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ABSTRACT

Experimental data on the plastic deformation of icosahedral Al-Pd-Mn single
quasicrystals are discussed in terms of dislocation models. The occurrence of a
yield drop followed by a range of steady state deformation is explained by the
effects of dislocation multiplication and recovery on both the mobile dislocation
density and the internal stress. The influence of transient phenomena during the
measuring procedures of the activation parameters is estimated. The activation
volume of deformation is a unique function of the stress. The activation enthalpy
and the Gibbs free energy, calculated by Schoeck’s formula, assume
approximately constant values above 700°C but decrease strongly below this
temperature. In the temperature range where steady state deformation is
possible, probably the flow stress is controlled by both the friction mechanism
of moving dislocations and the recovery processes taking place during
deformation.

§1. INTRODUCTION
The plastic properties of icosahedral Al-Pd—Mn single quasicrystals were deter-
mined over a temperature range where the deformation is characterized by a yield
drop followed by a range of almost steady state deformation (Part I, Geyer et al.
2000). The present paper discusses these results in terms of dislocation models of the
plastic deformation.

§2. THEORY
Usually deformation experiments on quasicrystals are interpreted by using the
formalism of the thermally activated dislocation motion developed for crystalline
materials. With some modifications because of the properties of dislocations in
quasicrystals, this formalism is adopted here. Accordingly, the plastic strain rate &
is related to the dislocation velocity v by the Orowan relation

&= mgpbv, (1)
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where p is the density of mobile dislocations. Up to now, there is no electron micro-
scopy evidence that dislocation structures are formed during the deformation of
quasicrystals which immobilize the dislocations (Feuerbacher er al. 1997, Schall et
al. 1999). Thus, it is assumed throughout this paper that all dislocations are mobile. b
is the length of the Burgers vector of the gliding dislocations in physical space, and
my is the orientation factor, which relates the compressive stress o to the shear stress
7 on the activated slip plane:

T = mo. (2)

For small strains, mg can be used also to relate shear strains to compressive strains,
as in equation (1). In Al-Pd-Mn, the parallel components of the most frequent
Burgers vectors are parallel to twofold directions, and the most frequent slip planes
are perpendicular to fivefold and threefold directions of the quasicrystal lattice
(Rosenfeld et al. 1995). For both compression directions, the largest orientation
factors are close to mg; = 0.4. Thus, this value will be used for the following con-
siderations. While the experimental results in Part I were presented in terms of the
compressive stress o, the theoretical considerations are expressed in terms of the
shear stress .

Commonly, the thermally activated dislocation motion is described by an
Arrhenius relationship as reviewed by Evans and Rawlings (1969). Then, the dis-
location velocity v can be written as

v = voexp (~AG/kT) (3)
which, after inserting equation (1), yields an expression for the plastic strain rate
¢ = (mypbvg)exp (~AG/kT) = ¢yexp (~AG/kT). (4)

Here vy and &, are the pre-exponential factors, AG is the Gibbs free energy of
activation, k is the Boltzmann constant, and T is the absolute temperature. AG
depends on the effective stress 7% acting locally via

AG(m*) = AF(r*) — V (7%)r*. (5)

AF is the Helmholtz free energy of activation, and V is the activation volume. Both
AF and V depend on 7*, AF only slightly. The thermal component 7* of the total
flow stress 7 is given by (Seeger 1958)

TR=T1-—m7 (or o* =0 — ai). (6)

The flow stress contribution 7; is of athermal character and originates from the long-
range elastic interactions between the dislocations. Using different models, these
interactions yield a square root dependence of 7; on the total dislocation density p
as originally shown by Taylor (1934) for a random arrangement of parallel disloca-
tions and discussed by Basinski and Basinski (1979) on the basis of experimental
data,

7= apbp'’. (7)

1 1s the shear modulus and « is a numerical constant. In quasicrystals, little is known
about the elastic interaction between dislocations, so that « is not known precisely.
Even in crystals it may vary between about 0.2 and 1, depending on the actual
dislocation arrangement. A value of o =0.5 will be used below. Applying the
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above relations will lead to an equation for the (shear) flow stress:

7= aubp'? + (1/V)|[AF +kT In (¢/mgpbvy)]. (8)
The activation volume can be determined experimentally via
V =kT /mgr, 9)

with r= (A7*/Alnv); /m, r equals the experimental strain rate sensitivity
Fex = (A o/An s’)T in equation (1) of Part I if the pre-exponential factor &, in equa-
tion (4) and 7; are constant during the measuring procedure. There is no direct way
of determining A G. However, the activation enthalpy A H can be determined from r
and temperature change experiments, using the relation (e.g., Evans and Rawlings
(1969)):

AH=kT*(Alnv/AT) = —kT*(Ac*/AT),/r. (10)

Again, (Ao*/AT), equals (Ao/AT). only if the pre-exponential factors and 7
remain constant during the temperature change. AG can be calculated from AH
by using a formula derived by Schock (1965):

AG=AH—-TAS = (AH +57V)/(1 - 8), (11)

with 8 = (T /p)(dp/dT ). The RHS of equation (11) contains only measurable quan-
tities, but is based on the assumption that the main contribution to the activation
entropy AS originates from the temperature dependence of the shear modulus p.
This assumption is fulfilled well for elastic interactions between dislocations and
defects, but it may not be fulfilled for the deformation of quasicrystals because of
the phason strain field of dislocations.

