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The scope of this review is to present the recent progress in
the understanding of the microscopic origin of thermoelectric
transport in semiconducting heterostructures and to identify and
elucidate mechanisms which could lead to enhanced thermo-
electric conversion efficiency. Based on first-principles calcu-
lations a consistent and convenient method is presented to fully
describe the thermoelectric properties in the diffusive limit of
transport for bulk systems and their associated heterostructures.
While fundamentals of the functionality of phonon-blocking
and electron-transmitting superlattices could be unveiled, we
provide also distinct analysis and ideas for thermoelectric en-
hancement for two archetypical thermoelectric heterostructures
based on Bi2Te3/Sb2Te3 and Si/Ge. A focus was on the influ-
ence of bulk and interfacial strain, varying charge carrier con-
centration, temperature, and superlattice periods on the thermo-
electric transport properties.

Transmission electron micrograph of a 10 Å/50 Å Bi2Te3/

Sb2Te3 superlattice. Red and green areas highlight the layered
structure. For optimal cross-plane transport (⊥) phonons (p) are
expected to be scattered at the interfaces, while electrons (e−)
transmit without losses.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction A major goal in optimizing thermo-
electric nanomaterials is to strengthen the theoretical un-
derstanding of anisotropic thermoelectric (TE) transport in
semiconducting phonon-blocking and electron-transmitting
heterostructures and to elucidate details of the electronic

structure, which could be the origin of high thermoelectric
conversion efficiency in the cross-plane transport direction
of these systems. Motivated by state-of-the-art experiments,
superlattices (SL) based on Bi2Te3/Sb2Te3 or Si/Ge were of
major interest. For this purpose, ab initio calculations based
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on Korringa–Kohn–Rostoker [1] and plane-wave methods
[2, 3] were carried out. Here, it was accounted for all impor-
tant relativistic effects, by solving the Dirac equation. The
macroscopic TE transport properties were then described by
a linearized Boltzmann equation. This review aims to present
the main results of the finalized project.

1.1 Phonon-blocking and electron-transmitting
superlattices The very sophisticated TE concept of
phonon-blocking and electron-transmitting superlattices
(PBET-SL) combines the phonon-glass-electron-crystal
(PGEC) approach [6, 7] and the idea of quantum con-
finement in low-dimensional systems [8, 9]. Made avail-
able by state-of-the art heteroepitaxy [10–15], SL con-
sist of alternating thin layers of different materials stacked
periodically. Most prominent applications of TE SL are
Bi2Te3/Sb2Te3 [16, 17, 5, 13, 14], Si/Ge [18–20] and SL
based on PbTe and PbSe [21–26]. Other SL based on Bi/Sb
[27] or skutterudites [28] showed negligible or only small
enhancements of the TE efficiency.

Even though being inspired by the approaches of a PGEC
and the concept of quantum confinement in lowered di-
mensions, the ansatz of a PBET-SL is very different. First,
their quantum confinement differ from each other. In low-
dimensional 1D and 2D nanostructures proposed by Hicks
and Dresselhaus, the transport is usually perpendicular to
the confinement, i.e., in the basal plane of the SL, and can
be assumed nearly free-electron-like. In a PBET-SL the ther-
mal gradient is preferably applied parallel to the confine-
ment, i.e., electron and phonon transport occur in cross-
plane direction of the superlattice. The latter is emphasized in
Fig. 1(a).

With no obvious enhancement of the cross-plane elec-
tronic transport to be expected due to quantum confine-
ment effects, the desired increase in ZT has to stem en-
tirely from a distinct reduction of the cross-plane lattice ther-
mal conductivity κph,⊥. Indeed, exceptionally low thermal
conductivities were found for PBET-SL [18, 29–31, 22, 32].
Venkatasubramanian et al. reported κph,⊥ = 0.22 W m−1 K−1

for Bi2Te3/Sb2Te3 SL with a period of 50 Å, which is about
five times smaller than the bulk values and significantly be-
low the alloy limit [29]. Those values add up to the lowest
room-temperature thermal conductivities in crystalline ma-
terials being reported so far.

The physical reason for the minimized cross-plane ther-
mal conductivity is still under intense debate applying two
model pictures [10]. In the first, the phonons are expected to
be quasi-particles that are scattered specularly or diffusively
at the interfaces [33]. Experimental results from Touzelbaev
are able to support this picture, as increasing interface rough-
ness leads to decreased lattice thermal conductivity [12]. In
the second, the phonons are expected to behave as coherent
waves across the interfaces. Reduction of the thermal con-
ductivity then comes purely from band structure effects, like
Brillouin-zone (BZ) downfolding, which leads to decreased
phonon group velocities and thermal conductivities [34, 35].

www.pss-a.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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674 N. F. Hinsche et al.: Ab initio thermoelectric transport

Figure 1 (a) TEM of a 10 Å/50 Å Bi2Te3/Sb2Te3-SL. Red and
green areas highlight the layered structure. For optimum cross-
plane transport (⊥) phonons (p) are expected to be scattered at
the interfaces, while electrons (e−) transmit without losses. In
the in-plane direction (‖) quantum confinement effects for elec-
trons are expected. Figure modified from [4]. (b) Experimental
electrical conductivity anisotropy for different Bi2Te3/Sb2Te3-SL.
Cross-plane transport was found most preferable for a 10 Å/50 Å
Bi2Te3/Sb2Te3-SL. Data from [5].

