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Orbital signatures of Fano-Kondo line shapes in STM adatom spectroscopy

Sebastian Frank and David Jacob
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

(Received 28 September 2015; published 15 December 2015)

We investigate the orbital origin of the Fano-Kondo line shapes measured in STM spectroscopy of magnetic
adatoms on metal substrates. To this end we calculate the low-bias tunnel spectra of a Co adatom on the (001)
and (111) Cu surfaces with our density functional theory-based ab initio transport scheme augmented by local
correlations. In order to associate different d orbitals with different Fano line shapes we only correlate individual
3d orbitals instead of the full Co 3d shell. We find that Kondo peaks arising in different d levels indeed give
rise to different Fano features in the conductance spectra. Hence, the shape of measured Fano features allows
us to draw some conclusions about the orbital responsible for the Kondo resonance, although the actual shape
is also influenced by temperature, effective interaction, and charge fluctuations. Comparison with a simplified
model shows that line shapes are mostly the result of interference between tunneling paths through the correlated
d orbital and the sp-type orbitals on the Co atom. Very importantly, the amplitudes of the Fano features vary
strongly among orbitals, with the 3z2 orbital featuring by far the largest amplitude due to its strong direct coupling
to the s-type conduction electrons.
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I. INTRODUCTION

The Kondo effect is one of the most fascinating phenomena
in condensed matter physics, occurring in a vast number of
different systems (see, e.g., Ref. [1] and references therein),
ranging from bulk metals doped with magnetic impurities
[2–4] to nanoscale systems such as semiconductor quantum
dots [5,6] and carbon nanotubes connected to metal leads
[7,8]. Generally, the Kondo effect leads to the quenching of a
local magnetic moment associated with localized and strongly
interacting electronic states in the system by interaction
with the conduction electrons. The quenching of the spin is
accompanied by drastic changes in the electronic and transport
properties. This strong impact on the electronic and magnetic
properties of a system makes the Kondo effect an important
factor for the functionality of atomic and molecular-scale
electronic devices.

Since the pioneering works of Li et al. [9] and Madhavan
et al. [10] scanning tunneling spectroscopy (STS) has become a
standard tool for probing the Kondo effect of magnetic adatoms
and molecules on metallic substrates [11–18]. The Kondo
effect arises from the interaction of the magnetic moment
of the adsorbate with the conduction electrons of the metal
surface and leads to the screening of the magnetic moment
by formation of a total spin singlet state with the conduction
electrons. The formation of the Kondo-singlet state is signaled
by the appearance of a strongly renormalized quasiparticle
peak at the Fermi level, the so-called Abrikosov-Suhl or Kondo
resonance. In STS the appearance of the Kondo peak in the
local DOS of the atom or molecule leads to a zero-bias anomaly
(ZBA) in the tunnel spectra, which is generally well described
by a Fano line shape [19], although it has recently been found
that the ZBAs are actually much better described in terms of
generalized Frota line shapes [20] as the Frota function yields
a much better description of the Kondo peak than the Lorentz
function [21,22].

The origin of the Fano-like line shape is either understood
as due to the interference of different tunneling paths—
one via the strongly interacting orbitals of the magnetic

atom bearing the sharp Kondo resonance, and others going
directly to the substrate [23–25]—or is explained in terms
of tunneling into the surface alone [26–30]. A recent study
[31] combines density functional theory (DFT) with numerical
renormalization group (NRG) calculations and determines
the line shape by looking at energy-dependent transmission
eigenvalues. Surprisingly, no systematic study of the relation
between orbital symmetry of the orbital(s) bearing the Kondo
resonance and the shape of the resulting Fano resonances has
been conducted so far.

In this paper, we intend to close this gap by calculating
the Fano line shapes corresponding to Kondo peaks appearing
in different orbitals of the 3d shell of a magnetic atom on
metal surfaces. To this end we select individual d orbitals and
perform ab initio quantum transport calculations augmented
by local correlations for the selected d orbital only. There is
merit in doing so: Even in a multiorbital situation the Kondo
effect is signaled by Kondo peaks in individual d orbitals,
and often the Fano-Kondo feature of one d orbital will be
dominant in the tunnel spectrum due to different tunneling
matrix elements and Kondo scales.

We choose to study Co@Cu(001) and Co@Cu(111) as our
test systems, which have been extensively studied theoretically
and experimentally [12,18,25,28–34]. We find that Kondo
peaks arising in different d levels indeed give rise to different
Fano features in the conductance spectra. However, temper-
ature, effective interaction, and occupancy of the d orbital
also play an important role. With one notable exception, a
simplified two-level model consisting of the d orbital bearing
the Kondo resonance and one s or p orbital on the adatom
accounts for the calculated line shapes. This shows that in
these cases tunneling into substrate states only plays a minor
role for determining the actual line shapes.

The paper is organized as follows: In Sec. II we briefly
describe the method for calculating the zero-bias anomalies
in the conductance spectra corresponding to Kondo peaks
in different orbitals. In Sec. III we introduce two types of
Fano line shapes: the standard one based on a Lorentzian
resonance for the localized state and one based on the Frota
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line shape better suited for describing the Kondo resonance.
In Sec. IV we present results for a Co adatom placed on a
Cu(001) and a Cu(111) surface, respectively. In Sec. V we
devise a simplified model capturing the essence of the different
situations encountered for different orbital symmetries and
discuss the obtained results in the context of this model.
In Sec. VI, a more general discussion follows relating our
results to other experimental and theoretical works. Finally, in
Sec. VII, we conclude this work with some general remarks
on the significance of our results for other atomic or molecular
Kondo systems.