As described above, the measuring procedures of equations (9) and (10) can be
applied to the experimental quantities r,, and (A a/ AT) . only if ¢y and 7; are con-
stant during the measurement process. The most important factor in &, which may
change is the mobile dislocation density p. As p and 7; can change only with some
strain or time having passed, the incremental changes Alné and AT should be
performed as rapidly as possible. As described in §2 of Part I, changing the tem-
perature requires partial unloading, taking about 30 min. Thus, temperature change
experiments will not correspond to the instantaneous changes, which are intended.
Similarly, the discrepancy between original and repeated relaxation curves reported
in Part T (§3.3 and, e.g., figure 4(b)) indicates that structural changes occur also
during the relaxation experiments. The interpretation of the experimental results
should therefore take into account these transient effects.

§3. SHAPE OF THE STRESS-STRAIN CURVE
The discussion of the stress—strain curve will be based on the kinetics of the
dislocation density as observed by Feuerbacher et al. (1997), Schall (1998) and
Schall et al. (1999). The last mentioned study describes three important observations.

(1) During straining at 730°C, in the pre-yield range the dislocation density p
increases by more than one order of magnitude, assuming a value of
Puyp =3 X 10 m~ at the upper yield point at an initial rate of increase
of M= (dp/de), =6.5x 10 m™. It reaches a value of 9 x 10° m™ at
the lower yield point and a maximum of 1.2 x 10 m™2 at a strain of
e = 5.2%. At larger strains, it decreases again.
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(2) During annealing at 730°C of specimens deformed at the same temperature,
the dislocation density decreases rapidly within the first 15min but remains
almost constant after 45 min.

(3) The dislocation density at the lower yield point depends strongly on the
temperature.

These observations can be modelled by the kinetic equations below.
The initial decrease in the dislocation density during annealing mentioned in
observation (2) can be described by

(dp/dr). = —q, (12)
with the solution
1/p=qt+C. (13)

For p, equation (12) is of second order since the annihilation process requires two
dislocations of opposite sign to meet. The annihilation can either appear by cross slip
or climb, depending on the character of the dislocations, leading both to equation
(12). As cross slip is restricted to screw dislocations, climb should control the final
annihilation process. The regression analysis of the initial decrease during annealing
at 730°C yields ¢ = 4.4 x 107" m*s~!. The kinetic equation of the dislocation den-
sity during deformation as described under observation (1) and taking in account the
dislocation generation and recovery may read

dp = wrpds — gp*dr, (14)

where s is the travelling distance of the dislocations and w is a rate constant.
Equation (14) assumes that the dislocations multiply during their motion, as origin-
ally suggested by Johnston and Gilman (1959). It is shown by in situ straining
experiments in a high-voltage electron microscope (Messerschmidt ez al. 1998) and
by conventional high-voltage transmission electron microscopy (Messerschmidt ez
al. 1999c) that the multiplication is initiated by either cross slip or a dislocation
reaction, as in many crystalline materials. Accordingly, the increase in the disloca-
tion density is proportional to the area per volume pds swept by the dislocations.
There are several processes which suggest a dependence of the multiplication rate on
the stress (see, e.g., Wiedersich (1962)).1 With ds = dE/(pb) and dr = de /¢, equation
(14) becomes

dp/de = wr/b — qp*/z, (15)

where wr/b is the multiplication rate M. For a complete theory, equation (15) should
be combined with equation (8). A similar evolution law with other powers in p is
applied to quasicrystal deformation by Guyot and Canova (1998). With dp/de = 0,
equation (15) leads to a steady state dislocation density pg, which may be discussed
in a simplified way by assuming that the stress reaches a steady state also and by

7 On principle, the local stress 7* should enter equation (14) as it causes the bowing of a
pinned dislocation segment leading to a multiplication event. This paper argues that both 7*
and 7; depend on T so that, approximately, the Cottrell-Stokes law may hold, i.e., 7* may be
approximately proportional to 7. Formally, then it makes no difference whether equation (14)
and the following equation (18) are written in 7* or 7. 7 is preferred as it is closer to the
measured quantity o.
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using the experimental values of M and ¢. This yields

pes = [Ewr(bg))'* = [eM/q]'". (16)

Inserting the experimental data yields p = 1.22 x 10" m™2, which is in very good
agreement with the experimental maximum value of p quoted above under
observation (1). Equations (15) and (16) are based on climb controlled recovery.
Thus, the rate constant ¢ should contain the diffusion coefficient, or

q = qo €Xp (—AHSD/kT), (17)

where ¢ is a constant and A Hgp is the activation enthalpy of self-diffusion. Both the
dependence of the annihilation rate on the temperature via recovery and the depen-
dence of the formation rate of dislocations on the stress may lead to a temperature
dependence of the dislocation density, as described above under observation (3).
From equations (16) and (17) it follows that

In (7/p%) = const — A Hgp, /KT . (18)

Plotting the experimental values of p and o (instead of 7) of Schall et al. (1999) versus
1/T yields A Hgp, 2 4¢€V. This value will be discussed in § 6.

