
1 © 2015 IOP Publishing Ltd  Printed in the UK

1. Introduction

The Korringa–Kohn–Rostoker Green function method (KKR)
in the framework of density functional theory [1] has been a 
powerful tool for electronic structure calculations in the past 
decades. Although it is based on the early work of Korringa 
[2] and Kohn and Rostoker [3] in 1947 and 1954, respectively, 
an active development of the method is present also today [4]. 
Originally, the KKR method was formulated for non-relativ-
istic approximations using muffin-tin spheres for the descrip-
tion of the potentials. Significant extensions of the original 
method are given by the relativistic KKR method [5, 6], by 
the full-potential KKR method [7, 8] and by the combination 
of both, the fully-relativistic full-potential KKR method [9]. 
These developments allow for precise calculations of total 
energies and forces including relativistic effects. This opens 
new perspectives for many applications [4] such as structure 
optimisations, equations of states and phonons.

The KKR method is based on the multiple scattering 
theory, whereas a periodic system is separated into disjoint 
atomic regions which represent scattering centres. Since the 
Green function is constructed from the regular and irregular 
single-site scattering solutions at each lattice site, an accurate 
numerical solution of the underlying differential equations is 
crucial. Within the non-relativistic full-potential KKR method, 
it was suggested by Drittler [7], to solve the underlying single-
site scattering problem by means of a Lippmann–Schwinger
equation, i.e. in terms of integral equations. In general, these 
integral equations  can be solved iteratively via Born series. 
Later it was suggested to reformulate the original approach by 
means of integral equations of Volterra type to achieve better 
convergence properties [10, 11]. Huhne et al [9] showed that 
the original approach of Drittler can be used as well in the 
relativistic KKR method, where instead of the Schrödinger
equation, the Dirac equation has to be solved. One of the dis-
advantages of the original implementation is given by the fact 
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that a certain cut-off radius R0 close to the origin has to be 
introduced in order to avoid problems arising from the treat-
ment of the irregular single-site scattering solutions. Recently, 
it was shown by Zeller [12], that this approximation might be 
inconvenient for materials like NiTi and that the cut-off radius 
can be chosen arbitrarily small by using an analytical decou-
pling scheme and a subinterval procedure with Chebyshev 
interpolations in each subinterval.

In the present paper we follow a different approach and 
discuss besides the solution via integral equations, the direct 
solution of the fully relativistic full-potential single-site scat-
tering problem by means of standard methods for ordinary 
differential equations. We demonstrate that both the regular 
as well as the irregular scattering solutions can be obtained 
with high accuracy. To demonstrate this, we first discuss the 
solution of the spherical Coulomb potential. Furthermore, we 
derive the asymptotic behaviour of the relativistic irregular 
scattering solutions and show that within the limit towards 
a non-relativistic description their asymptotic behaviour dif-
fers significantly from the non-relativistic irregular scattering 
solutions. Second, we discuss the solution of the fully relativ-
istic full-potential single-site scattering problem for a Mathieu 
potential in simple cubic lattice and compare different applied 
solvers. The Mathieu potential is highly anisotropic and thus, 
it is an ideal test system. Moreover, this potential is not of 
purely academic type since it can be seen as an approxima-
tion to the potential in empty spheres that have to be included 
in the description of non-close-packed structures, e.g. for 
semiconductors or oxides [13–15]. Additionally, the Mathieu 
potential allows to evaluate all quantities analytically and is 
therefore ideal for a comparison with numerical results. For 
illustrative purposes we show the bandstructure represented 
by the Bloch spectral function.