II. METHOD

We consider a magnetic atom (here, Co) that is placed on
a metallic substrate (here, Cu(001) or Cu(111)). A Cu STM
tip is placed directly above the Co atom 6 Å away so that we
are in the tunneling regime. The system is divided into three
parts as shown in Fig. 1: two metal leads, S and T, representing
the bulk electrodes connected to the substrate and STM tip,
respectively, and the device region (D), which contains the
magnetic atom and part of the surface and the STM tip.

We perform DFT-based ab initio quantum transport calcu-
lations using the ANT.G package [35]: The electronic structure
of the D region is calculated on the level of Kohn-Sham (KS)
DFT employing the LSDA functional [36] in the SVWN
parametrization [37,38] and a minimal Gaussian basis set
including the valence (4s4p3d) and outer core electrons
(3s3p) of the Co and Cu atoms [39–43]. The effect of the
bulk electrodes S and T, which are modeled by Bethe lattices
[44], on the electronic structure of D is taken into account via
self-energies �̂S and �̂T. The KS Green’s function (GF) of the
D region is thus given by

Ĝ0
D(ω) = [

(ω + μ)P̂D − Ĥ 0
D − �̂T(ω) − �̂S(ω)

]−1
, (1)

where μ is the chemical potential, P̂D the projection operator
onto D, and Ĥ 0

D is the KS Hamiltonian of the D region.
In order to capture Kondo physics, electronic correlation

beyond conventional DFT have to be included. This is done

FIG. 1. (Color online) Schematic drawing of an STM tip probing
a magnetic atom on a metal substrate. The system is separated into
three parts: the device region D (gray/yellow) contains the magnetic
atom (dark gray/red) hosting the d orbital giving rise to the Kondo
peak, and parts of the substrate and STM tip. T and S (light gray/blue)
are the bulk electrodes connected to the STM tip and substrate,
respectively.

by combining DFT with the one-crossing approximation
(OCA) [45], following the scheme developed in previous work
[46,47]. In contrast to previous work, we are interested in the
Kondo signatures of specific d orbitals, and not of the entire
3d shell.

Hence, we add a Hubbard-like interaction term ĤU =
Un̂d↑n̂d↓ only to a single d orbital of the Co 3d shell, where
ndσ is the number operator for the d orbital and a spin σ . Since
the Coulomb interaction in the correlated d orbital has already
been taken into account on a mean-field level in the KS-DFT
calculation, a double-counting correction (DCC) term has to
be subtracted from the KS Hamiltonian projected onto the d

orbital ε0
d = 〈d|Ĥ 0

D|d〉:
εd = ε0

d − εdc. (2)

In contrast to previous work, the DCC is chosen such that a
certain occupancy is achieved, i.e., for achieving particle-hole
(ph) symmetry (nd = 1) we choose εdc such that εd = −U/2.
Note that ph symmetry is only approximately achieved since
the coupling of the d orbital to the rest of the system (see
below) is generally not ph symmetric.

The interacting d orbital coupled to the electronic bath
given by the rest of the system (i.e., substrate and tip) defines an
Anderson impurity model (AIM) [48]. An effective description
of the coupling of the d orbital to the bath is given by the
so-called hybridization function �d (ω), which can be obtained
from the KS GF by

�d (ω) = ω + μ − ε0
d − [

G0
d (ω)

]−1
, (3)

where G0
d is the KS GF projected onto the d orbital, i.e., G0

d =
〈d|Ĝ0

D|d〉. The imaginary part of �d yields the broadening �d

of the d orbital due to the coupling to the rest of the system.
The AIM is now solved in the OCA [45]. The solution yields

the self-energy �d (ω) describing the dynamic correlations of
the d orbital. The correlated GF of the d orbital is then given
by

Gd (ω) = ([
G0

d (ω)
]−1 − �d (ω) + εdc

)−1
. (4)

Its imaginary part yields the spectral function or LDOS of the
d orbital ρd (ω) = −ImGd (ω)/π . Correspondingly, we obtain
the correlated GF for the D region as

ĜD(ω) = {[
Ĝ0

D(ω)
]−1 − (�d − εdc)P̂d

}−1
. (5)

This allows us to calculate the transmission function using the
Caroli expression [49],

T (ω) = Tr[ĜD�̂TĜ
†
D�̂S], (6)

where the coupling matrices for the leads are defined by

�̂T/S = i(�̂T/S − �̂
†
T/S). (7)

The self energies �T/S are typically symmetric, so that the
coupling matrices are twice the imaginary part of the self
energies. For low temperature and small-bias voltages, current
and conductance can be related to the transmission function
using the Landauer formula [50,51]. For the typical STM setup
considered here most of the applied bias voltage drops at the
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STM tip. In that case the conductance is simply given by

G(V ) = 2e2

h
T (eV ). (8)

We note that the use of the Landauer formula for the
conductance is justified in the limit of small bias voltages
compared to the Kondo temperature. In this limit transport
occurs via the Kondo resonance and thus is essentially one-
body like (apart from renormalization) and phase coherent so
that the full nonequilibrium expression for transport through
an interacting region given by Meir-Wingreen reduces to
the simpler Landauer result [52]. For larger bias voltages,
deviations from the Landauer result can occur [53–55], and
one would have to make use of the Meir-Wingreen equation
[52], which requires the solution of the AIM out of equilibrium.