In the following, the stress—strain curve of Al-Pd—Mn quasicrystals in the high-
temperature range, i.e., above about 630°C for specimens of a fivefold compression
axis deformed at a strain rate of 107°s™!, is discussed on the basis of the above
dislocation kinetics. First, the athermal contribution 7; to the flow stress is estimated
from the above-quoted dislocation densities p by using equation (7). Data on
the shear modulus were measured by Tanaka et al. (1996) and by Feuerbacher
et al. (1996). In order to extrapolate values of p from the latter data for the
transition range from the unrelaxed to the relaxed modulus, a quadratic expression
was used for p(T ) Its parameters were determined by using p = 77.25 GPa and
dp/dT = —19MPaK™' at 500K, and dp/dT = —-356MPaK~' at 1000K.
Slightly lower values follow from the elastic constants of Tanaka et al. (1996). The
estimation yields about 31 MPa for 7, at the upper yield point at 730°C, and about
54 MPa for 7y, at the lower one, if the very frequent value of b = 0.183 nm of the
length of the Burgers vectors in physical space (R osenfeld ez al. 1995) is used. Values
of 7, from dislocation density data of Schall e al. (1999) at different temperatures are
presented in table 1, which shows that 7; at the lower yield point amounts in most
cases to 27% of the flow stress. Though this estimation implies a large error because
of the uncertainty of the constant «, it may be concluded that the athermal part of
the flow stress cannot be neglected and that it is a fixed fraction of the flow stress, i.e.,
that the Cottrell-Stokes law (Cottrell and Stokes 1955) seems to hold in Al-Pd—Mn
single quasicrystals.

Table 1. Shear modulus p, dislocation density p after Schall e al. (1999), athermal stress
component 7; according to equation (7), and ratio between 7; and (shear) flow stress at
the lower yield point 7.

T (C) 1t (GPa) p(m?) 7 (MPa) 7i/Tiyp
695 63.5 9 x 103 55.1 0.27
730 62.3 6 x 103 44.2 0.32
790 60.1 7 x 10'2 14.6 0.27

820 58.9 2.7 x 102 8.8 0.27
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In accordance with the strong increase in the dislocation density during the first
loading, the material shows considerable plastic deformation far below the macro-
scopic yield point, even at low temperatures. This is demonstrated by the stress
relaxation curves R1la and R1b in figure 1(a) of Part I. It was shown in §3.1 of
Part I that strong work-hardening occurs in this range owing to the increasing
dislocation density.

A prominent feature of the stress—strain curves is the occurrence of an upper and
a lower yield point, as presented in figure 1 of Part I. Such yield point effects may
have several reasons. In the present case, they can be explained consistently by the
substantial increase in the dislocation density discussed above. This interpretation is
inherent also in the model calculations of Schall (1998). According to equation (8),
the difference between the flow stresses at the upper and the lower yield points is
given by

Alep = Tiuyp — Tilyp T Mslex I (plyp//’uyp)/(l —C,). (19)

The factor of 1/ (1 — Cr) will be discussed in the next paragraph. Using the
above data for p and 7, at 730°C as well as the values of r., =285 MPa from figure
7(a) of Part I and of C, = 0.062 from equation (3) of Part I leads to A7-|yp =~ [7MPa
for the stress drop at the yield point. Experimentally, at 730°C there is a yield drop of
Aa|yp =~ 43 MPa (the regression formula in § 3.1 and figure 3 of Part I). Thus, taking
into account the orientation factor, the calculated value A7-|yp /mg agrees very well
with the experimental one, so that the increase in the dislocation density between the
upper and the lower yield points can account fully for the yield drop.

A plateau region of almost constant stress follows the yield drop. As shown in
figure 3 of Part I, the flow stresses at the plateau of the specimens with their com-
pression axes in fivefold and twofold orientation are almost equal. Only at low
temperatures are the flow stresses of specimens with a twofold compression axis
slightly lower, which may be due to the larger orientation factors of the prominent
slip systems in this orientation. The plateau region corresponds to the range
of maximum dislocation density, where the changes in the dislocation density are
smallest. The plateau can be described by a steady state situation in equation (15)
between the dislocation generation and annihilation as expressed by equation (16).
Thus, the constancy of the flow stress over a relatively wide range of strains can be
understood by a steady state of the dislocation density, which implies that recovery
processes take place during the deformation. In this sense, recovery seems to be a
prerequisite to a continuous macroscopic deformation of quasicrystals. If the tem-
perature is too low for sufficient recovery, the specimens work-harden rapidly and
fail at low strains after reaching high stresses (Messerschmidt ez al. 1999b).