This picture alone is not sufficient to explain the magnitude
of the thermal conductivity reduction perpendicular to the
film plane, and it fails completely to explain the observed in-
plane thermal conductivity reduction [10]. Venkatasubrama-
nian et al. proposed that coherent backscattering of phonons
at mirror-like interfaces could lead to standing phonon waves
which do not contribute to the thermal transport [29]. De-
pending on the SL period l, this leads to a localization of
certain phonon modes with wavelength λ ≤ l/2 [29]. The
aim of SL engineering is to choose the SL period in such a
way that low-frequency acoustic modes are localized and κph

most probably becomes diminished.
At the best, a PBET-SL shows power factors similar to

that of the bulk, albeit at different optimal carrier concentra-
tions. As will be shown these assumptions are per se rather
optimistic but accessible under specific conditions. Summing
up, TE transport in the cross-plane direction of SL shows the
highest numbers for the figure of merit so far. ZT = 1.5 and
2.4 were predicted for n-type and p-type Bi2Te3/Sb2Te3 SLs at

room temperature [4], while ZT = 1.6–3.5 was reported for
n-type PbSeTe-based SL at T = 300–600 K [21–23] 1 .

2 Transport theory Owing knowledge to the micro-
scopic electronic structure of a material by means of density
functional theory (DFT), the macroscopic TE transport
properties can be obtained within the Boltzmann transport
theory [37, 38]. Hereinafter, the generalized electronic
transport coefficients will be derived in detail by solving a
linearized Boltzmann equation. Hence, the thermoelectric
transport processes can be written and discussed by means
of generalized forces and fluxes. Analogously solving the
Boltzmann equation for the phonon distribution function
yields access to the lattice thermal conductivity.

2.1 Linearized Boltzmann equation and relax-
ation time approximation We restict the following con-
siderations to a temperature gradient ∇T , and a time-
independent external electric field E. Applying weak external
fields, one can expect that a system in a steady state will only
slightly vary from its equilibrium distribution. Therefore, it is
suitable that the electronic state occupation function fk in the
steady state can be split into the equilibrium contribution f 0

k

given by the Fermi–Dirac distribution at chemical potential
� and temperature T and a modest perturbation gk:

fk = f 0
k

+ gk with f 0
k

= 1

e(Ek−�)/kBT + 1
. (1)

The semiclassical equation of motion for the position r

and the wave vector k can be used to express the collision
integral as the temporal change of the fk by the action of the
external electric field E [37]. Supposing only weak fields and
small temperature gradients, a linearized Boltzmann equa-
tion is obtained. Assuming, additionally, that the collision
integral is proportional to the perturbation gk divided by the
relaxation time τk, the solution of the Boltzmann equation in
relaxation time approximation (RTA) can be written as

gk = τkvk

[
|e|E + Ek− �

T
∇T

]
∂f 0

k

∂E
. (2)

The derivative
∂f 0

k

∂E
of the Fermi–Dirac distribution func-

tion indicates that only electrons within an energy shell in
the order of kBT around the Fermi surface can react to the
external forces. Here, unoccupied states are in their vicinity
and are redistributed in k-space.

2.2 Transport coefficients While it has been dis-
cussed in the last section how a weak electric field and a ther-
mal gradient modify the population of electronic states, one
may infer which electrical and heat currents j and Q will ex-
ist in the steady state. Taking into account that fk = f 0

k
+ gk

1Some of the measurements for the PbSeTe-based SL have been corrected
after publication by the authors [36]. The maximum value of ZT = 3.5 is
highly unlikely, ZT > 1 is expected for all the samples.
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and that there is no spontaneous net current flow in equilib-
rium, only gk of the perturbed occupation function fk causes
a current flow. With Eq. (2) the currents can be expressed
by the generalized conductivity moments with the moment’s
order n

L(n)
(‖,⊥)(�, T )

=
∫

dE Σ(‖,⊥)(E) · (E− �)n

(
−∂f 0

k
(�, T )

∂E

)
Ek=E

,

(3)

involving integrations over surfaces of constant electron en-
ergy E in reciprocal space:

Σ(‖,⊥)(E) = 1

�(2π)3

∮
Ek=E

dS

|vk|τk

(
vk,(‖,⊥)

)2
. (4)

The directional indices “‖” and “⊥” refer to the transport
properties within and perpendicular to the basal plane of the
layered systems considered here. In an isotropic or cubic
system this directional dependency disappears.

Σ(‖,⊥)(E) is the zeroth moment at vanishing tempera-
ture and coincides with the transport distribution function
(TDF) Σ(‖,⊥)(E) ≡ L(0)

(‖,⊥)(E, T = 0) as introduced to thermo-
electrics by Mahan and Sofo [39].

Using the definitions above, the electric and heat cur-
rent densities can be expressed in terms of the generalized
conductivity moments

j = e2L(0)E − e

T
L(1)∇T, (5)

Q = eL(1)E − 1

T
L(2)∇T. (6)

Depending on the boundary conditions certain transport
coefficients can be deduced connecting acting fields and re-
sulting quantities.

At a constant temperature, an electric current j flows in
the material in response to an applied external electric field
E. Comparing Eq. (5) with Ohm’s law one obtains

j = σE with σ = e2L(0), (7)

where σ is the electric conductivity tensor. Here, σxx,zz = σ‖,⊥
correspond to the diagonal components within and perpen-
dicular to the basal plane, respectively.

