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Abstract

The insulator to metal phase transition in NiO is studied within the framework of reduced density
matrix functional theory (RDMFT) and density functional theory (DFT). We find that the spectral
density obtained using RDMFT is in good agreement with experiments both for undoped as well as
doped NiO. We find that the physical description of the hole-doping induced phase transition
qualitatively differs depending on whether NiO is calculated within DFT or reduced density matrix
functional. In the former case the underlying mechanism of the phase transition is identified to be a
rigid shift of chemical potential, while in the latter case a redistribution of the spectral weight drives the
transition. These latter results are found to be in good agreement with both experiments and previous
many-body calculations.

1. Introduction

Strongly correlated materials possess a wide spectrum physical properties that makes them of both fundamental
as well as practical importance. They have been studied as possible candidates for photo-voltaic material [1],
field-effect devices [2] and high temperature superconductors [3]. After many decades of research a fully first
principles theory capable of treating these materials remains elusive. The anti ferromagnetic (AFM) transition
metal oxides (TMOs), which are prototypical strongly correlated materials, present the outstanding ‘test case’
challenge to a first principles treatment of correlated solids. Amongst TMOs NiO, an AFM Mott insulator with a
measured gap of 4.1 eV and a magnetic moment of 1.7 4, is of the most studied systems. The standard local
density approximation (LDA) [4] within density functional theory (DFT) predicts a metallic spectrum for NiO,
in fundamental disagreement with experimental reality. The inclusion of spin polarization via the local spin
density approximation (LSDA) results in a small Kohn—Sham(KS) gap, and a description of NiO as a Slater
insulator. However, both the gap and the magnetic moment are severely underestimated suggesting that the
Slater AFM state obtained within the LSDA does not describe the true nature of NiO.

In order to overcome this deficiency of the KS spectra obtained using the LSDA, Rodl et al proposed the use
of two separate fitting parameters: an on-site Coulomb term U and a scissors shift A by which the conduction
bands are rigidly shifted, with A the difference between the experimental gap and the KS gap obtained using
LSDA + U functional [5]. With a certain choice of these two parameters the KS spectra of of NiO can be made
to agree with computationally expensive many-body techniques such as dynamical mean field theory (DMFT)
[6-10], reduced density matrix functional theory (RDMFT) [11, 12], and the GW method [5]. This scissors
corrected LSDA + U method comes under the heading of the so called correlated band theory method.

What makes NiO even more interesting is its behavior as a function of doping: one finds an insulator to
metal phase transition (IMT) on doping the system with Li, which amounts to hole doping [13]. The rich physics
of this phase transition entails subtle interplay of charge transfer and Mott localization: despite being a text book
Mott insulator, NiO also has a strong charge transfer character due to the large overlap (in energy) of the Ni-d
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and O-p states. Any theory attempting to capture this IMT in NiO must be capable of treating Mott correlations
and charge transfer effects at an equal footing [9], presenting a significant theoretical challenge.

In the present work we study the IMT in NiO using three different approaches: the LSDA within DFT,
correlated band theory method [14, 15], LSDA + U, and a many-body technique, RDMFT. In doing so we
demonstrate that even though at zero doping all these methods give similar spectra, the physics of hole doping
induced phase transition is qualitatively different for the different theoretical methods: within band and
correlated band theory methods the metalization occurs due to a rigid shift of the chemical potential into the
valence band, with the separation between the Hubbard bands remaining approximately constant. In total
contrast to this, within RDMFT one finds that the phase transition is driven by a transfer in spectral weight from
the upper and lower Hubbard bands to alow energy peak, known as the correlated peak. These latter results we
find to be in good agreement with previous many-body results obtained using DMFT [9].