III. FANO-LORENTZ AND FANO-FROTA LINE SHAPES

Fano line shapes or resonances, originally introduced by
Fano in the context of autoionization and elastic electron
scattering by helium [19], generally arise in resonant scattering
processes due to quantum interference between a quasidiscrete
resonant state and a broad background continuum. The
interference leads to an asymmetric line shape in the scattering
cross section at energies close to the resonance energy that is
well described by the Fano function

f (ε) ∝ (q + ε)2

ε2 + 1
, (9)

where the parameter q controls the shape of the Fano function,
and ε is the energy with respect to the resonant level. Equation
(9) can also be obtained from the complex representation of a
Lorentzian multiplied by a phase factor eiφq

ρFL(ω) = Im

[
eiφq

(
A

ω − ω0 + i�

)]
+ ρ0, (10)

where A is the amplitude, � is the half-width of the Lorentzian,
ω0 the resonance energy, and ρ0 a constant offset. Using
q = tan(φq/2), ε = (ω − ω0)/�, and some algebra, this Fano-
Lorentz (FL) line shape can be shown to be equivalent to the
original Fano formula (see the Appendix):

ρFL(ω) = A

�

[
(q + ε)2

ε2 + 1
− 1

]
1

1 + q2
+ ρ0. (11)

STM spectroscopy of Kondo impurities presents a similar
situation: The STM tip probes the continuous conduction
electron density of states which interacts with the Kondo
resonance at the Fermi level. The interference of different
tunneling paths then leads to Fano-type line shapes in the
conductance spectra. Assuming a Lorentzian form for the
Kondo resonance naturally leads to Fano-Lorentz line shapes
given by Eq. (11). However, in Refs. [21] and [22] Frota
showed that the Kondo peak is actually better described by
a line shape now known as a Frota line shape:

ρFrota(ω) = ARe

[√
i�F

ω − ω0 + i�F

]
, (12)

where the Frota parameter �F is related to the actual half-width
� of the resonance by � ∼ 2.54 �F. A is the amplitude and ω0
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FIG. 2. (Color online) Comparison of Fano-Frota and Fano-
Lorentz line shapes for different values of the q parameter but for
identical amplitudes and half-widths.

the position of the Frota resonance. In analogy with Eq. (10)
we define a Fano-Frota (FF) line shape as a generalized Frota
curve [56] for describing the transmission function close to the
Kondo resonance:

TFF(ω) = −ARe

[
eiφq

√
i�F

ω − ω0 + i�F

]
+ T0. (13)

The phase φq has the same meaning in the Lorentz and in
the Frota case: A value of φq = 0 leads to a dip, φq = π to a
peak, and φq = π/2 to a symmetric Fano line shape. In Fig. 2,
we compare Fano-Frota and Fano-Lorentz features, choosing
identical amplitudes and half-widths. Note that for the same
half-width Frota line shapes have a slower decay than the
Lorentzian ones.

In Fig. 3, we show FL and FF fits to the Kondo peak (left) in
the calculated spectral function ρd (ω) and the corresponding
Fano line shape (right) in the calculated transmission function
T (ω) for the case of the z2 orbital for the Co on Cu(001)
system, discussed in detail in the following section. For both
spectral and transmission functions, the resonance center is
well-described by FF and FL fits. However, only the FF fit
yields an accurate description of the flanks and the long-range
decay. In the following, we will therefore use Eq. (13) to fit
transmission functions.

IV. RESULTS

A. Co adatom on Cu(001) surface

The system under consideration is shown in the left panel
of Fig. 4. A Cobalt atom is deposited at the hollow site
of a Cu(001) surface. The Cu(001) surface is modeled by
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FIG. 3. (Color online) Fano-Lorentz (FL) and Fano-Frota (FF)
fits of the impurity spectral function ρd (ω) (left) and the transmission
function T (ω) (right) for z2-orbital, Co@Cu(001), U = 2 eV and
εd = −1.0 eV. See Sec. IV A for details.
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FIG. 4. (Color online) Left, geometry of the Co atom deposited
on a Cu(001) surface; dark gray/red, Co; gray/yellow, Cu; light
gray/blue, Bethe lattice. Right, imaginary part of the hybridization
function for the Co 3d shell.

three Cu slabs of 36, 25, and 16 atoms, respectively, which
are embedded into a Bethe lattice to describe the infinitely
extended surface. We model the STM tip by a small pyramid
of Cu atoms grown in the (001) direction, also embedded into
a Bethe lattice. The tip is placed directly above the Co atom in
a distance of 6 Å, so that the system is in the tunneling regime.

As explained in Sec. II we now compute the hybridization
functions of the Co 3d orbitals (see right panel of Fig. 4). The
fourfold symmetry of the Cu(001) surface leads to a splitting
into four groups. The xz and yz orbitals are degenerate (in the
following, results for the yz orbital are omitted) and exhibit the
strongest hybridization at the Fermi level. The hybridization
functions of z2 and x2-y2 have comparable values around the
Fermi level. The xy orbital has the lowest hybridization in the
displayed energy window. All hybridization functions show a
moderate energy dependence. Note that the hopping between
different Co 3d orbitals is zero; i.e., they do not couple to each
other on the single-particle level.