2.  Single-site scattering

In this section we focus on the Dirac or Kohn–Sham–Dirac 

equation  [16, 17] in atomic Rydberg units ( =� 1, =m 1

2
, 

= ≈
α

c 2742 ) applied to non-magnetic systems,

⎡
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where the index Λ denotes a combined index ( )κ µ, . According 
to Huhne et al [9] the equation  above can be solved via 
expanding the solution ( )φΛ

→ →r , which is a four component 
spinor-function, into so called spin-angular functions ( ˆ)χΛ′

→ r ,
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are given by a linear combination of complex spherical har-

monics ( ˆ)Y rl
m  and the Pauli spinors ξ

→
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, whereas the expan-

sion coefficients ΛCms denote the Clebsch–Gordan coefficients 
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2
 [18]. Using the orthogonality of the 

spin-angular functions and by defining the matrix V r( )=  with 

components χ χ=ΛΛ Λ Λ′ ′
→ →V Veff  the following system of 

coupled first-order ordinary differential equations  can be 
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By definition, the potential ( )→V reff  is constructed such that it is 
non-zero within the Wigner–Seitz cell of a certain atomic site 
and zero outside. To obtain this behaviour ( )→V reff  is given as 
the product of a non-spherical potential ( )→U reff  and the shape-
truncation function ( )Θ →r  [19, 20],

( ) ( ) ( )= Θ→ → →V r U r r .eff eff� (5)

The elements of the potential matrix of the effective potential 
( )→V reff , based on an expansion in terms of complex spherical 

harmonics, are given by

( ) ( ) ( ) ( )∑ ∑=
″ ″

″ ″ ″
″µ µ

ΛΛ Λ Λ
− −

′ ′ ′
′V r C C V r G .

l m m
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,

s
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For the construction of the Green function, it is necessary 
to obtain two linearly independent solutions ( )φΛ

→ →r . First,  
a solution ( )Λ

→ →R r , which is regular at the origin, and second,  
a solution ( )Λ

→ →H r , which is singular at the origin. Outside of 
the Wigner–Seitz cell both solutions can be constructed from 
the spherical Bessel functions jl(r) and the spherical Hankel 
functions ( ) ( ) ( )= +h r j r in rl l l , which are a linear combina-
tion of the spherical Bessel and the spherical Neumann func-
tions nl(r). By introducing the single-site scattering t-matrix 

=t , the regular single-site scattering solution outside of the 
Wigner–Seitz cell can be written in the following way [8, 9],
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by using the abbreviations   ( )κ=Λ +
e signck

E c

i
2 , ( )κ= −l l sign ,  

and the relativistic momentum ( )ε= + εk 1
c2  with .  ε = 

W − c2 The associated irregular single-site scattering solution 
is given by
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In the following we will discuss two different approaches 
for the numerical solution of equations (3) and (4) inside the 
Wigner–Seitz cell.

2.1.  Numerical solution of the differential equations

For a numerical treatment of equations  (3) and (4) it is 
common to transform the large and the small component of 
the solution according to
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By introducing the matrices
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as well as the spin–orbit coupling matrix κ δ= = ′ ΛΛ′K { }, the 
following differential equations in matrix form are obtained,
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Employing appropriate initial conditions at the origin, e.g. 
by making use of the asymptotics of the differential equa-
tion  (see [21]), the coupled equations  (10) and (11) can be 
solved to obtain the regular scattering solutions. The irregular 
scattering solution can be determined by starting with the ana-
lytical behavior at the boundary of the Wigner–Seitz cell (see 
equation  (8)) and by performing a ‘backward’ integration, 
i.e. towards the origin. In contrast to the irregular scattering 
solution, the regular scattering solution has to be normalized 
at the boundary of the Wigner–Seitz cell according to equa-
tion (7). The normalized expansion coefficients of the regular 
single-site scattering solution inside the Wigner–Seitz cell 

( )ΛΛ′P rinside  can be found as a linear combination of the numeri-
cally obtained solutions ( )ΛΛ′P r ,
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By introducing the matrices ( ) { ( ) }δ= = ΛΛ′X r r x krlBS BS BS  and 
( ) { ( ) }δ= = Λ ΛΛ′x r r ce x krlBS BS BS  (x  =  j, h) at the radius of the 