Assuming an electrical open circuit j = 0 and apply-
ing a steady thermal gradient along the sample, the resulting
electric field E = S∇T is given by

E = 1

eT

L(1)

L(0)
∇T with S = 1

eT

L(1)

L(0)
. (8)

S is called the Seebeck coefficient or thermopower.

Combining the thermopower in Eq. (8) with the electrical
conductivity in Eq. (7), the thermoelectric power factor reads

PF = σS2 = 1

T 2

(
L(1)

)2

L(0)
, (9)

which is the electrical power throughput of a material at a
given temperature difference. The power factor strongly de-
pends on the charge carrier concentration of the thermoelec-
tric material and should be optimized to maximize the figure
of merit ZT .

The electronic part to the total thermal conductivity ac-
counts to

κel,(⊥,‖) = 1

T

(
L(2)

⊥,‖(�, T ) −
(
L(1)

⊥,‖(�, T )
)2

L(0)
⊥,‖(�, T )

)
, (10)

with the heat current Q⊥,‖ = −κel⊥,‖∇T .
The second term in Eq. (10) gives corrections due to

the Peltier heat flow that occur when bipolar conduction is
present [42, 45]. With Eqs. (8) and (10) and the abbreviation
κ0

el⊥,‖ = 1
T
L(2)

⊥,‖(�, T ) [39], the Lorenz function reads as

L⊥,‖ = κel,(⊥,‖) · (σ⊥,‖ · T )−1, (11)

L⊥,‖ = κ0
el,(⊥,‖)

σ⊥,‖T
− S2

⊥,‖ . (12)

Clearly, in the low temperature regime the Lorenz function
L consists of a constant term and a negative term of or-
der T 2. A detailed analysis for the Lorenz function of the
Bi2Te3/Sb2Te3 SL was given in refs. [46, 44], where the di-
rectional anisotropy of L was found to be an intricate func-
tion of the SL period. Results for the anisotropic bulk Lorenz
function of Bi2Te3 are shown in Fig. 2(c).

In the most realistic case one has to assume the presence
of an electric field, a thermal gradient, and an electric current
j, simultaneously. Thus, eliminating the electric field, the
general heat flux is rewritten as

Q = Πj − κel∇T, (13)

introducing the Peltier coefficient Π = ST . Calculating the
divergence of the heat flux and rearranging one obtains [47]

T∇S · j = Tj · ∇
(

Π

T

)
= j · (∇(ST ) − S∇T ).

(14)

Thereby, a classical separation of the Peltier and Thomson
contribution is artificial, as both effects ground on the gradi-
ent of the thermopower [47]. This can be either the temper-
ature driven gradient S∇T , or the spatially driven gradient
(∇S)T . At isothermal conditions, Eq. (14) yields the pure

www.pss-a.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (a) Anisotropic thermopower for bulk Bi2Te3. Elec-
tron doping refers to the blue (thick) lines, while red (thin)
lines refer to hole doping. Solid lines show the in-plane part
S‖ of the thermopower, while dashed lines show the cross-plane
part S⊥. The extrinsic charge carrier concentration was fixed to
N = 1 × 1019 cm−3. Experimental data (squares, diamonds) from
Ref. [40, 41] are given for comparison. (b) Thomson coefficient
for Bi2Te3 in the same representation as done for (a). (c) Lorenz
function L (ref. to left scale) and electronic contribution κel to the
total thermal conductivity (ref. to the right scale) in dependence
on position of the chemical potential � for bulk Bi2Te3. Shown
are the in-plane (thick lines) and cross-plane (thin lines) transport
direction. Superimposed onto the Lorenz function in the in-plane
direction is a color code referring to the charge carrier concentra-
tion. The red cross points out the change from n to p doping. Thin
vertical dash-dotted lines emphasize the position of the chemical
potential for a charge carrier concentration of N = 3 × 1019 cm−3

under n and p doping (blue and red line), respectively. The con-
duction band maximum (CBM) is located at 0.105 eV. Green
open circles show experimental values from Ref. [42] for κel,‖
for an n-type Bi2Te3 single crystal. The temperature is fixed to
300 K and the Lorenz function is related to the classical metallic
limit L0 = 2.44 × 10−8 W
 K−2. Adapted with permission from
refs. [43, 44]), Copyright (2011,2012) APS.

Peltier effect as j · ∇ (ST ). For a homogeneous material un-
der a temperature gradient,

j · (∇Π − S∇T ) = j ·
(

dΠ

dT
−S

)
∇T=Kj∇T (15)

holds. Here,K is introduced as Thomson coefficient of a ma-
terial, connected with a Thomson heat per volume Kj∇T

[48]. The Thomson coefficient is a measure for the heat
absorbed or emitted when the current j flows in the one
or other direction of a temperature gradient. In metals, the
Thomson coefficient compares to the magnitude of the ther-
mopower and is rather small with values below a few �V K−1.
Hence, the related heat is only of minor relevance. In non-
degenerate semiconductors, the thermopower S can take
rather large values of above several hundreds �V K−1. Addi-
tionally, the dependence of S on the temperature is strongly
non-monotonic, which favors enhanced values of the deriva-
tive dS

dT
. To give some insight on this feature, in Fig. 2(a),(b)

the temperature-dependent anisotropic thermopower and the
related Thomson coefficient are shown for bulk Bi2Te3 for an
electron and hole doping of N = 1 × 1019 cm−3, respectively.
Here, at operating temperatures between T = 350 − 400 K
an average Thomson coefficient of about 490 �V K−1, can
be stated under electron doping in the cross-plane transport
direction. This number is far below the optimal value of
K = 1500 �V K

−2, which was suggested for optimally graded
materials based on Bix(SbTe)(1−x) [49]. This magnitude of the
Thomson coefficient could be even more enhanced for wide
band gap semiconductors (Eg > 1 eV) at very low charge
carrier concentrations of N ≤ 1 × 1014 cm−3. At the same
time, bipolar conduction is suppressed and electrical con-
ductivity is small. Consequently, the absorbed or generated
heat Kj∇T is tiny and the Thomson effect is ineligible for
cooling applications [48].