In many papers, a decrease in stress beyond the lower yield point has been
reported (e.g., by Bresson and Gratias (1993) for polycrystalline Al-Pd—Mn, and
by Wollgarten et al. (1993) for single quasicrystalline AI-Pd—Mn). It is termed work-
softening and considered an essential feature of the plastic deformation of quasi-
crystals. In the present study, most specimens were deformed up to about 6% plastic
strain, only. Within this range, the flow stress decreases only slightly (cf. figure 1 of
Part 1). Thus, the activation parameters were measured at a relatively well estab-
lished steady state of both stress and dislocation density. This is an advantage over
earlier measurements, where the activation parameters were determined at the upper
yield point (Feuerbacher et al. 1995, Brunner ef al. 1997), which is a range of strongly
changing dislocation density.
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§4. TRANSIENT EFFECTS DURING CHANGES OF THE DEFORMATION CONDITIONS

As described in §2, transient effects have to be considered in evaluating the
activation parameters by the measuring procedures of the strain rate and tempera-
ture sensitivities. During stress relaxation tests, the transients are indicated by the
difference between the original and repeated relaxation curves, as in figure 4(b) of
Part 1. During the original relaxations with decreasing stress, a decreasing non-
equilibrium dislocation density will influence both the dynamic law in equation (4)
and the internal stress in equation (7). It follows from equation (6) that (in terms of
the measured compressive stress)

do/dIn¢é = do*/dIné +doi/dIne, (20)
or
do _ Oo* dc* dlnp do; dlnp (21)
diné|, Olély, dlnpdiné|, dlnpdne|,’

Considering that do*/d1n p| .7 = —r (cf. equations (4) and (5) and the same argu-
ments which lead to equation (9), see Schock (1965)) and do;/01n p = 0;/2 (equation
(7)), it follows that

do do* o dlnp
= —(r— 2
diné|, 0|y, (v 2) diné |,’ (22)
or
, O'idlnp
=2 dlné|,
r——l T (23)
dlné |,

This formula is valid if steady state values are taken for r., and (d1np/dIné);. The
difference between the original and the repeated relaxation curves reveals that struc-
tural changes, i.e., a recovery of the dislocation density, occur during the original
relaxations. However, there is no information available about the extent to which the
structure deviates from the steady state one, which corresponds to the actual strain
rate. Therefore, (dInp/dIn¢); is not known from the deformation experiments.
However, a theoretical value of 1/2 follows from equation (16).

During the reloading of the specimens after the relaxations until steady state
conditions are re-established, a yield point effect appears with a stress increment
Aa|le as shown in figure 6(a) of Part 1. Afterwards, the steady state dislocation
density is restored. Figure 6(b) of Part I demonstrates that Aa|le is equal to the
stress difference Ao, between original and repeated relaxations at the same strain
rate. Thus, the difference between original and repeated relaxations and the yield
drop effect during reloading are opposite faces of these structural changes. However,
the dislocation density changes much less upon reloading the specimen below the
stress of the original relaxation curve, i.e., before the steady state deformation is
achieved, as in repeated relaxations. This is supported by the fact that the curves do
not change on further repeating the relaxation tests. Steady state deformation is
reached only after the yield point following the relaxation tests, which requires
about 1% of strain, as shown in figure 6(«a), while the strain necessary to reload
the specimen for a repeated relaxation is about one order of magnitude smaller.
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As (dInp/dIn s’)T should be small during repeated relaxation tests, the repeated
relaxations can be used for determining the strain rate sensitivity corresponding to a
constant microstructure rather than the original relaxation curves. However, since
the difference between original and repeated relaxation curves depends on the relaxa-
tion time or the total decrease in the relaxation rate A ln (—¢)|, (see figure 4(b) of
Part I), the normalized recovery parameter C, was defined by equation (2) of Part I.
If oy is small and C, = (d Inp/d lns')T, equation (23) may read

rere/(1— G, (24)

where rg, is taken from the original relaxation curves. However, if o; is not small, it is
proposed that equation (24) can still be used as a phenomenological relation to
calculate r from r,,, which considers the influence of changes in p on 7; and the
mobile dislocation density. As shown in figure 5 of Part I, C, increases with increas-
ing temperature, so that recovery effects of the dislocation density can be neglected
only at the very lowest deformation temperatures.

A particular transient effect is the occurrence of sections with inverse curvature
in the relaxation curves of figure 4(a) of Part 1. These sections appear in relaxations
after loading associated with a strong increase in the dislocation density, i.e., with
work-hardening. During original relaxations, this may happen before the upper yield
point, or during repeated relaxations after long relaxation times of the original
relaxation, or even after unloading. Clearly the rapid drop of the strain rate at the
beginning of a subsequent relaxation is due to the continuation of hardening during
the initial part of the relaxation.