circumscribing sphere rBS of the Wigner–Seitz cell, the fol-
lowing algebraic system of linear equations can be formulated,
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To discuss the numerical solution of the ordinary differential 
equations (10) and (11) we used Matlab [22] and compared the 
performance of seven different methods, which will be intro-
duced briefly in the following. First of all, we used the standard 
solvers ode113 and ode15s, which are an Adams–Bashforth–
Moulton predictor-corrector method of variable step size and 
variable order …1, , 13 and an implicit method of variable step 
size and variable order …1, , 5 based on the numerical differ-
entiation formulas [23, 24]. Furthermore, the Dormand–Prince 
method [25] (ode45) and the Bogacki–Shampine method [26] 
(ode23) are used. Both solver are explicit methods of Runge–
Kutta type with variable step size and orders 5 and 3, respec-
tively. Since the Bulirsch–Stoer algorithm is used to solve 
the single-site scattering problem within some KKR codes, 
we included a Gragg–Bulirsch–Stoer algorithm (GBS) with 

both adaptive order and step size [27]. Last but not least, the 
fixed step size Runge–Kutta method of order 4 (RK4) and the 
fixed step size Adams–Bashforth–Moulton predictor corrector 
method of order 5 (AB5) are taken into account, since both 
are widely applied within the KKR community [21]. For the 
AB5 method, we use an explicit Adams–Bashforth method of 
order 5 as predictor which is corrected by an implicit Adams–
Moulton method of order 5. The corrector step is repeated n 
times, until the change of the solution due to the corrector 
step is smaller than a requested accuracy (PE(CE)n method). 
For RK4 and AB5 the ordinary differential equation  was 
transformed analytically by assuming a logarithmic scale 

( )=x rlog .

2.2.  Numerical solution via integral equations

Besides a direct solution of the differential equations (10) and 
(11) it is possible to solve the single-site scattering problem by 
means of integral equations. Suppose that the single-site scat-
tering solution of the Dirac equation is known for an arbitrary 
reference system with the potential ( )→V re̊ff . These solutions are 

denoted by ( )ΨΛ
→ →r˚ , which could be either regular or irregular 

single-site scattering solutions. By using the Lippmann–
Schwinger equation [28],
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it is possible to calculate the solutions ( )ΦΛ
→ →r  corresponding 

to the potential ( ) ( ) ( )= ∆ +→ → →V r V r V r˚eff eff . The quantity 

G E r r˚ ; ,S( )→ →

= ′  in equation (14) denotes the single-site scattering 

Green function of the reference system and is constructed 
from the regular as well as the irregular single-site scattering 

wave functions ( )Λ
→ →R E r˚ ,  and ( )′Λ

→ →H E r˚ ,  in the following way:
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The quantities ( )Λ
×→ →R E r˚ ,

n

n  and ( )Λ
×→ →H E r˚ ,

n

n  denote the so-called 

left-hand side solutions, which were discussed in detail by 
Tamura [29]. It is important to note that for the systems under 
consideration no effective magnetic field is present. Therefore, 
the left-hand side solutions can be obtained by taking the 
adjoint of the right-hand side solution. For magnetic systems 
we refer to [29]. By expanding the single-site scattering wave 
function in terms of the spin-angular functions (2) and by 
using equation (15), the Lippmann–Schwinger equation (14) 
for the regular and irregular single-site scattering wave func-
tions can be reformulated in terms of the following matrix 
equations,

( ) [ ( ) ( ) ( ) ( )]
→ → →

∑= +
″

″ ″ ″ ″ΛΛ
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ΛΛ Λ Λ ΛΛ Λ Λ′ ′ ′R z r R z r A z r H z r B z r; ˚ ; ; ˚ ; ; ,, ,
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and
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The matrices ( )=A z r, , B z r,( )= , C z r,( )=  and D z r,( )=  contain the 
integrals over the radial amplitudes ( )ΛΛ′g rR H,  and ( )ΛΛ′f rR H,  as well 
as the functions ( )ΛΛ′x rR H,  and ( )ΛΛ′y rR H, , which include the solutions 
of the reference system and the change of the potential ( )∆ →V r ,
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The explicit expressions of ( )ΛΛ′x rR H,  and ( )ΛΛ′y rR H,  are given by
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In general, the Lippmann–Schwinger equation  (14) is solved 

iteratively in terms of Born series by starting with the reference 

solution ( ) ( )( )
Φ = ΨΛ Λ
→ → → →r r˚0

 on the right hand side of equation (14) 
and by calculating a better approximation ( )( )

ΦΛ
→ →r

1
 by integration. 