Nevertheless, beside the need of sophisticated techniques
to measure K, knowledge and controlling of the Thomson
coefficient could, e.g., lead to a significant reduction of the
programming current in phase-change memory devices [50].
Moreover, a large K in a broad temperature range could lead
to a new kind of thermoelectric coolers based on the Thomson
effect. These would enable solid-state cooling to cryogenic
temperatures [48, 49].

2.3 Phonon transport properties Boltzmann’s
transport theory can also be applied to phonons by simply
accounting for the Boson occupation function

n0
ω

= 1

e�ωq/kBT − 1
, (16)

where ωq is the phonon frequency dispersion, and q is a short-
hand notation for the wave vector and the phonon branch.
Equivalent to the path described in Section 2.1, one can derive
the linearized phonon Boltzmann transport equation (PBTE)
in RTA [51, 37, 52, 53]. Similar to Eq. (4), the phonon thermal
conductivity κph,(‖,⊥)(T ) can be calculated as

κph(T ) =
∫

dω �ph(ω) CV (ω, T ) , (17)

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-a.com
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Figure 3 (a) Phonon dispersion of rhombohedral bulk Bi2Te3 obtained by a DFT supercell calculation within a non-relativistic (black-
dashed lines) and full-relativistic (solid red lines) approach. (b) Partial and total phonon DOS of bulk Bi2Te3. Circles represent the
corresponding neutron scattering measurements [54] and squares denote results for the Te partial PDOS obtained by Mössbauer spec-
troscopy measurements [55]. (c) Directionally and spatially resolved phonon DOS for the two inequivalent Te sites. Solid lines show the
in-plane components of the PDOS and dashed lines show the component parallel to z direction. The theoretical data in panels (b) and (c)
have been convoluted with a Gaussian for better comparability with the measured curve.

including integrations over surfaces of constant phonon fre-
quency ω,

�ph,(‖,⊥)(ω) = 1

8π3

∮
ωq=ω

dS∣∣vq

∣∣τqv
2
q,(‖,⊥). (18)

These properties are analogous to the electronic case in
Eq. (4) and include the phonon density of states (PDOS)
F(ω). Within, the specific thermal heat at constant volume
and temperature T will be defined as

CV (ω, T ) = (�ω)2

kBT 2
n0

ω

(
n0

ω
+ 1

)
. (19)

Ingredients of the kernel Eq. (18) are the phonon fre-
quency dispersion (cf. Fig. 3(a)) and the corresponding
phonon density of states (PDOS), which has been calcu-
lated using either plane wave codes [3, 56, 2] or a phonon
Green function method [57], respectively. Accurate force
calculations for Bi2Te3 supercells of 40 atoms have been
performed to construct the dynamical matrix and thus the
phonon frequencies and the eigenvectors of the vibrational
modes. Fig. 3(b) shows the calculated (solid line) and mea-
sured (circles, [54]) total PDOS of bulk Bi2Te3. The calcu-
lated data has been convoluted with a Gaussian of width 1.5
meV (experimental resolution) for better comparability. The
overall correspondence between theory and experiment is
very convincing, with the exception of the acoustic band-
width being overestimated by the calculations. The main
features above 7 meV are in good agreement. Comparing to
other experimental methods, namely ultrasonic studies [58]

and recent synchrotron radiation measurements by Bessas
et al. [55], even the acoustic branch is in very good agreement
with experiments (see below). The colored lines in panel (b)
show the element-resolved partial PDOS of Bi and Te, re-
spectively. As pointed out, the locally resolved contributions
to the acoustic branches and the lower optical modes below
10 meV are dominated by Bi, whereas the higher energetic
parts of the vibronic spectrum are dominated by Te oscilla-
tions. Green squares denote the Te-PDOS measured using
Mössbauer spectroscopy [55]. These experiments have been
performed with higher energetic resolution compared to the
neutron scattering reference data and show a better agreement
with theoretical data in the acoustic region. Evaluating the
directional PDOS sheds some light on the main components
of the optical frequencies. As an example, Fig. 3(c) shows the
in-plane and out-of plane components of the partial PDOS
of the Te1 as well as the Te2 site. The peaks of the PDOS
at 10 and 12 meV are mainly originating from the respective
transverse and longitudinal oscillations of these atoms per-
pendicular to the c-axis. In particular the directional PDOS
of Te2 reflects the strong bonding within the Te layers, com-
pared to the relatively weak Van-der-Waals bonding between
neighboring Te layers.

The developed methods allow an accurate calculation of
vibrational modes for state-of-the art thermoelectrics, i.e.,
Bi2Te3, from first principles which are in good agreement
with experimental data. A very challenging task to obtain
the ab initio lattice thermal conductivity κph is still the eval-
uation of the phonon–phonon coupling matrices and corre-
sponding relaxation times τq. In contrast to the electronic
case a constant τq fails completely. In the most simplified

www.pss-a.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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case, the phonon mean free paths Λ(q) have at least to be
modeled by empirical approaches based on Debye-models
neglecting the phonon dispersion relation, and introducing
parameters to treat different scattering mechanisms [59, 60].