While the hybridization function is calculated ab initio, the
Coulomb interaction U is used as a parameter that allows us to
tune the Kondo coupling strength and explore the effect of the
width of the Kondo peak on the transmission line shape. But
in order to have an estimate of the magnitude, we have also
calculated U ab initio for each of the d orbitals by constrained
RPA calculations as described in Ref. [47]. We find values for
U ranging from 1.8 to 2.6 eV [57]. Accordingly, we choose
the U parameters to vary between 2 and 3 eV.

The hybridization functions from Fig. 4 together with the
energy level εd and the effective Coulomb interaction U define
an AIM, which is solved in the OCA [45]. It is a known
issue of OCA that at too low temperatures (1–2 orders of
magnitude below TK ) it gives rise to spurious non-Fermi liquid
behavior and related artifacts in the impurity spectral function,
leading to an overestimation of the height of the Kondo peak
and an unphysical self-energy with positive imaginary part
[58]. We circumvent this problem by lowering the temperature
only to the point where the imaginary part of the self-energy
becomes zero. At this point Fermi liquid behavior is obeyed,
and the unitary limit of the Kondo peak is exactly recovered.
Figure 5 shows impurity spectral functions ρd (ω) of the z2

orbital for different values of the AIM parameters εd and
U . For εd = −U/2 (red solid and blue dotted curves) we
have approximate particle-hole symmetry: the Kondo peak
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FIG. 5. (Color online) Impurity spectral functions for the z2

orbital of Co@Cu(001) for different Anderson impurity model
parameters U , εd .

is centered close to, but slightly above the Fermi level. Note
that exact particle-hole symmetry is not achieved because of
the nonconstant hybridization function. As expected, when U

is increased the Kondo temperature and hence the width of the
Kondo peak decrease strongly. On the other hand, detuning
the system from particle-hole symmetry by shifting εd leads
to a strong increase of the Kondo temperature due to charge
fluctuations (green dashed, magenta dashed-dotted curves).

We now calculate the correlated transmission functions
for Kondo peaks in different d orbitals. Figure 6 shows
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FIG. 6. (Color online) Transmission functions for different d

orbitals of Co@Cu(001). Coulomb repulsion U = 2 eV, and energy
level εd = −1 eV (approximate particle-hole symmetry). The red
continuous curves show the calculated transmission, the black
dashed curves Fano-Frota fits. The transmission background has been
subtracted [59].
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FIG. 7. (Color online) Transmission functions for different d or-
bitals of Co@Cu(001). Coulomb repulsion U = 3 eV vary occupation
by shifting εd . The red continuous curves show the calculated trans-
mission, the black dashed curves Fano-Frota fits. The transmission
background has been subtracted [59].

transmission line shapes for different d orbitals for U = 2 eV
and εd = −1.0 eV. In order to make the features more
clearly visible, here and in the following the transmission
background was subtracted [59]. We find that the line shapes
are indeed different for each orbital. We observe approximately
antisymmetric Fano line shapes (q ≈ 1) for z2 and x2-y2,
and more peak-like features (q 	 1) for xz and xy. In order
to quantitatively describe the line shapes, we perform Frota
fits to determine the q parameter and width of the line
shapes, as explained in Sec. III. The z2 and x2-y2 orbitals
have comparable q values of 1.52 and 1.72, respectively.
For xz, q becomes negative (−3.9) and for xy we find the
most pronounced peak with q = 4.95. The width of the Fano
features differs significantly, and in accordance with their
hybridization strength at the Fermi level. Note that a feature
with a very small width, as e.g., in the case of xy, might
never be observed in an actual experiment, because of the
Kondo temperature being much too low and because of limited
resolution.

We now vary the Coulomb repulsion U and introduce
charge fluctuations by shifting the d-level position εd , as can be
seen in Fig. 7. When varying U , but maintaining particle-hole
symmetry, the actual shape of the transmission features is
only weakly affected, while the widths of the features change

strongly, as has already been seen and discussed for the spectral
functions in Fig. 5. When introducing charge fluctuations, the
Kondo peak becomes asymmetric (see Fig. 5). This asymmetry
is also reflected in the transmission line shapes. We find that
the q parameter consistently increases when εd is shifted
downwards. For positive q (z2, x2-y2, xy) lowering εd makes
the line shapes more peak-like, while for negative q (xz),
lowering εd leads to more dip-like line shapes.

Hence while the choice of AIM parameters U and εd does
affect the transmission line shapes to some degree, it does not
completely change its symmetry. For example, the sign of the
q factor does not change.

While the signal width is determined by the hybridization
and choice of AIM parameters exclusively, the signal ampli-
tude decisively depends on the system geometry. Because we
chose the z axis as our transport direction, a Kondo peak in the
z2 orbital results in a much more dominant feature compared to
the remaining d orbitals, as can be seen in Figs. 6 and 7. Hence,
if there is a Kondo peak in the z2 orbital, the corresponding
Fano feature will dominate in the transmission regardless of
what happens in the other orbitals. Also, Fano features due
to Kondo peaks in orbitals other than the z2 orbital might be
difficult to discern from the background if the background
dispersion is strong compared to the Fano amplitudes. This
statement remains true even if the STM tip is shifted laterally
by moderate distances of a few Å. Although tunneling into
orbitals other than z2 becomes more favorable upon a lateral
shift of the tip, the feature due to the Kondo peak in the z2

remains the most dominant one.

