
1461.62 15.41 16.62 −1.69 −1.90 −0.008 0.42
1480.79 10.14 9.99 4.66 4.69 −0.005 0.11
2955.51 27.68 28.86 1.64 1.64 0.0002 0.01
3000.54 41.29 44.50 −0.29 0.20 −0.009 4.53
3005.59 22.70 24.14 5.13 6.04 −0.034 0.56
3007.28 22.57 22.86 −13.92 −15.14 0.053 0.35
3032.47 47.06 50.07 7.29 7.16 −0.019 0.27
3079.38 41.31 41.09 −7.19 −7.31 0.013 0.17

From the comparison between the two perturbation
approaches, we notice an overall very good agreement not
only in the absolute values of the dipole and rotational
strengths, but also in the signs of the rotational strengths for the
three systems investigated here. The MFP theory of Stephens20

can be considered a “more standard” approach, nowadays
implemented in most quantum-chemistry packages, thus it

TABLE IV. Normal modes, dipole and rotational strengths (with correc-
tions), for (R)-fluoro-oxirane.

DMFP DNVP RMFP RNVP ∆R ∆R/R

ν̃ (cm−1) (10−40 esu2 cm2) (10−44 esu2 cm2) (10−44 esu2 cm2) (%)

411.61 52.63 53.11 9.48 9.80 −0.003 0.03
482.91 30.46 31.23 −3.10 −2.91 0.002 0.06
733.56 124.68 123.64 40.79 39.91 0.031 0.08
804.61 501.12 497.82 −12.79 −9.85 0.007 0.07
927.57 244.98 246.52 −27.57 −34.46 −0.052 0.15
1059.05 28.75 25.77 −9.38 −9.09 −0.019 0.21
1069.68 312.66 321.09 22.55 22.47 0.048 0.21
1106.47 5.52 4.95 −8.37 −8.84 −0.022 0.25
1125.52 11.52 11.28 4.11 4.77 0.005 0.10
1252.78 88.68 87.54 −0.07 1.73 0.006 0.32
1344.65 150.66 150.18 −6.39 −7.04 −0.016 0.23
1470.12 42.55 44.05 0.73 0.77 0.008 1.06
3024.87 20.22 21.53 1.64 1.53 0.003 0.16
3068.24 22.58 23.21 −1.07 −1.00 0.008 0.84
3115.60 14.50 14.02 0.34 0.37 −0.007 1.79
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represents a suitable benchmark for the new approach intro-
duced in Ref. 30 and discussed in the present work.

VI. CONCLUSIONS

One of the main goals of the paper has been to provide
rigorous basis for the development of the NVPT approach to
VCD. In this context, the complete adiabatic approach pro-
posed by Nafie19 was adopted in previous study30 as starting
point, where the electron-nuclear wave function is approxi-
mated as a single product of a (nuclear) vibrational contribu-
tion and an electronic term. In particular, such electronic term
contains corrections to the BO state which are first-order in
the nuclear velocity. In the present work, we make this idea
exact, in the sense that the starting point is not an approximate
factorized form of the full wave function. The starting point
is provided by the exact factorization of the electron-nuclear
wave function, where approximations are inserted at a later
stage in order to make numerical calculations feasible. The
method outlined here can thus be seen as a rigorous basis for
NVPT: at the first stage of the derivation, we describe how
to recover the BO working equation from the exact electronic
equation and at the second stage, a perturbation to BO is
considered. Also, this perturbation does not rely on the use of
the nuclear velocity as small parameter, in fact such parameter
is, more generally, related to the spatial variations of the nu-
clear wave function from the factorization. Only in the classical
limit, at O(~0), these variations lead to an interpretation in
terms of nuclear velocity. In the new approach presented here,
a full quantum picture can be maintained, without invoking the
classical approximation.

The second main result confirms the importance of using
the exact factorization as starting point for the development
of approximations. The time-dependent vector potential of the
theory naturally appears in the observables, i.e., the current
and the magnetic dipole moment, necessary for the calcula-
tion of the VCD spectrum. Therefore, within the perturbation
approach presented in the paper, we have evaluated the vector
potential using the harmonic approximation for the nuclear
motion. In this case, the contribution has been shown to be
small, but only further investigation, for instance in the context
of non-adiabatic molecular dynamics, will clarify the actual
extent of non-adiabatic corrections to the VCD signal. Also,
situations where the non-adiabatic couplings are important
shall be investigated, for instance for low-lying excited states,85

where the exact factorization approach offers a strategy to
overcome the limitations of BO approximation in a rigorous
way.

According to the procedure presented in this work, NVPT
is suitable for an implementation in any ab initio molecular
dynamics code. Therefore, NVPT can be easily employed for
the study of VCD properties of chiral molecules in solutions
and for direct comparison with experimental data. Such proce-
dure allows also to evaluate the corrections due the vector
potential from the exact factorization approach. As it requires a
DFPT calculation for each geometry sampled by the molecular
dynamics trajectory, the numerical cost of a NVPT calculation
is slightly larger than standard BO molecular dynamics but
indeed feasible.
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APPENDIX: INVARIANCE UNDER CHOICE
OF THE ORIGIN

One of the main problems connected to the evaluation
of molecular properties and spectroscopies depending on the
magnetic field is to assure origin invariance of the final results.
In case of VCD, this requires the evaluation of the electric
and magnetic dipole moments, or accordingly, the APT and
the AAT. While the APT shows no origin dependency, the
exact AAT transforms under shifts of the origin O = O′ + ∆
as

MνO
αβ =M

νO′
αβ −


γδ

1
2c ϵ βγδ∆γP

ν
αδ. (A1)

The rotational strength as a physical observable is gauge
invariant,

Rk =

αα′β


νν′
Pν
αβM

ν′O′
α′β Sν

αkSν′
α′k

−


αα′βγδ


νν′

1
2c ϵ βγδ∆γP

ν
αβP

ν′
α′δSν

αkSν′
α′k, (A2)

since the second terms constitute triple products containing
two identical vectors.

The evaluation of origin dependent operators under peri-
odic boundary conditions has been extensively discussed in the
literature.86–88 A convenient approach is the combination of
statewise origins with maximally localized Wannier orbitals,
which has been applied successfully to the calculation of nu-
clear magnetic resonance chemical shifts.89,90 The canonical
φo and localized ϕo states are mutually related via the unitary
transformation for the unperturbed ground-state orbitals,

|ϕo⟩ =

o′

U (0)
oo′|φo′⟩. (A3)

This approach is based on the natural assumption that the
response orbitals are sufficiently localized in the region of their
respective unperturbed ground-state orbitals. In the distributed
origin (DO) gauge, the position operators are calculated with
the corresponding Wannier center as its statewise origin,

ro = ⟨ϕo |r̂|ϕo⟩. (A4)

The electronic AAT in a statewise DO gauge then is given
by

�
Iν
αβ

�o
DO =

e
mc

⟨ϕo |(r̂γ − roγ)p̂δϵ βγδ |ϕ(1)
o,(ν,α)⟩ (A5)

and can be translated back to the common origin form via

IνO
αβ =


o

�
Iν
αβ

�o
DO +


oγδ

1
2c ϵ βγδ(roγ − Oγ)Eνoαδ, (A6)
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where Eνoαδ is the contribution of the state o to the electronic
APT. The numerical results in a supercell calculation are the
same for canonical and Wannier orbitals.30
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