This scheme is repeated, until the difference between two succes-

sive approximations, ( )( )
ΦΛ
→ →r

n
 and ( )( )

ΦΛ
−→ →r

n 1
, is reasonably small.

3. The Coulomb potential

3.1.  Asymptotic behaviour

The Coulomb potential is spherically symmetric and hence, 
the expansion into spherical harmonics only consists of one 
(spherically symmetric) component V00(r),
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π
δ δ= −V r

Z
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1
.lm l m,0 ,0� (26)

The associated ordinary differential equations are independent 
of the relativistic magnetic quantum number μ and diagonal in 
κ, but coupled with respect to κg  and κf ,
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It was pointed out by Swainson and Drake [30] that equa-
tions  (27) and (28) can be decoupled by transforming the 
radial solutions according to
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Here, the newly introduced quantities are given by ( )= γ κ−X
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c
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, and by combining equation (29) together with 

(27) and (28), two differential equations  of second order 
can be obtained, which are similar to the form of the radial 
Schrödinger equation,

( )
˜ ( )γ γ α

ω+ −
+

+ − =κ
ε⎡

⎣⎢
⎤
⎦⎥r r r r

Z

r
g r

d

d

2 d

d

1 2
0,

2

2 2
2� (30)

( ) ˜ ( )γ γ α
ω+ −

−
+ − =κ

ε⎡
⎣⎢

⎤
⎦⎥r r r r

Z

r
f r

d

d

2 d

d

1 2
0.

2

2 2
2� (31)

Close to the origin ( �r 1), in the asymptotic limit, only 
the angular momentum terms (∼ −r 2) have to be taken into 
account, whereas the potential (∼ −r 1) and the constant 
factor ω2 can be neglected. The solution of the resulting dif-
ferential equations  are rational functions of the following 
form,

˜ = +κ
γ γ− −g c r c r ,1 2

1� (32)

˜ = +κ
γ γ− −f c r c r .3

1
4� (33)

Since both solutions κg  and κf  are linear combinations of 

κ̃g  and κ̃f , it can be verified, that the leading term for the 
irregular solutions is given by γ− −r 1. In the non-relativistic 

limit ( ≈ 0Z

c

4 2

2 ) the asymptotic behaviour of an irregular  

s-wave function (κ = −1, l  =  0) close to the origin is given by 

=κ− − −r r1 2 which is in contradiction to the non-relativistic 
solution =− − −r rl 1 1. Since the relativistic quantum number 
κ takes on values either κ = l or l 1κ = − − , this disagree-
ment can be generalized for all irregular wave functions with 

l 1κ = − − . To verify the solution behaviour for �r 1, a double 

logarithmic plot of the numerical solution for Z  =  79 and 

=
α

c 2  and various values for κ is illustrated in figure 1. The 

predicted asymptotic behaviour is clearly revealed.
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3.2.  Numerical accuracy

For the discussion of the numerical accuracy for the solu-
tion of the differential equation  (equations (30) and (31)),  
a Coulomb potential with an atomic number of Z  =  79 was 
used since it represents the element gold (Au). Due to the 
large atomic mass and non-negligible spin–orbit coupling, 
which causes the typical golden colour, it is a prominent 
example for relativistic effects. Solutions were obtained up to 
a maximal angular momentum quantum number of l  =  5. To 
obtain a scattering state, the energy of the scattering solution 
was chosen to be ε = 1. In the following test, a spherical cell 
was constructed including a minimal radius of = −r 100

4 and 
a maximal radius of =r 3BS .