Today, sophisticated methodology [61] allows for the so-
lution of the PBTE and possible access to the phonon mean
free paths based on ab initio calculations. When the dominant
scattering events are two- and three-phonon processes the
first principle calculation of the second- and third-order in-
teratomic force constants is sufficient to evaluate the phonon
spectra and the three-phonon scattering rates, respectively.
Recently, great effort was done to numerically represent three
phonon processes by the calculation of anharmonic force
constants within supercell and density functional perturba-
tion schemes (DFPT) schemes [62–64].

With the three-phonon scattering rates being indirectly
proportional to the phonon relaxation times τq, the PBTE
can be solved in the relaxation time approximation (RTA),
i.e., Λ(q) = τqv(q). While the RTA is accounting only for
non-momentum-conserving Umklapp processes the theoret-
ical RTA results most often reproduce the experimental data
of κph within 10% at room-temperature [65, 63, 66]. Within
the RTA ab initio calculations for the lattice thermal con-
ductivity of bulk Bi2Te3[67], Si and Ge [64] and even Si/Ge
heterostructures [68, 69] have been performed successfully.

While being omitted within the RTA, momentum-
conserving normal three-phonon processes can play a sig-
nificant role for materials with very high κph, e.g., diamond
or graphene. Here, the PBTE has to be solved iteratively to
self-consistency and gives the most accurate results for Λ(q).
This approach has been implemented very recently [70].

3 Results for thermoelectric heterostructures
3.1 Bi2Te3/Sb2Te3 heterostructures The chalco-

genides Bi2Te3 and Sb2Te3 and their solid solutions
dominated efficient bulk thermoelectrics with ZT ≈ 0.5 − 1
in the last fifty years [71–73]. The intrinsic layered
Bi2Te3 and Sb2Te3 show large anisotropies in their crystal
structure and their thermoelectric transport properties. At
first glance, the anisotropic electronic structure of both
materials was studied in detail [74]. The band structure’s
topology is very complex, and strong spin-orbit-coupling
effects dictate the formation of the band edges. To give
an example, as shown in Fig. 4(b) and (c), the conduction
band minimum (CBM) of Bi2Te3 was found to consist of
two valleys, in contrast to the six-valley model proposed by
Drabble and Wolfe [75]. However, at slightly increased band
occupation of about N = 3 × 1019 cm−3, additional local
CBM off the high symmetry lines are occupied, forming the
expected six valleys in reciprocal space.

Specific details of the band structures topology, like sad-
dle points, were furthermore found to be direct sources of
extrema of the electrical conductivity anisotropy [74]. In
ref. [43] it is shown that the anisotropy of the electrical
conductivity surpasses the experimental findings for Bi2Te3,
but not for Sb2Te3, implying anisotropic scattering effects
in the first. By detailed convergence and model studies it

Figure 4 (a) Brillouin zone of the rhombohedral lattice. (b) Band
structure of unstrained bulk Bi2Te3 near the band gap along the
lines shown in the inset. (c) Contour plot of E(k) at the experi-
mental lattice constant in the plane ( ZU) for Bi2Te3. 10 isolines
for E − ECBM at 0–0.19 eV with a constant increment (dotted); ad-
ditionally, two isolines at E − ECBM = 0.05 eV and E − ECBM =
0.17 eV with the saddle points s1 and s2, respectively (bold). The po-
sitions of the conduction band minimum (CBM) and the local con-
duction band minimum (LCBM) are marked with crosses. Adapted
with permission from Ref. [74], Copyright (2011) APS.

was shown, that different numerical methods for the deter-
mination of the electrical conductivity anisotropy can give
results closer to experiment, hiding the evidence for pos-
sible anisotropic scattering effects [76]. Contrary to earlier
experimental assumptions [77, 78], the anisotropy of the ther-
mopower of both tellurides stems to a large amount, probably
entirely, from band structure effects, more precisely from a
distinct anisotropy of the TDF (cf. ref. [43]).

The application of interfacial strain in epitaxially grown
Bi2Te3 and Sb2Te3 in order to optimize the TE transport prop-
erties was found to be unsatisfying [43]. Due to compensation
effects of the strain-dependent thermopower and electrical
conductivity, the related power factor decreases under ap-
plied compressive in-plane strain for Bi2Te3, while being sta-
ble for tensile strained Sb2Te3 (cf. Fig. 5(c)–(f)). Thus, grow-
ing Bi2Te3/Sb2Te3-SLs, a substrate favoring Bi2Te3 should
be chosen for TE applications, because the transport proper-
ties of Sb2Te3 are much more robust under applied strain.

In 2001, Venkatasubramanian et al. made considerable
contributions to the field of chalcogenide TE’s. These au-
thors introduced the concept of a PBET-SL [11, 5] and hence
found the cross-plane lattice thermal conductivity to be dras-
tically reduced below the alloy limit [16, 29]. Furthermore, it
was argued that the electrical conductivity anisotropy σ‖

σ⊥
is a

function of the SL period and reduces to values smaller than
found for bulk, clearly preferring the cross-plane transport
σ‖
σ⊥

≤ 1 (cf. Fig. 1) for some heterostructures. Both experi-
mental findings added up to the highest values for the figure
of merit so far: ZT = 2.4 for a p-type Bi2Te3/Sb2Te3 SL and
ZT = 1.5 for a n-type Bi2Te3/Bi2Te2.83Se0.17 at room tem-
perature.