B. Co adatom on Cu(111) surface

The next system we focus on is a Cobalt atom, deposited
at the “hcp” hollow site of a Cu(111) surface, as can be seen
in the left panel of Fig. 8. The surface is modeled by three
Cu slabs of 27, 37, and 27 atoms, respectively, which are
connected to a Bethe lattice. The tip is described by a Cu(111)
pyramid, consisting of 10 copper atoms, also connected to a
Bethe lattice. The threefold symmetry splits the five orbitals of
the Co 3d shell into three groups: the nondegenerate z2 orbital
(m = 0) and two doubly degenerate groups, one with m = ±1
(xz and yz orbitals) and one with m = ±2 (xy and x2-y2

orbitals). The right panel of Fig. 8 shows the hybridization
functions for each of the three groups. The group with the xz
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FIG. 8. (Color online) Left: Geometry of the Co atom deposited
on a Cu(111) surface; dark gray/red, Co; gray/yellow, Cu; light
gray/blue, Bethe lattice. Right: Imaginary part of the hybridization
function of the Co 3d shell.
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FIG. 9. (Color online) Transmission functions for different d or-
bitals of Co@Cu(111). Coulomb repulsion U = 2 eV, εd = −1.0 eV.
The red continuous curves show the calculated transmission, the black
dashed curves Fano-Frota fits. The transmission background has been
subtracted [59].

and yz orbitals exhibit the strongest hybridization at the Fermi
level, the group with the x2-y2 and xy orbitals the weakest.

We proceed as described in the previous section and calcu-
late transmission functions for the d orbitals of Co@Cu(111),
assuming a Coulomb repulsion of U = 2 eV and (approxi-
mate) particle-hole-symmetry εd = −1.0 eV (Fig. 9). Again,
we find different line shapes for each orbital. The z2 orbital
gives the most peak-like transmission feature with q = 2.77,
for x2-y2 we observe a transmission peak with a negative
q = −2.44. The xz orbital results in a Fano-type feature with
q = −1.61. The widths of the transmission features differ
considerably, with the xz and yz orbitals having the largest
width, and the xy and x2-y2 orbitals the lowest. The z2 orbital
again has the highest signal amplitude, as it couples strongly
to the tip conduction electrons.

In Fig. 10, we calculate line shapes for different AIM
parameters U and εd . We observe a similar behavior as for
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FIG. 10. (Color online) Transmission functions for different d

orbitals of Co@Cu(111). Coulomb repulsion U = 3 eV vary oc-
cupation by shifting εd . The red continuous curves show the
calculated transmission, the black dashed curves Fano-Frota fits. The
transmission background has been subtracted [59].

Co@Cu(001). When staying in the particle-hole symmetric
case and increasing U (middle column of Fig. 10), the line
shapes remain similar, with slightly increased q values. We
introduce charge fluctuations by shifting the position of εd

(left and right column of Fig. 10). The q parameter increases
when moving εd to lower energies. For positive q values, as for
z2, this leads to more peak-like line shapes, while for negative
q values, as for xz and x2-y2, it leads to more fano- or dip-like
line shapes. The only exception to this behavior occurs for the
xz orbital, U = 3 eV and εd = −0.8 eV. It has a very high
Kondo temperature and equivalently wide Fano feature, and
the Fano-Frota fit fails for negative energies. This suggests that
the Fano line shape overlaps with other transmission features
that alter the final line shape.

C. Temperature dependence and the occurrence of dips

The results presented so far are for the case of T → 0
(according to the criterion discussed in Sec. IV A). We now
study the temperature dependence of two line shapes: One
tending toward a peak (q > 1) and one tending toward a dip
(q < 1). We pick the xz orbital of Co@Cu(111), U = 3 eV,
εd = −1.5 eV (q = −1.49), and εd = −2.2 eV (q = −0.87),
respectively. The top row of Fig. 11 shows the evolution of the
aforementioned two line shapes. For increasing temperature,
the signal amplitude diminishes, while its width grows. The
peak does not decay symmetrically. The “peak” component of
the Fano feature decays faster than the “dip” component of the
feature, so that, in both cases, the feature as a whole becomes
increasingly dip-like with increasing temperature. In order to
quantify that, we perform Fano-Frota fits and calculate the q

parameter. We find that the q parameter decreases considerably

0.0

0.5

1.0

−10 0 10

T
di

ff(
ω

) 
(1

0−
5 )

ω (meV)

6.5 K

9.3 K

12 K

35 K

58 K

εd=−1.5 eV

0.0

0.5

1.0

−20 0 20

.

ω (meV)

8.6 K

12 K

35 K

58 K

116 K

εd=−2.2 eV

−1.5

−1.0

−0.5

0 50

q

T (K)

−0.8

−0.6

−0.4

0 50 100

.