As discussed in §2 of Part I and in §2 above, unloading and waiting for a new
thermal equilibrium are necessary for temperature change experiments. After the
temperature change, a yield drop effect occurs, which is caused not only by the
change in the dislocation density owing to the new temperature but also by recovery
during the waiting time necessary for adjusting the new temperature, since a similar
yield drop appears also after unloading with no temperature change. Thus, the stress
increments for determining the temperature sensitivity (Ao/AT ) . should not include
the upper yield point. In the present study, (Ac/AT) . was determined in § 3.4 of Part
I under steady state conditions. As with the strain rate sensitivity, changes in
the dislocation density and the internal stress have to be considered if the
activation enthalpy is calculated according to equation (10). By analogy with
equations (20)—(22), it follows that

dot| o
dT oT

gi dlnp
. Tt (’” 2) T ‘ (25)
For temperature changes, (d Inp/ dT) . can be obtained from the dislocation density
data measured by Schall ez al. (1999) (their figure 2(b)). Above 730°C, it amounts
to —0.035 K~! and between 700°C and 730°C to only about —0.01 K~ Using char-
acteristic values at the lower yield point at 730°C, r = ry/ (1 — Cr) =~ 90 MPa,
Fex = 85MPa, C,=0.062, o;=1,/ms=54/0.4 =135MPa with p=9 x 10" m™?
(Schall et al. (1999), figure 2(b)), the correction term (r —0;/2) (dInp/dT). =
—0.7MPaK~! due to changes in ¢, and 7 is remarkable with respect to the tem-
perature sensitivity of (AO’/AT)é ~ _45MPaK™! itself (figure 7(h) of Part I).
Below 730°C, the correction term should be much smaller because of the smaller
value of (d1np/ dT)s.. The consequences of using the correction terms will be dis-

cussed next.
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§5. THE ACTIVATION VOLUME

The activation volume is defined by equation (9). It can be calculated from the
experimental strain rate sensitivity r., by using equation (24), which takes into
account the transient effects due to changes in the dislocation density during the
relaxation tests. If the deformation is controlled by a single process, the activation
volume describes the stress dependence of the Gibbs free energy of activation A G in
equation (4). Thus, it should be a unique function of stress, irrespective of which
parameter has been changed to vary the effective stress. Within the accuracy of the
experiments, r.,, does not depend on the strain within the range of steady state
deformation. Figure 1 shows a plot of V versus the reduced stress
7" = (uo/p(T)) mgo for specimens with a fivefold compression axis. These specimens
cover the largest range of 7. The factor jo/u(T ), which normalizes the stress, is
necessary for calculating A G from the ¥ versus 7' curve, which will be described in
the next paragraph. The same curve is obtained for specimens with a twofold com-
pression axis within the respective range. The stress has been varied by performing
the deformations at different temperatures, different strain rates at the beginning of
the relaxation tests and by measuring several values of r., along the individual
relaxation curves, as described in §2 of Part I. Each symbol corresponds to data
from one experiment. Figure 1 shows that all data lie along a single curve within the
experimental accuracy. This curve also coincides with values taken from a single long
relaxation curve measured on a specimen with a twofold compression axis at 755°C
and at an initial strain rate of 107 s~ (full circles). Figure 1 would be a section of
the universal interaction profile controlling the dislocation mobility in Al-Pd-Mn
single quasicrystals if the internal stress were constant. However, different internal

2 [ . [ 4 [ ) 1 o [ "
A BIBI797/777°C @ T725°C
- W 757/726/705°C B 821°C
2.0 A ® 770°C B 756°C
o 751/719°C o 755°C
% A 647/635°C & 756°C
1 i & 821°C X 770°C
& o & 700°C A 700°C
e A
A
=104 ¢ -
> A
Al
% Anp
h E&% Egém o . g
m H @ A A Op A An

300 400 500 600
< [MPa]

Figure 1. Dependence of the activation volume ¥ on the reduced shear stress
= (,LLO/,LL(T))mSa for specimens with a fivefold compression axis (except the full
circles where there is a twofold compression axis). Each symbol corresponds to one
experiment at the temperature indicated in the figure. The starting strain rates are
105! for triangles, 107* s~ for squares and 10> s™' for the circles.

0 100 200
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stresses relate to different temperatures. Because the data points form a single curve,
it can be concluded that the Cottrell-Stokes law holds.