The findings of σ‖
σ⊥

≤ 1 are contrary to expectations, as
σ‖
σ⊥

∼ 2.5 − 5.5 for bulk Sb2Te3 and Bi2Te3 (cf. Fig. 5(a),
(b) and [43]). Further carrier confinement in the cross-plane
direction due to the heterostructure should be expected.
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Figure 5 Calculated electrical conductivity anisotropy at 300 K of
bulk (a) Bi2Te3 and (b) Sb2Te3. Electron doping refers to blue lines,
while red lines refer to hole doping. The dashed lines in panel
(a) present the ratio obtained with an anisotropic relaxation time
τ‖
τ⊥ = 0.47, while all other results are obtained with an isotropic re-
laxation time (τ‖ = 11 fs (12 fs) for Bi2Te3 (Sb2Te3)). Experimental
data (circles and triangles) are given for comparison (further details
in Ref. [43]). (c)–(f) In-plane (solid lines) and cross-plane (dashed
lines) doping-dependent powerfactor at 300 K for (c) Bi2Te3 in the
Bi2Te3 structure, (d) Bi2Te3 in the Sb2Te3 structure, (e) Sb2Te3 in
the Bi2Te3 structure, and (f) Sb2Te3 in the Sb2Te3 structure. Elec-
tron (hole) doping is presented as blue thick (red thin) line. The
lattice constants of unstrained bulk Bi2Te3 and Sb2Te3 are 4.384
and 4.264 Å, respectively. Adapted with permission from Ref. [43],
Copyright (2011) APS.

Venkatasubramanian et al. argued that in the SL, due to
weak confinement and near zero band offset, there is mini-
mal anisotropy between in-plane and cross-plane electrical
conductivities [5]. Venkatasubramanian et al. concludes that
in bulk Bi2Te3 and Sb2Te3

σ‖
σ⊥

is equal to 1 since the band
offsets in bulk materials are zero by definition. As has been
shown by our combined computational and experimental ap-
proaches [44], the latter conclusion cannot be confirmed.

While in [44] we confirmed that the valence band off-
set is almost vanishing in all discussed SL, leading to a
bulk-like behavior (cf. Fig. 6(b)), strong quantum-well ef-
fects were found upon electron doping. Here, the electrons
tend to localize in Bi2Te3 layers, leading to an diminished
cross-plane transport (cf. Figs. 6(a, c, d)). The in-plane trans-
port properties, especially under hole doping, only showed a
weak dependence on the SL period. However, no enhance-
ment of the in-plane TE transport was found under quantum
confinement, as suggested within the concept of Hicks and
Dresselhaus. As an additional result, the Lorenz function of
the Bi2Te3/Sb2Te3 SL and their directional anisotropy were
found to be an intricate function of the SL period [46, 44].
Large deviations from the metallic limit L0 are evident even
in the case of large extrinsic charge carrier concentrations,
e.g., L⊥

L0
∼ 2. The latter finding could be important for the

community, as usually the lattice thermal conductivity is de-
rived by κph = κ − LσT . With κ being directly measured by

Figure 6 (a) and (b) Directional anisotropies of the electrical con-
ductivity for (Bi2Te3)x/(Sb2Te3)1−x SLs in dependence on the su-
perlattice period at 300 K. Results for three different charge carrier
concentrations (in units of cm−3) are compared, for (a) electron
doping and (b) hole doping. (c) Site-resolved probability amplitude
for a (Bi2Te3)x/(Sb2Te3)1−x SLs with x = 2/6. In the same man-
ner, the site-resolved cross-plane electrical conductivity [in units
of (cm)−1] is shown. The temperature is fixed at 300 K, the charge
carrier concentration is N = 3 × 1019 cm−3. (e) Cross-plane figure
of merit for different (Bi2Te3)x/(Sb2Te3)1−x SLs at varying temper-
ature and fixed charge carrier concentration of N = 3 × 1019 cm−3.
Here, red and blue lines constitute p- and n-doping, respectively.
Here, the electronic part κel was calculated, while the lattice part κph

was modeled by experimental data from literature. The functional
behavior κtot(T ) can be found in the original publication Ref. [44].
Adapted with permission from Ref. [44], Copyright (2012) APS.

3ω methods [79], assuming too small or large Lorenz num-
bers leads to wrong estimations for the lattice part of the
thermal conductivity [80].

Concluding, for all Bi2Te3/Sb2Te3 SLs enhancements of
the electronic TE transport properties could not be found.
At its best, they behave as being bulk-like, and the enhance-
ment for the figure of merit stems solely from a reduction
of the cross-plane thermal conductivity. As shown in Fig. 6
and discussed in [44], ZT ≈ 1 for the p-type SL at 300 K;
it reaches maximal values of ZT ≈ 1.3 at 450 K for the 5 Å
Bi2Te3/10 Å Sb2Te3-SL. The latter is the same SL compo-
sition for which the largest values of ZT were achieved in
experiment, too [29]. While our absolute values for ZT are
in contrast to the experimental findings of Venkatasubrama-
nian et al. , due to the fact that the measured σ‖

σ⊥
≈ 1 could

not be confirmed, we find very good accordance to recent
experimental findings in the group of Böttner et al. [13–15].