The numerical solutions obtained by using different 
solvers were compared with a reference solution, which was 
obtained by using ode113 and very high accuracy goals. 
For the solvers taken from the Matlab ode-suite absolute 

and relative tolerances were chosen to be equal and values 
between 10−1 and 10−10 were used. The maximal relative 
error of the numerically obtained solutions as a function of the 
number of right-hand side evaluations of the differential equa-
tion is shown in figure 2. First of all, it can be verified that the 
numerical accuracy of the solution of the regular single-site 
scattering solution (figure 3(a)) is similar to the results of the 
irregular single-site scattering solution (figure 3(b)), which is 
a first indication for non-stiff problems [31]. As pointed out 
by Söderlind et al [32] a rigorous mathematical definition of 
stiffness is difficult and a lot of controversy exists [33, 34]. 
Following the historical definition of stiffness [35] an ordinary 
differential equation  is called stiff, if the numerical solution 
via implicit methods performs much better than the solution 
via explicit methods. However, for the present example it can 
be verified that the method ode113, which is a method for 
non-stiff equations, performs better than the implicit method 
ode15s. Since we observed poor performance for other 

Figure 1.  Double-logarithmic plot of the real part of relativistic irregular single-site scattering solutions for a Coulomb potential (Z  =  79) 
close to the origin.
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Figure 2.  Maximal relative error versus number of right-hand side (RHS) evaluations of the Dirac equation for a Coulomb potential using 
different methods for the solution.
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implicit methods, we conclude that the underlying differential 
equations for the Coulomb potential are non-stiff. The perfor-
mance of the Dormand–Prince method (ode45) is very good 
for crude tolerances and becomes comparable to ode15s for 
fine tolerances. The Adams–Bashforth–Moulton predictor-
corrector method of order 5 with fixed step size (AB5) is rather 
expensive for high tolerances. But, due to the higher order, 
the performance is better in comparison to the methods of the 
Runge–Kutta type ode23 and RK4, if high accuracy goals are 
demanded. Also in comparison to ode45, which has the same 
order, less evaluations of the right-hand side of the differen-
tial equation for high accuracy goals are necessary; it is there-
fore more efficient. The implemented Gragg–Bulirsch–Stoer 
method with both adaptive order and step-size (GBS) [27] is 
able to solve the differential equations with very high orders. 
But, for the accuracy goals in practice (≈10−8) it needs about 
five times as many evaluations of the right hand side of the 
differential equation in comparison to ode113.

In many implementations of the KKR method, solvers 
with fixed step size are used for spherically symmetric atomic 
potentials, whereas a logarithmic mesh of type ( )=x rlog  or 
similar is employed [21]. The reason for this is that the wave 
functions are highly oscillating close to the nucleus, and are 
smooth for larger values of r. To verify that a logarithmic mesh 
is a reasonable choice, the step size for adaptive methods close 
the origin was investigated (see figures 3(a) and (b)). The step 
size during the numerical solution of the Coulomb–Dirac 
problem using ode113, ode15s, and ode45 is illustrated in 
figure 3(a) and compared with the step size of a logarithmic 
mesh. It can be verified that the step size used by ode45 is 
similar to the characteristic of a logarithmic mesh. However, 
the stair-case-like behaviour of ode113 and ode15s occurs due 
to the step-size strategy of the method itself, i.e. the change of 
the step-size is avoided as much as possible [23]. Analogously, 
it is possible to transform the differential equations (30) and 
(31) to a logarithmic scale ( )=x rlog  and to investigate the 

varying step size of the methods ode113, ode15s and ode45 
for the numerical solution of the transformed equations (see 
figure 3(b)). It can be verified, that all three solvers adopt a 
constant step size close to the origin (x  <  −5), which again 
reassures the choice of a logarithmic scale for methods with 
fixed step size.

4. The Mathieu potential

4.1.  Evaluation of the potential

A suitable test system for our full-potential implementation is 
given by a Mathieu potential [36],

( ) ( ( ) ( ) ( )) = − + +→V r U ax ay azcos cos cos ,0� (34)

that is periodic and represents here a simple cubic crystal 
structure. Moreover, it is highly anisotropic with respect to dif-
ferent crystallographic directions and thus, it is ideal to serve 
as a test system. For our method it is necessary to express 
equations (34) in terms of complex spherical harmonics (see 
section 2). By using the exponential form of the cosine func-
tion and by applying Bauer’s theorem,