§6. THE ACTIVATION ENERGY
The activation enthalpy AH is defined by equation (10). If changes in the pre-
exponential factor and in the internal stress during the measuring procedure are
neglected, r can be replaced by r.,, and (Ac/AT), by (Ao/AT)., leading to the
experimental activation enthalpy

AHy = —kT*(Ao/AT). /1. (26)

Figure 2 presents a plot of AH,, versus temperature. The values of (Ao/ AT)s. are
taken from figure 7(b) of Part I, and those of r., are the average values from the two
relaxation curves defining the stress increment Ao according to figure 4(c) of Part L.
Above about 720°C, specimens with a fivefold compression axis show
AH, =5.7¢eV, and those with a twofold axis show AH,, =4.9¢eV. Below 720°C,
AH,, decreases rapidly down to about 2eV at 640°C for the specimens with a
fivefold compression axis. In the high-temperature range, the present values are
slightly lower than those of Feuerbacher ez al. (1995) but higher than those of
Brunner et al. (1997). The difference from the data of Feuerbacher ez al. originates
mainly from the difference in measuring the stress increments from temperature
changes. In the latter work, the stress increments were measured at the upper yield
points after the temperature change, leading to larger values of A H,,. No data on
AH,, are available in the literature for AI-Pd~Mn below 720°C.

Taking into account the transients, which appear during both stress relaxation
experiments and temperature change tests, (Aa/AT)s. in equation (26) has to be
replaced by (Aa/ AT) according to equation (25), and r, by r by either equation
(23) or (24). The necessary data for ¢; and (d In p/dT) can be taken from Schall et

8 i 1 A 1
a
6 ||
- A A
.y A . A
i 4 - o . -
T’ A
<
2- A X
0 r T y T
600 700 800
T[°C]

Figure 2. Experimental activation enthalpy AHex as a function of temperature: filled sym-
bols, fivefold orientation of the comI:l)ressmn axis; and oi)en symbols, twofold orienta-
tion; triangles, strain rate of 10 ; and squares, 10
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al. (1999) as described in §3 using equation (7) for o; and by the theoretical value
of (dlnp/dlné), =1/2 or C, (equation (3) in Part I). The corrections for
the temperature sensitivity and the strain rate sensitivity compensate each other
partly. The values obtained of AH are either about 20% lower or higher than the
apparent ones of equation (26) depending on the correction of the strain rate sensi-
tivity using either equation (23) with (dInp/dIn¢), = 1/2, or equation (24) via C,.
Because of the uncertainty in particularly o;, corrected values are not dealt with here.
Nevertheless, the A H, data in figure 2 should represent the true activation enthalpy
AH of the dislocation mobility within an accuracy of +20%, with the corrections
being smallest at the lowest temperatures used (640°C).

The Gibbs free energy of activation A G can be calculated from A H by means of
equation (11). This formula is based on the assumption that the only contribution to
the activation entropy originates from the temperature dependence of the shear
modulus. It contains the temperature sensitivity of the shear modulus
B=(T/u)(dp/dT). As in §3, it was taken from the data of Feuerbacher et al.
(1996). Like AH, AG assumes approximately constant values above about 720°C.
They are about 3.4 eV for specimens with a fivefold compression axis, and 2.9 eV for
those with a twofold axis. Below that temperature, AG decreases markedly.
According to equation (4), AG should be proportional to T if the deformation
were controlled by a single thermally activated process, i.e., if the pre-exponential
factor £y had a constant value. Figure 3 shows that this condition cannot be checked
above 720°C because of the large scatter of the data. Clearly it is violated below
720°C. A consideration of the transients according to equations (23)-(25) would not
reduce the discrepancy.

Figure 4 plots AG versus the shear stress. In this plot, at least the data for the
same specimen orientation should lie along a single curve, which, however, is not
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Figure 3. Temperature dependence of the Gibbs free energy of activation A G using Schock’s
formula (equation (11)) and the temperature dependence of the shear modulus mea-
sured by Feuerbacher ef al. (1996) (symbols as in figure 2).
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Figure 4. Dependence of the Gibbs free energy of activation A G on the reduced shear stress
7' with symbols as in figure 2 plus: x and full line values calculated by the second
integral in equation (25) using the data of figure 1; and small symbols and dashed line,
upper limit V7 of the work term V7%

fulfilled well. As proposed by Cagnon (1971), alternatively A G can be determined by
integrating the V versus 7' curve of figure 1:

AG(T’)=—”£T)J° vdr'
0 ’

:N(T)JO VdT/+H(T)Jn]VdT/
Mo Jr Ho !

T

T

Tin
= AG(m) +M J vdr'. (27)
Ho T’

7y is the limiting stress the obstacle array can sustain, and 7,, is the maximum stress
up to which the activation volume is measured. As 7y itself and the course of V
versus 7' between 7, and 7y are not known, the integral is split into two parts. In
figure 4, the known second integral is plotted as crosses plus line. With the exception
of the unknown off'set AG(TIQ), this curve should coincide with the data determined
by Schock’s formula. It is obvious that the (negative) slope of this curve, which
represents the activation volume, increases with decreasing stress while that based
on Schock’s formula decreases. In addition, the difference between the measured
values of A G and those predicted by integrating the V' (7-’) curve grows with decreas-
ing stress. Thus, the results of determining A G by different methods are not con-
sistent with each other. This indicates that the assumptions on which the formalism
of thermally activated dislocation glide is based, i.e., a constant pre-exponential
factor and an entropy contribution arising solely from the temperature dependence
of the shear modulus, are, at least partly, not fulfilled for AI-Pd-Mn quasicrystals.
Giacometti et al. (1999) undertook a similar analysis for Al-Cu—Fe polyquasicrystals
without observing such an inconsistency. Figure 4 contains also an upper limit V' 7 of
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the work term V7* (equation (5)). In comparison with AG, it is small and almost
constant at 0.35¢V. The small work term compared with AG is typical of the high-
temperature deformation.