4 Silicon/germanium heterostructures Silicon
based materials are particularly interesting for TE transport,
as conventional TE are often based on environmentally
harmful lead, tellurium or selenium compounds and are
therefore hard to integrate in semiconductor electronics.
Silicon, the cradle of modern semiconductor electronics, on
the other hand is non-polluting, readily available, cheap, and
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Figure 7 Fermi surfaces of electron-doped silicon under (a) compressive strain, (b) no strain, and (c) tensile strain in [001]-direction. The
absolute value of the group velocities in units of 0.08 × 106 ms−1 are plotted on the Fermi surfaces. As a reference the band structure on
two high-symmetry lines is given below. The doping corresponds to additional 0.01 electrons per unit cell which causes carrier densities
of N = 6.25 × 1019 cm−3. (d) Strain-dependent anisotropic thermopower in relative units (left scale) and absolute units (in (�V K−1),
right scale) for the in-plane (blue) and cross-plane (red) transport directions. The temperature was fixed to 100 K and the doping amounts
to 1.6 × 10−7 electrons per unit cell. (e) Analytical dependence of the thermopower on [001]-biaxial strain for different electron charge
carrier concentrations, small charge carrier concentration (dashed lines) and increased charge carrier concentration by a factor of five
(solid lines). Adapted from Ref. [81]. Copyright IOP Publishing. Reproduced with permission. All rights reserved.

perfectly integrated in the present electronics infrastructure.
While silicon has been stated as an inefficient thermoelectric
in the past due to its large thermal conductivity, recent
experiments and theory revealed that nanostructuring could
lead to thermoelectric efficiencies comparable to state-of-the
art commercial thermoelectric materials [82–86].

For successful applications, an optimization of TE elec-
tronic properties of silicon, i.e., the power factor, is of utmost
interest. Interfacial strain plays an important role in today’s
silicon-based semiconductor materials. The strain-induced
enhancement of the mobility, for either electrons or holes,
by strain-engineering is widely applied [87–89]. The ques-
tion whether a significant enhancement of the anisotropic
TE transport is achievable by biaxial strain was answered
by us within publications [81] and [90]. Two directions of
strain were discussed, i.e., [001]-biaxial strain [81] and [111]-
biaxial strain [90]. Both alter the n-type TE transport due to
different physical mechanisms. As shown in Figs. 7(a)–(c),
in the case of [001] strain the sixfold electron pocket degen-
eracy is lifted and a redistribution of states into other areas
of the BZ is obtained. These areas are related to other effec-
tive masses and Fermi velocities. The gain in the electrical
conductivity, which can be obtained by the strain-induced re-
distribution of states is noticeable. However, the lifting of de-
generacy was found to lead to a reduction of the thermopower
(cf. Fig. 7(d)). As shown in an analytical model [81], which
assumes a lifting of degenerated bands, the absolute value

of the thermopower depends directly on the number of car-
rier pockets being occupied. As discussed in ref. [81], the
enhancement obtained in the electrical conductivity is there-
fore compensated by a reduction in the thermopower, leading
to negligible optimization of the power factor. This picture
holds over a broad temperature and doping range.

In the case of biaxial strain applied in the [111]-direction
the situation is different. Here the six-fold degeneracy of the
electron carrier pockets is maintained by symmetry. Con-
trary to the case of [001]-strain, the directional electron ef-
fective masses change with applied strain [90]. This is shown
in Fig. 8(a). Due to the retained degeneracy of bands, the
thermopower is less sensitive upon applied [111]-strain. It
was found that the thermopower changes proportional to the
change in the direction averaged effective mass (cf. inset
in Fig. 8(a)), but does not drop immediately upon applying
strain [90]. Summarizing, at low temperature and low doping
an enhancement of the power factor was obtained for com-
pressive and tensile strain in the electron-doped case and for
compressive strain in the hole-doped case. For the thermo-
electrically more relevant high-temperature and high-doping
regime a slight enhancement of the power factor was only
found under small compressive strain with the power factor
overall being robust against applied strain [90].

Based upon the previous findings, the TE transport of an
archetypical non-symmetrized Si/Ge SL grown on Si-[111]
was studied in ref. [90]. Similar to the case of Bi2Te3/Sb2Te3
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Figure 8 (a) Directional effective conduction band masses for silicon under [111]-strain. The insets show in detail the response of the
averaged effective mass M on the applied strain, as well as the rhombohedral unit cell (red lines). (b) The doping-dependent cross-plane
figures of merit ZT (of the Si/Ge-SL (blue lines) and bulk Si (black lines) under electron doping at different temperatures. (c) The electrical
conductivity in dependence on the position of the chemical potential � at zero temperature, shown for bulk silicon (green dashed-dotted
line) and the Si/Ge-SL in the in-plane (red solid line) and cross-plane (blue solid line) directions. The conductivity anisotropy (black
dashed line referring to the right axis) is stated for the Si/Ge-SL. The cross at the CBM is the value obtained from an analytical effective
mass approach. For the determination of the cross-plane figures of merit, the electronic part κel was calculated, while the lattice part κph

was modeled by experimental data from literature. The functional behavior κtot(n) can be found in the original publication Ref. [90].
Adapted from Ref. [90]. Copyright IOP Publishing. Reproduced with permission. All rights reserved.