2. Theory

Recently, RDMFT has shown potential for correctly treating band as well as Mott insulators [11, 12, 16], or in
other words, treating both Mott correlation and charge transfer effects equally well. Within RDMFT, the one-
body reduced density matrix (one-RDM) is the basic variable [17, 18]

v(x, X)) = Nfdxz...de\IJ(x, xz...xN)\I/*(x/, xz...xN), )

where U denotes the many-body wave function and N is the total number of electrons and x = (o, r).
Diagonalization of -y produces a set of orthonormal Bloch functions, the so called natural orbitals [17], ¢;,, and
occupation numbers, #;x. Extending RDMFT to the truly non-collinear magnetic case [12], by treating the
natural orbitals as two component Pauli—spinors, leads to the spectral representation

v(x, x’) =D ik (x) %0?1("/)' .
ik

The necessary and sufficient conditions for ensemble N-representability of v were provided, in a classic work, by
Coleman [19]. These conditions require

0<nx<1

S ik = N. 3)
ik

In terms of 7, the total ground-state energy [ 18] of the interacting system is (atomic units are used
throughout)

E[y]=— 1 trgf lim/ va (x, x')d3r’ + fp(l‘) Vext (1) &r

(r)p
f | d3r &' + Exlv], ()

1‘71‘

where p (r) = tr,7y (X, X), Vex is a given external potential, and E,. we call the exchange-correlation (xc) energy
functional. In principle, Gilbert’s [ 18] generalization of the Hohenberg—Kohn theorem to the one-RDM
guarantees the existence of a functional E [y] whose minimum, for fixed a V., yields the exact yand the exact
ground-state energy. In practice, however, the xc energy is an unknown functional of yand needs to be
approximated. Several approximations for the xc energy functionals are known [20-30]. For finite systems
spectral properties [31-35] as well as molecular dissociation [21-23, 36, 37] can be accurately described using
these xc functionals. For extended systems, the most promising approximation is the power functional

[11, 38, 39] where the xc energy is given by

2
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with « indicating the power in the operator sense. In view of the universality of the functional E[v], the value

of ashould, in principle, be system-independent. A few ‘optimum values’ of a have been suggested in the

literature [11, 39, 40]; in the present work « is fixed to 0.56.

In order to study the doping dependent metalization of NiO one crucially needs spectral information. To
obtain this information from RDMFT, which by its very nature is a ground-state theory, is a difficult task. In this
work we extract spectral density from RDMFT using the method recently proposed in [12]. Within this method
the diagonal of the spectral density, i.e. the density of states, is determined using the following relation:
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Figure 1. Projected and total density of states for NiO as a function of energy (in eV). Results are shown for undoped (lower panels)
and hole doped (upper panels) NiO. The results are obtained using two different functionals within DFT; the LSDA (right panels) and
the LSDA + Umethod (left panels). Experimental data from [43] is also presented for comparison.
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where, 10 is the chemical potential. This method is known to produce accurate spectra for finite systems [38] as
well as solids [12]. Following the above procedure the spectral density for doped and undoped NiO is calculated
using the full-potential linearized augmented plane wave [41] code Elk [42].

3. Results

3.1. Correlated band theory

We first examine the behavior of undoped NiO within band and correlated band theory by using LSDA [4] and
LSDA + Umethods [14, 15]; results for total DOS and the site and symmetry projected spectral density are
presented in figure 1. One can observe that while the LSDA band gap is grossly underestimated as compared to
experiment, a rigid shift of the valence band to lower energies would result in a spectrum with an overall shape in
good agreement with experiment. Indeed, despite severely underestimating the gap, the correct ordering of the
t g and ey states is obtained within LSDA, i.e., the band gap separates a t,, valence and a e; conduction band, with
asubstantial overlap of e;and ¢, states seen in the valence band.

On applying an on-site Coulomb repulsion the gap opens, but at the cost of a deterioration in the agreement
of the overall spectral weight with experiment. In particular, the band ordering is now found to be incorrect at
precisely the value of U that leads to the correct magnitude of the gap, which occurs between purely e, states. This
striking defect of the LSDA + U treatment of NiO was also noticed in [5], and the use of a smaller Uwith an
additional external parameter, the so called scissors correction A, was suggested as a remedy. However, while the
spectrum of the equilibrium ground state is improved by this procedure, albeit with the use of an additional
fitting parameter, such an approach cannot be used to study the insulator to metal transition in NiO: the very
meaning of the parameter A is lost once the material enters the metallic phase. Upon doping the KS spectrum
shows a rather simple behavior for both LSDA and LSDA + U methods; the chemical potential rigidly moves
into the valence band leading in consequence to metalization. In the case of LSDA + U method this implies same
value of U across the phase transition.