T (K)

FIG. 11. (Color online) Temperature dependence of two different
line shapes for Co@Cu(111), xz, U = 3 eV, εd = −1.5 eV, and εd =
−2.2 eV, respectively. Top: Transmission. Bottom: q parameter; the
lines are a guide for the eye.
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FIG. 12. (Color online) Sketch of the simplified model. The
effective atom A is described by the correlated d level and one
conduction electron level c, in contact with the surface and the
tip.

when temperature is rising, irrespective if the feature tends
more toward peak or dip in the T → 0 case.

V. A SIMPLIFIED MODEL

The interference mechanism leading to different Fano line
shapes still is a matter of discussion [23–30,60,61]. We
expand on this discussion by introducing a simple model
that allows us to determine transmission line shapes from ab
initio parameters. Figure 12 shows a schematic drawing of
our model system. The central assumption is that the quantum
interference primarily occurs on the magnetic adatom, namely
between one s-type and/or p-type level (in the following,
we will simply call it the conduction level c) and the
correlated d level. Both levels are in contact to the tip T
and the surface S, and the respective interactions are taken
into account by coupling matrices �T/S. As a second central
assumption we neglect the direct tunneling from the tip to the
surface.

The starting point of our model is the correlated Green’s
function of the effective atom comprising the conduc-
tion c level and the correlated d level of the magnetic
atom:

GA(ω) = [ωP̂A − ĤA − �̂(ω) − �d (ω)P̂d ]−1

=
(

ω − εc − �c(ω) −Vcd − �cd (ω)
−Vdc − �dc(ω) ω − εd − �d (ω) − �d (ω)

)−1

(14)

P̂A is a projector onto the effective atom A, while P̂d

projects onto the d level only. All parameters can either
be extracted from the KS calculation (εd , εc, Vcd , �̂(ω))
or from the OCA calculation (�d (ω)), while the chemical
potential has been set to zero μ = 0. The diagonal elements
of the hybridization function �̂(ω) lead to a shift (real part)
of the level position of εc and εd , respectively, and yield
an effective level broadening (imaginary part). Also note
that the hybridization function has off-diagonal components
�cd (ω) = �dc(ω), which can be understood as an additional
hopping between the c and d level mediated by hoppings via

the substrate, to give a total effective coupling of Ṽcd = Vcd +
�cd . The coupling matrices �S/T(ω) necessary for calculating
the transmission function by Eq. (6) can be obtained by
decomposing the hybridization function into a tip (�T(ω))
and a surface (�S(ω)) component and taking the imaginary
parts, i.e., �S/T(ω) = −2 Im �S/T(ω).

For the conduction level c of the effective atom we choose
the s or p orbital that couples to the correlated d orbital. In the
case of the (001) and the (111) substrates the z2 orbital couples
to the s as well as the pz orbital. In this case we apply a unitary
transformation in the subspace of the s and pz orbitals such that
the z2 orbital decouples completely from one of the orbitals
in the new basis. The spz-hybridized orbital coupling to the z2

is then found to be the linear combination |spz〉 ∝ Ṽsz2 |s〉 +
Ṽpzz2 |pz〉, where Ṽsz2 and Ṽpzz2 are the effective hoppings of
the z2 orbital with the s and pz orbitals, respectively. On both
surfaces, the xz orbital couples to px and the yz orbital to py .
For the (001) surface both the x2-y2 and the xy orbitals do not
interact with any of the s or p orbitals on the atom, while on
the (111) surface, they do interact with the py and px orbitals,
respectively.

In Figs. 13 and 14, we compare line shapes calculated for
the simplified model with the full ab initio results from Sec. IV.
For the Co@Cu(001) surface, the simplified model consisting
of the z2 orbital and the spz-hybridized orbital reproduces the
line shape of the z2 orbital quite well. Only the peak character
is slightly overestimated. In the case of the xz orbital the line
shape of the simplified model including the px orbital is in
excellent agreement with that of the full ab initio calculation.
For the x2-y2 orbital the agreement between the simplified
model and the full calculation is not as good. As stated
before this orbital does not interact with any s or p orbital
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FIG. 13. (Color online) Transmissions calculated ab initio with
the ANT.G package (see Sec. IV) and for the simplified model;
Co@Cu(001), U = 2 eV, εd = −1 eV. The transmission functions
are rescaled and offset for better visibility.
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FIG. 14. (Color online) Transmissions calculated ab initio with
the ANT.G package (see Sec. IV) and for the simplified model;
Co@Cu(111), U = 2 eV, εd = −1 eV. The transmission functions
are rescaled and offset for better visibility.

on the Co atom. Hence, the transmission of the simplified
model reproduces simply the Kondo peak in the spectral
function since no interference is taking place. On the other
hand, the full transmission shows a somewhat asymmetric
Fano feature (q ≈ 1.7), indicating that interference with some
substrate state(s) must take place, which is not included in the
model. Finally, for the xy orbital we find very good agreement
between the simplified model and the full calculation. The
line shape in both calculations simply reproduces the Kondo
peak in the spectral function of the xy orbital, indicating
the absence of any interference effects between this d level
and s and p levels on the atoms as well as substrate
states.