SLs an evident reduction of the lattice thermal conductivity
was found in Si/Ge based SL and lead to focussed experi-
mental research [18–20]. At a first glance it was shown that
no degradation of the electronic transport by the heterostruc-
ture is expected for electron doping, while even showing an
enhancement of about 10% for the cross-plane power fac-
tor compared to bulk Si (cf. right scale in Fig. 8(c)). As
shown in Fig. 8(b), assuming a decrease in lattice thermal
conductivity, large enhancements in ZT to 0.2 and 1.4 are
achieved at 300 and 900 K, respectively. However, the pre-
dictions of an in-plane ZT ∼ 1 at room temperature stated by
Koga [91] could not be confirmed. Here, they used parabolic
band models neglecting any coupling of adjacent layers, a
rather crude assumption. The results of their experimental
proof-of-principle for [001]-oriented Si/Ge SL [92], show-
ing up ZT ∼ 0.1 at 300 K, are in closer agreement to our
first-principles calculations presented in ref. [90].

Under hole doping the electronic transport in the Si/Ge-
SL is heavily suppressed due to quantum-well effects. As
shown in Fig. 8(c) the electrical conductivity anisotropy is
considerably increased to values of σ‖

σ⊥
≈ 8 at thermoelectric

relevant hole doping concentrations. The valence states in a
broad range around the band gap are formed by germanium
states. Consequently, the p-type Si/Ge heterostructure con-
sists of electrical high conducting (Ge) and nearly insulating
(Si) material layers. As a result, the cross-plane power factor

shows only around 50% of the bulk maximal value, leading
to very small ZT values under hole doping.

5 Summary and outlook During the period of the
Priority Program SPP 1386 we developed a method to
fully describe the thermoelectric properties in the diffu-
sive limit of transport for three-dimensional bulk systems
and their two-dimensional partners, i.e., heterostructures and
thin films, on a consistent and convenient ab initio footing.
While fundamentals of the functionality of phonon-blocking
and electron-transmitting superlattices could be unveiled, we
provided also distinct analysis and ideas for TE enhance-
ment for the two archetypical TE heterostructures based on
Bi2Te3/Sb2Te3 and Si/Ge.

Summarizing, the interdependence of the thermoelectric
transport properties remains a big obstacle in thermoelectric
superlattices and bulk materials. Optimizing the electronic
transport properties by tuning the charge carrier concentra-
tion seems to remain the only efficient and promising ap-
proach.

As an alternative ansatz it was suggested to enhance
the thermoelectric transport by strain, or in other words, to
understand whether strain could be the reason for enhanced
cross-plane thermoelectric transport, even at the expense of
a possibly less efficient in-plane transport. In both material
systems, no pronounced enhancement could be found,
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while the transport properties were robust against strain,
especially in the thermoelectric desirable high-doping and
high-temperature regime. While for Bi2Te3 a decrease of
the maximal power factor of about 27 and 23% for n and
p-doping, respectively, was found, the strain shows nearly
no influence on the power factor for Sb2Te3.

For Si/Ge-based superlattices, strain along the [111]-
direction was found to be preferable with respect to [001]-
strain. Under biaxial strain in [001]-direction lifting of the
band’s degeneracy causes reoccupation of states in the Bril-
louin zone, which can enhance the electrical conductivity in
some cases, but is always related to a decrease of the ther-
mopower. Both effects tend to compensate each other. The
degeneracy of the conduction bands is preserved by symme-
try in the case of strain along the [111]-direction. Therefore,
a reduction of the thermopower is not expected a priori.

The studies on the thermoelectric transport of the su-
perlattices revealed distinct similarities, too. For both super-
lattice systems, the band gap differences between the bulk
materials caused band offsets in the heterostructures. These
band offsets tend to localize entirely at either the valence band
edge or the conduction band edge, causing strong quantum
confinement effects of the carriers in the cross-plane trans-
port direction. For Bi2Te3/Sb2Te3 SLs , quantum confinement
leads to a strong reduction of the cross-plane transport under
n-doping, while for the Si/Ge superlattice the p-type trans-
port was diminished. The complementary n or p-type trans-
port properties were found to be bulk-like, or could only
be slightly enhanced, as shown for the Si/Ge superlattice.
The remarkable experimental findings of a strongly enhanced
cross-plane transport in the Bi2Te3/Sb2Te3 SLs could not be
confirmed.

Nevertheless, for at least one carrier-type (electron or
hole transport) bulk-like electronic transport can be expected
in thermoelectric superlattices, enabling to benefit from the
reduction of the lattice thermal conductivity for an enhanced
figure of merit.

Further studies could account additionally for interfa-
cial disorder or the detailed influence of scattering effects,
like electron-impurity, phonon-phonon and electron-phonon
scattering, to get more insight into the complexity of thermo-
electric heterostructures.
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C 14, 2705–2712 (1981).
[55] D. Bessas, I. Sergueev, H. Wille, J. Persson, D. Ebling, and

R. P. Hermann, Phys. Rev. B 86, 224301 (2012).
[56] G. Kresse and D. Joubert, Phys. Rev. B 58, 1758–1775 (1999).
[57] M. Schackert, T. Markl, J. Jandke, M. Holzer, S. Ostanin, E.

K. U. Gross, A. Ernst, and W. Wulfhekel, Phys. Rev. Lett.
114(4) (2015).

[58] J. O. Jenkins, R. W. Ure, and J. A. Rayne, Phys. Rev. B 5,
3171 (1972).

[59] P. Allen, Phys. Rev. B 88(14) (2013).
[60] J. Ma, W. Li, and X. Luo, Phys. Rev. B 90(1), 035203 (2014).
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