( ) ( ˆ) ( ˆ)  ∑ ∑π=⋅

=

∞

=−

→ → → →
i j kr Y r Y ke 4 * ,k r

l m l

l
l

l l
m

l
mi

0
� (35)

we end up with the following equation,

( ) [ ] ( ) ( ˆ)→ →∑ ∑π
π

δ= − + +
=

∞

=−

⎜ ⎟
⎛
⎝

⎞
⎠V r U l l f j kr Y r4 cos

2
2 1 ,

l m l

l

m lm l l
m

0
0

,0

� (36)
with coefficients f lm given by

⎧
⎨
⎪

⎩⎪
f

l m

l m

l m

l m
m

m

(( 1 1 1
1 ! !

! !

1 ! !

! !
is even

0 is odd

.lm

m l
2 2) ) ( ) ( )

( )
( )

( )
   

   
= − + −

+ −
+

− −
−

� (37)

Figure 3.  Step size for the solution of the Coulomb–Dirac problem using adaptive methods. (a) Solution on a radial mesh. (b) Solution 
using a logarithmic scale.
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4.2.  Numerical accuracy

Analogously to section 3.2, where the numerical accuracy was 
discussed for the Coulomb potential, our numerical test envi-
ronment was used to solve the differential equations (10) and 
(11) for the Mathieu potential. According to Yeh et al [36], the 
lattice constant was chosen to be π=a 2  and the pre-factor 
U0 was set to U0  =  −0.5. The expansion of the solution in 
terms of spin-angular functions was evaluated up to a max-
imal angular momentum quantum number of =l 5max . Due to 

the high value of lmax the matrices =P and Q= in (3) and (4) are 
of dimension ×72 72.

The maximal relative error between a very precise ref-
erence solution and the numerically obtained solution of 
different solvers versus the number of evaluations of the right-
hand side of the differential equations are shown in figure 4. 
The general behaviour using different methods is similar for 
regular and irregular single-site scattering solutions. It can be 

verified that for a particular method and for the same number 
of evaluations of the right-hand side of the differential equa-
tion the maximal relative error for the regular solution is by 
approximately 2 orders of magnitude smaller compared to the 
irregular solution. This is due to very large absolute values 
of the irregular single-site scattering solutions close to the 
origin. As shown in the example for the Coulomb potential, 
we conclude that the underlying differential equations for the 
Mathieu potential can be regarded as non-stiff, since the per-
formance of the method ode113 is much better than the per-
formance of the method ode15s [32]. Again, the performance 
of the Adams–Bashforth–Moulton predictor-corrector method 
of order 5 (AB5) is worse than the explicit Runge–Kutta 
methods RK4 and ode45 for crude tolerances. However due to 
the higher order it is more efficient if high accuracy goals are 
required. Especially for the irregular solutions ode23 fails to 
give a reasonable solution for an appropriate amount of evalu-
ations of the right-hand side of the differential equations.

Figure 4.  Maximal relative error versus number of right-hand side (RHS) evaluations of the Dirac equation for a Mathieu potential using 
different methods for the solution.
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Figure 5.  Maximal relative error versus number of iterations within the Born series for the solution of the Dirac equation for an Mathieu 
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The differential equations (10) and (11) are characterized by 
the effective potential and since the Mathieu potential is analyti-
cally known, methods with adaptive step-size like ode113 are 
a reasonable choice. In general, the effective potential within 
each iteration of the KKR method is given on a discrete mesh 
and, hence, a method with fixed step size is appropriate, since 
interpolations of the potential between mesh points are avoided. 
For the Mathieu potential, it can be verified (see figure 4) that 
the numerical solution of the full-potential single-site scattering 
problem can be obtained by linear multi-step methods for non-
stiff equations, e.g. by applying an Adams–Bashforth–Moulton 
predictor-corrector method. Therefore, the method AB5 was 
implemented within the computer code Hutsepot [37].