We find a somewhat similar picture for Co@Cu(111). For
the xz orbital the model including the interaction with the
px orbital gives a line shape in excellent agreement with
the full calculation. Also for the x2-y2 the simplified model
including the py orbital on the atom reproduces the line
shape of the full calculation very well. However, in the case
of the z2 orbital the simplified model including the spz-
hybridized orbital fails quite badly in reproducing the line
shape of the full calculation. Apparently, interference with
tunneling paths to substrate states play an important role
here.

VI. DISCUSSION

For Co@Cu(001), we found transmission line shapes
ranging from asymmetric Fano features with positive (z2,
x2-y2) and negative (xz) q values to a more peak-like feature
(xy). The line shapes are determined by the interference of
different tunneling paths. Our simplified model calculations
indicate that for z2 and xz the interference takes place on the
adatom between the correlated d level and the noninteracting
sp levels coupling to the d orbital. For the xy orbital, no
interference occurs between the conduction and impurity
tunneling channels. Hence, one directly observes the shape
of the Kondo peak in the transmission. On the other hand,
for the x2-y2 orbital, the interference mechanism probably
involves the Cu substrate states, which are not captured
by the simplified model. Experimentally, asymmetric Fano
line shapes were reported with q ∼ 1.1–1.2 in the tunneling
regime [12,18]. The measured line shapes are comparable
to the features we found both in the z2 and x2-y2 orbitals
(see Figs. 6 and 7), although the z2 orbital yields a slightly

better agreement. Better agreement with experiment can surely
be achieved by adjusting the Anderson model parameters
and fitting the calculated spectra with the experimental ones.
We would like to stress though that finding good agreement
with experiment is not the primary goal of this work, but
rather to demonstrate how different orbital symmetries give
rise to different Fano-Kondo line shapes. A recent study
by one of us [47] found an under-screened Kondo effect
for Co@Cu(001), where the z2 and x2-y2 are nearly half
filled, but only the z2 orbital is Kondo screened at finite
temperatures due to its higher Kondo temperature. Reference
[31] comes to similar conclusions, finding a Kondo peak
in the z2 orbital with q = 1.2 in the tunneling regime and
explaining it due to the interference of the z2 with the s

orbital.
For Co@Cu(111), we found asymmetric to peak-like Fano

line shapes with positive (z2) and negative (xz, x2-y2) q values.
For the latter two, we can understand the tunneling interference
in terms of the model presented in the previous section.
The interference occurs on the magnetic atom, between the
conduction electron channel, modeled by one of the p orbitals,
and the respective d level. For z2, which is interacting with
the spz hybridized level, our model fails, indicating that
interference with substrate states plays an important role
here.

Experimentally, dips were reported with q values close to
zero [11,12,32], which does not seem to agree with any of the
calculated line shapes. The z2 orbital, aligned in the transport
direction, again shows the strongest signal, but is rather peak-
like. The closest candidate to a dip-like line shape is the xz

orbital, particularly when increasing the occupancy relative
to half-filling by moving the d-level position downward in
energy (see Fig. 10). In Sec. IV C, we studied its temperature
dependence, and found that the line shape became increasingly
dip-like when increasing temperature. However, note that in
our calculations for the xz orbitals we find q < 0 while in
experiment q is always positive.

Probably, the surface state of the Cu(111) surface [62] plays
an important role for determining the line shape [11,25,30,63],
since its tunneling amplitude may be twice as strong compared
to tunneling into bulk states [64]. However, our embedded
cluster calculation probably does not capture the surface state
properly. The importance of the surface state for reproducing
the correct line shape in the Co@Cu(111) system is also
stressed in Ref. [31], where the surface state is not properly
captured and the correct q value could not be reproduced
either.

VII. CONCLUSIONS

In summary, we have calculated the orbital signatures
of Kondo peaks in the STM spectra of transition metal
adatom systems, namely Co@Cu(001) and Co@Cu(111). Our
calculations show that the measured line shapes allow us to
draw some conclusions on the d orbital(s) involved in the
Kondo effect since the line shape depends to a large extent on
the coupling of the d orbital to the sp orbitals on the adatom,
which in turn is determined by the orbital symmetry. However,
also temperature, effective interaction U , and in particular the
occupancy of the d orbital have a strong influence on the actual
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line shapes. Also, if multiorbital effects are important for the
actual shape of a Fano-Kondo feature, this approach per se is
not appropriate. Nevertheless, even in the case of a multiorbital
Kondo effect, often one orbital will be dominant in the tunnel
spectra. In fact, if a Kondo resonance forms in the z2 orbital,
the corresponding Fano feature will be dominant in the tunnel
spectrum for the typical case of an s-type STM tip, so that
Kondo features coming from other d orbitals are likely not
visible. These results are also relevant for STS of transition
metal complexes on metallic substrates [65–67], maybe even
more so since tunneling into surface states is less important
there.

We stress that the here developed method can in principle
also be applied to the contact regime. However, unlike in the
tunneling case, in the contact regime the voltage can no longer
be assumed to mainly drop between tip and adatom. Rather,
the voltage drop will distribute in some way over the contact
according to the actual geometry of the contact region [67]
and needs to be calculated or estimated. Moreover, the actual
contact geometry is probably also relevant for the coupling
between d orbitals and conduction electrons and thus also
has a strong influence on the line shapes. Therefore, possible
contact geometries need to be explored and relaxed with some
care.