§7. PROCESSES CONTROLLING THE DEFORMATION RATE

Three processes should be discussed which may influence the flow stress of Al-
Pd-Mn quasicrystals. The first is the contribution 7; (or o;) from long-range disloca-
tion interactions determined by equation (7). Based on the dislocation density data
by Schall et al. (1999), this contribution is estimated in § 3 to amount to about 30%
of the flow stress. Unfortunately, the constant « in equation (7) is not known exactly
and the results of dislocation density measurements depend on the unloading and
cooling conditions of the specimens, so that this result has a large error. The influ-
ence of changes in ¢; during the measuring procedures of the activation parameters is
discussed in §4. The total effect of the transients amounts to about 20% of the
respective quantity. It compensates partly for the activation enthalpy discussed in
§6. Up to now, no dislocation density data are available to estimate the athermal
component of the flow stress below 695°C.

The second process is the friction mechanism, which controls the glide velocity of
dislocations according to the Arrhenius-type relationship of equation (3). It has been
proposed by Feuerbacher et al. (1997) and by Urban et al. (1998) that the thermally
activated overcoming of the Mackay-type clusters is the rate-controlling process.
This conclusion has been drawn from the observation that the measured activation
volumes fit the size scale of the clusters. The model has been elaborated in a more
quantitative way by Messerschmidt et al. (1999b), considering the clusters as
extended obstacles according to the theory of solution hardening by Labusch and
Schwarz (1991). The cluster friction model is in accordance with the viscous motion
of dislocations during in situ observations in a high-voltage electron microscope by
Wollgarten et al. (1995) and Messerschmidt et al. (1998).

The third process is recovery, which may take place during plastic deformation.
It is evidenced by the static annealing experiments of the dislocation density by
Schall et al. (1999), which can be interpreted by equations (12) and (13). Recovery
manifests itself in the difference between the original and repeated relaxation curves
as in figure 4(a,b) of Part 1. Recovery is necessary to compensate for work-hardening
to explain the steady state deformation occurring at high deformation temperatures.

There are two temperature ranges which have to be distinguished and in which
the three processes contribute to the deformation characteristics in different ways.
Below about 630°C, steady state deformation cannot be achieved at strain rates of
107°s™" or higher. The stress increases mainly elastically above about 1000 MPa,
where the specimens break. First results on the deformation processes in this low
temperature range are described by Messerschmidt ez al. (1999b).

Above 630°C, recovery prevents the stress from attaining very high values, and it
allows for steady state deformation. It is a remarkable feature of the deformation of
Al-Pd—Mn that over the whole temperature and stress ranges the activation volume
V' is a unique function of the stress (figure 1), regardless of how the stress is varied.
This fact can be interpreted in two different ways. The first assumes that the activa-
tion volume V is correctly determined by equation (24) and characterizes the
dynamic law of equations (4) and (5). Then, figure 1 is a universal expression of
the interaction potential of the dislocation velocity-controlling process, which is
assumed to be the cluster friction mechanism. In this case, the stress plotted in figure
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1 corresponds mainly to the thermal stress component 7* or, because of the Cottrell-
Stokes law, it is at least proportional to it. Then, the stress dependence of the Gibbs
free energy of activation can be constructed by integrating the V versus 7’ curve.
Apart from an unknown offset, it is shown in figure 4. These values show a different
dependence on the reduced stress than do the AG values measured by temperature
change experiments and by using the formalism of Schock (1965). The latter values
at high stresses, i.e., below about 670°C, are of a ‘reasonable’ order of magnitude.
Since recovery should not be important in this range, these values should correspond
to the process controlling the dislocation mobility. Then, AG + V' 7 is a rough esti-
mate of the total activation energy at zero stress, which amounts to about 2eV. The
values above 670°C, however, are too large and correspond to unreasonably high
pre-exponential factors in equation (4). A possible explanation has been proposed by
Feuerbacher et al. (1997) assuming that the production of phasons while the dis-
locations are moving in quasicrystals can be connected with contributions of con-
figurational entropy AS in equation (11), in addition to those from the temperature
dependence of the elastic constants considered by Schock (1965).

In the elaborated cluster friction model of Messerschmidt et al. (1999a), the
activation energy to overcome the individual clusters is only a fraction of the mea-
sured value. Thus, it should amount to less than 1eV, so that the clusters do not
represent strong obstacles to the dislocation motion. However, this model predicts a
weak temperature dependence of the flow stress at high temperatures, which has not
been observed experimentally (figure 3 of Part I).