3.2.Reduced density matrix functional theory

RDMEFT has already shown its effectiveness in capturing the pressure induced phase transition in Mott
insulators [12], in the present work we look at the doping induced phase transition, see figure 2. In good
agreement with previous many-body studies [44, 45], we find that the conduction band is almost entirely e, in
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Figure 2. Projected density of states (in states/eV/formula-unit) for NiO, obtained using RDMFT, as a function of energy (in eV).
Results are presented for undoped (upper panel), hole doped with 1.4 holes per formula unit (lower panel). Experimental results from
[43]and [13] and DMFT results from [9, 10] are presented for comparison.

character. A substantial overlap of Ni-d and O-p states may be seen in the valence spectrum, highlighting the
presence of charge transfer effects in NiO.

For the undoped case, the spectral density is in good agreement with experiments [43]. The RDMFT results
also agree very well with previous DMFT calculations [9, 10, 44, 45] with one important difference between the
two; the experimental data shows a shoulder at —3 eV, which is well captured by t,,like states within RDMFT
but is missing in DMFT results. The value of the band-gap obtained using RDMFT (4.9 eV) is larger than
experiments (4.1 eV), and the magnetic moment (1.52115) smaller than the experimental value of 1.745. There
are two reasons for the smaller value of the magnetic moment within RDMFT as compared to experiment.
Firstly, the calculations are performed with the FP-LAPW method in which space is divided into spheres around
the atoms, the so called muffin-tins, and an interstitial region. In the case of fully non-collinear magnetic
calculations the magnetic moment per site is calculated by integrating the magnetization vector field inside the
muffin-tin. This implies the loss of a small part of the moment to the interstitial region. Secondly, the power
functional induces a slight non-collinearity in the magnetization leading to yet more loss in the integrated z-
projected moment.

Turning to the hole doping of NiO, we find that the effect on the spectral density is strikingly different within
RDMEFT, as compared to both the LSDA and LSDA + U methods. Hole doping is found to lead to a
redistribution of spectral weight of the Ni e, states from the upper and the lower Hubbard bands towards the
chemical potential, which in turn leads to an IMT. The Ni t,, like states remain almost the same as in undoped
case. If one uses the correlated band theory definition of U as being roughly equal to the distance between the
upper Hubbard band and the correlated peak, then it is evident that the value of U changes as a function of
doping. These results are in good agreement with experiments as well as a previous DMFT calculation, but are
evidently in profound disagreement with both the LDSA and LSDA + U pictures of the transition. These
strikingly different pictures highlight the importance of a physically correct treatment of correlation in these
materials.

Turning to the quantitative description of the phase transition afforded by RDMFT, we find that, as in
DMFT, significant metalization occurs at a much higher value of hole doping (1.2 holes per formula-unit for
RDMEFT) than observed in experiments (0.5 holes). There are two principle reasons for this. Firstly, the undoped
gap for NiO (4.88 eV) is larger than the experimental value, and hence additional hole doping will be required to
drive the material to the metallic state. Secondly, we do not study the effect of an actual impurity added to the
system, but rather the hole doping is simulated by the removal of electronic charge from the unit cell while
adding a constant compensating background to ensure charge neutrality. This method is commonly known as
the virtual crystal approximation.

4. Summary

To summarize we have presented the physics behind the doping IMT in NiO and have found that the physics of
phase transition is brought out in strikingly different ways by different theoretical methods: within DFT based
studies metalization occurs due to a rigid shifting of the chemical potential into the valence band, with the
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separation between the Hubbard bands remaining approximately constant. In contrast, within RDMFT the
phase transition is driven by a transfer in spectral weight from the upper and lower Hubbard bands to what is
known as the correlated peak. We thus find that RDMFT treatment of NiO is much close to many-body theories
such as the DMFT, than to the LSDA or correlated band approaches.
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