Based on our results, we propose a poor man’s method
to obtain information on the orbital(s) involved in the Kondo
effect measured in an actual experiment solely on the basis
of a density functional theory calculation of the system: by
tailoring an appropriate self-energy for each orbital such
that the width of the resulting Kondo peak in that orbital
reproduces the width of the measured Fano-Kondo line shape,
one can calculate the corresponding line shapes and compare to
experiment.
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APPENDIX: COMPLEX AND REAL FANO LINE SHAPES

Here we derive the real Fano line shape given by Eq. (11)
from its complex representation in Eq. (10):

ρFL(ω) = Im

[
eiφq

(
A

ω − ω0 + i�

)]
. (A1)

Introducing the abbreviation ε = (ω − ω0)/�, we have

ρFL = A

�
· Im
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Defining q ≡ tan(φq/2), we arrive at

ρFL = A

�

[
(q + ε)2

ε2 + 1
− 1

]
1

1 + q2
, (A2)

which is the same as Eq. (11).
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[20] H. Prüser, M. Wenderoth, A. Weismann, and R. G. Ulbrich,

Phys. Rev. Lett. 108, 166604 (2012).
[21] H. O. Frota and L. N. Oliveira, Phys. Rev. B 33, 7871

(1986).
[22] H. O. Frota, Phys. Rev. B 45, 1096 (1992).
[23] M. Plihal and J. W. Gadzuk, Phys. Rev. B 63, 085404 (2001).
[24] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S.

Wingreen, Phys. Rev. B 64, 165412 (2001).

235127-9

http://dx.doi.org/10.1016/S0031-8914(34)80310-2
http://dx.doi.org/10.1016/S0031-8914(34)80310-2
http://dx.doi.org/10.1016/S0031-8914(34)80310-2
http://dx.doi.org/10.1016/S0031-8914(34)80310-2
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1103/PhysRev.135.A1041
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1103/PhysRevB.75.245329
http://dx.doi.org/10.1103/PhysRevB.75.245329
http://dx.doi.org/10.1103/PhysRevB.75.245329
http://dx.doi.org/10.1103/PhysRevB.75.245329
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1038/nature06930
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/35042545
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1038/nature03422
http://dx.doi.org/10.1103/PhysRevLett.80.2893
http://dx.doi.org/10.1103/PhysRevLett.80.2893
http://dx.doi.org/10.1103/PhysRevLett.80.2893
http://dx.doi.org/10.1103/PhysRevLett.80.2893
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1126/science.280.5363.567
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.88.096804
http://dx.doi.org/10.1103/PhysRevLett.88.077205
http://dx.doi.org/10.1103/PhysRevLett.88.077205
http://dx.doi.org/10.1103/PhysRevLett.88.077205
http://dx.doi.org/10.1103/PhysRevLett.88.077205
http://dx.doi.org/10.1126/science.1101077
http://dx.doi.org/10.1126/science.1101077
http://dx.doi.org/10.1126/science.1101077
http://dx.doi.org/10.1126/science.1101077
http://dx.doi.org/10.1126/science.1113449
http://dx.doi.org/10.1126/science.1113449
http://dx.doi.org/10.1126/science.1113449
http://dx.doi.org/10.1126/science.1113449
http://dx.doi.org/10.1126/science.1117039
http://dx.doi.org/10.1126/science.1117039
http://dx.doi.org/10.1126/science.1117039
http://dx.doi.org/10.1126/science.1117039
http://dx.doi.org/10.1103/PhysRevLett.97.266603
http://dx.doi.org/10.1103/PhysRevLett.97.266603
http://dx.doi.org/10.1103/PhysRevLett.97.266603
http://dx.doi.org/10.1103/PhysRevLett.97.266603
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRevLett.98.016801
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1103/PhysRevLett.108.166604
http://dx.doi.org/10.1103/PhysRevB.33.7871
http://dx.doi.org/10.1103/PhysRevB.33.7871
http://dx.doi.org/10.1103/PhysRevB.33.7871
http://dx.doi.org/10.1103/PhysRevB.33.7871
http://dx.doi.org/10.1103/PhysRevB.45.1096
http://dx.doi.org/10.1103/PhysRevB.45.1096
http://dx.doi.org/10.1103/PhysRevB.45.1096
http://dx.doi.org/10.1103/PhysRevB.45.1096
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1103/PhysRevB.63.085404
http://dx.doi.org/10.1103/PhysRevB.64.165412
http://dx.doi.org/10.1103/PhysRevB.64.165412
http://dx.doi.org/10.1103/PhysRevB.64.165412
http://dx.doi.org/10.1103/PhysRevB.64.165412


SEBASTIAN FRANK AND DAVID JACOB PHYSICAL REVIEW B 92, 235127 (2015)

[25] C.-Y. Lin, A. H. Castro Neto, and B. A. Jones, Phys. Rev. Lett.
97, 156102 (2006).
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[56] H. Prüser, M. Wenderoth, P. E. Dargel, A. Weismann, R. Peters,

T. Pruschke, and R. G. Ulbrich, Nat. Phys. 7, 203 (2011).
[57] More specifically, we obtain 1.80 eV for the z2 orbital, 1.78 eV

for the xz and yz orbitals, 1.81 eV for the x2-y2 orbital, and
2.59 eV for the xy orbital.

[58] T. A. Costi, J. Kroha, and P. Wölfle, Phys. Rev. B 53, 1850
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