Besides the direct solution of the differential equation, 
the solution of the Dirac equation  for a Mathieu potential 
was investigated by means of integral equations. For the 
integration, the trapezoidal rule as well as the Simpson rule 
was used. In figure 5 the maximal relative error of the solu-
tion is plotted versus the number of iterations within the 
Born series for the solution of the Lippmann–Schwinger 

equation  for an irregular single-site scattering solution. 
It can be verified that the maximal relative error saturates 
quickly and the Born series converges after three iterations. 
This is in perfect agreement with the observation of Drittler 
[7] for the non-relativistic method. Since the deviation from 
the exact solution is dominated by the error of the numerical 
quadrature, the accuracy of the solution can be improved by 
either increasing the number of mesh points for the quadra-
ture or by improving the integration scheme, e.g. using the 
Simpson rule instead of the trapezoidal rule. In this way the 
maximal relative error can be decreased by about one order 
of magnitude for the same number of points, where the inte-
grand is evaluated.

4.3.  Band structure

After the solution of the Dirac equation at each atomic site 
n, the regular and the irregular single-site scattering solutions 

( )Λ
→ →R E r,

n
n  and ( )Λ

→ →H E r,
n

n  can be used to construct the relativistic 
multiple-scattering Green function,

Figure 6.  Comparison of the relativistic Bloch spectral function calculated with Hutsepot (black, solid line) and a band structure calculated 
by means of a plane-wave approach (blue, stars) for the Mathieu potential. (a) =l 2max . (b) =l 3max . (c) =l 4max . (d) Brillouin zone.
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Analogously to the single-site scattering Green function (15), 
( )Λ

×→ →R E r,
n

n  and ( )Λ
×→ →H E r,

n
n  denote the left-hand side solutions 

[29]. The matrix ( )
=ΛΛ′
g Enm  is called structural Green function 

matrix and can be obtained from the structure constants G E0( )=  

of the free space and the single-site scattering t-matrices 

T E t En( ) { ( )}= = =  at each site n,

( ) ( )[ ( ) ( )]
=

= = = − = =
−g E G E I T E G E .0 0 1� (39)

Since the Green function has a singularity if the energy hits 
an eigenvalue of the Dirac Hamiltonian, the band structure of a 
system can be calculated by means of the Bloch spectral func-
tion, which is given by the imaginary part of the 

→
k-resolved 

multiple-scattering Green function [38],

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥A k W

R L
r G r r R W,

1
ImTr e d , , .

j

k R
j j j jB

i 3j( ) ( )
→

→

→ →
→ → →

∫∑π
= −

∈
= +⋅

� (40)
The summation in the last expression belongs to all lattice 
vectors 

→
Rj of the lattice denoted by L. The trace is a summa-

tion of the diagonal components of the ×4 4 dimensional 
Green function. The great advantage of the Mathieu poten-
tial is given by the fact, that the band structure can be calcu-
lated analytically and, therefore, it is a good test system for 
our numerical implementation. In general, a large number of 
terms are necessary within the angular momentum expansion 
of the Green function to obtain the correct energy bands. For 
illustrative purposes, the Bloch spectral functions obtained for 
different maximal angular momentum ( =l 2, 3, 4max ) within 
the expansion (38) together with the analytically obtained 
result are compared in figure 6. As can be seen, high values of 
lmax are necessary to achieve a reasonable agreement between 
the band structures. However, the numerical result for =l 4max  
reflects the general behaviour of the analytical band structure 
quite nicely.

5.  Conclusion

An elaborate discussion of the numerical accuracy for the 
solution of the spherical Coulomb potential and the Mathieu 
potential is presented. The solutions were obtained, first, by 
various standard methods for the solution of ordinary differ-
ential equations and, second, by means of an iterative solu-
tion of the associated Lippmann–Schwinger equation. From 
the performance of the solvers for stiff and non-stiff problems 
we conclude that the differential equations  are non-stiff for 
both systems. The numerical solution can be obtained by 
using linear multi-step methods like the Adams–Bashforth–
Moulton predictor corrector method. For the Coulomb poten-
tial the asymptotic behaviour close to the origin ( �r 1) was 
investigated and it could be shown, that the non-relativistic 

limit of the irregular single-site scattering solution shows a 
different asymptotic behaviour in comparison to the associ-
ated non-relativistic irregular single-site scattering solution 
for the case κ = − −l 1.
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