An alternative interpretation of the unique relation between activation volume
and stress starts with the statement that during the steady state deformation a
dynamic equilibrium exists between work-hardening and recovery. During the
relaxation tests, the dislocation structure, represented mainly by the dislocation
density, depends on the deformation conditions, but the deformation under decreas-
ing strain rates always takes place in or near the steady state. In this case, the V
versus 7' curve does not describe the process controlling the dislocation velocity. In
this interpretation, the flow stress should be controlled mainly by the long-range
athermal component 7;. Thus, the main difference between both interpretations lies
in the different value of the athermal component of the flow stress. In the latter case,
the Gibbs free energy of activation in the steady state range is the activation energy
of recovery. The value of about 3.5¢eV is close to the energy of about 4 eV determined
in §3 (equation (18)) for the recovery of the dislocation density. However, both
energies are higher than the self-diffusion energy, which should control recovery.
The diffusion energy amounts to 2.32¢eV for Pd (Bluher et al. 1998), and to 1.99¢eV
for Mn (Zumkley et al. 1997). To the authors’ knowledge, the diffusion energy of Al
has not yet been determined. The slowest-moving atomic species should control the
recovery process. Unreasonably high values of the activation energy are not unusual
for the recovery-controlled creep of ceramic materials, see, e.g., Goméz-Garcia et al.
(1996) for cubic zirconia, but the reason for that is not clear. The crucial point may
be that the cluster friction process implies a relatively high strain rate sensitivity,
similar to that of recovery, so that it is almost impossible to separate the deformation
processes under high stresses (or at low temperatures) controlled by the dynamic law
of equation (4), i.e., the cluster friction mechanism, from the deformation process
under low stresses (or at high temperatures) controlled by a steady state of the
dislocation structure. Thus, it is possible that the deformation of Al-Pd—Mn with
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increasing temperature changes gradually from a dislocation friction-controlled
mode to a recovery-controlled mode.

Until now, the activation energy has been discussed on the assumption that the
deformation is controlled either by the dynamic law of equation (4) or by recovery-
controlled creep with the activation energy of self-diffusion (equations (16) and (17)).
However, as suggested above, it is also possible that both mechanisms control the
deformation simultaneously, i.e., that the mobile dislocation density p in equation
(4) is given by the steady state dislocation density pg of equation (16). Together with
equation (17), this yields

. 1/2
L EWT % 3
°T bgy exp (—AHSD//CT)] exp ( AGm/kT)' (28)

S

The index m is added to AG to refer to the dislocation mobility. If the (relatively
weak) dependence of 7 on ¢ is neglected, it follows that

vrbvy 2AG, — AH
= 27070 exp [— —ka SD]. (29)
Entropy terms are not considered in the recovery process. If the dependence of the
denumerator of the first term on 7 is neglected, the experimental activation energy is

given by

k0m§

Ou 22AG,, — Hyp. (30)

This means that the activation energies determined in §6 cannot be interpreted
simply by either dislocation mobility or recovery. A consequence of equation (29)
is also that the activation volume is given by V = V /2.

§8. CONCLUSION

At high temperatures, plastic deformation of icosahedral Al-Pd—Mn single qua-
sicrystals is characterized by a yield drop followed by a stage of steady state defor-
mation. This behaviour can be explained by the kinetics of the dislocation generation
and recovery. The occurrence of recovery seems to be a prerequisite to an extensive
plastic deformation.

It is estimated from the dislocation density data of Schall et al. (1999) that the
athermal component of the flow stress 7; may amount to about 30% of the flow
stress at all temperatures. Thus, the Cottrell-Stokes law may be valid in icosahedral
Al-Pd-Mn.

The activation volume V of plastic deformation, determined from stress relaxa-
tion tests taking into account structural changes during the relaxations, is a unique
reversible function of the reduced flow stress 7.

Under the above conditions, the V versus 7' curve represents the interaction
profile of the process controlling the dislocation mobility.

The Gibbs free energy of activation obtained from temperature cycling
experiments and stress relaxation tests using the formula of Schock amounts to
approximately 3.4eV above about 700°C. Below 700°C it decreases rapidly with
decreasing temperature. At low temperatures, the data should represent the
processes controlling the dislocation mobility. The total activation energy at zero
stress then amounts to about 2eV.
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The dependence of the Gibbs free energy of activation on the stress is not con-
sistent with values obtained by integrating the ¥ versus 7' curve. This indicates that
the assumptions on which the evaluations of the activation parameters are based are
not fulfilled.

The reversible dependence of the strain rate sensitivity on the stress also can be
interpreted by the steady state recovery-controlled deformation, suggesting a large
contribution by the athermal component 7; to the flow stress.

Both interpretations are combined by the assumption that there is a continuous
transition from the cluster friction mechanism controlling the deformation at low
temperatures to the recovery-controlled deformation at high temperatures. The
activation energy may then combine both individual energies.

Further experiments will be necessary for a better understanding of the transient
effects and the role of the athermal component of the flow stress.
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