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ABSTRACT: Trajectory-based mixed quantum-classical approaches to coupled electron—nuclear dynamics suffer from well-
studied problems such as the lack of (or incorrect account for) decoherence in the trajectory surface hopping method and the
inability of reproducing the spatial splitting of a nuclear wave packet in Ehrenfest-like dynamics. In the context of electronic
nonadiabatic processes, these problems can result in wrong predictions for quantum populations and in unphysical outcomes for
the nuclear dynamics. In this paper, we propose a solution to these issues by approximating the coupled electronic and nuclear
equations within the framework of the exact factorization of the electron—nuclear wave function. We present a simple quantum-
classical scheme based on coupled classical trajectories and test it against the full quantum mechanical solution from wave packet
dynamics for some model situations which represent particularly challenging problems for the above-mentioned traditional

methods.

B INTRODUCTION

Nonadiabatic effects often play an important role in the
coupled dynamics of electrons and nuclei. Typical examples of
processes whose description requires us to explicitly account for
nonadiabatic electronic transitions induced by the nuclear
motion are vision,' > photosynthesis,”* photovoltaics,""* and
charge transport through molecular junctions.”™'* In all these
cases, the electronic effect on the nuclei cannot be expressed by
a single adiabatic potential energy surface (PES), corresponding
to the occupied eigenstate of the Born—Oppenheimer (BO)
Hamiltonian. The exact numerical treatment would in fact
require the inclusion of several adiabatic PESs that are coupled
via electronic nonadiabatic transitions in regions of strong
coupling, such as avoided crossings or conical intersections. On
the basis of this theoretical picture, numerical methods that
retain a quantum description of the nuclei have been
successfully employed in many applications, e.g, multiple
spawning,>~"° multiconfiguration time-dependent Har-
tree,"*~'¥ or nonadiabatic Bohmian dynamics,w_25 but actual
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calculations become unfeasible for systems comprising
hundreds or thousands of atoms. Promising alternatives are
therefore those approaches that involve a classical or quasi-
classical treatment of nuclear motion coupled nonadiabatically
to the quantum mechanical motion of the electrons.”*”®* There
are two main challenges that theory has to face in this context:
(i) The splitting of the nuclear wave packet induced by
nonadiabatic couplings needs to be captured in the trajectory-
based description. (ii) This requires a clear-cut definition of the
classical force in situations when more than a single adiabatic
PES is involved.

In the present paper, we attack these two points within the
framework of the exact factorization of the electron—nuclear
wave function.””®* When the solution of the time-dependent
Schrédinger equation (TDSE) is written as a single product of
a nuclear wave function and an electronic factor, which
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Figure 1. Full molecular wave function (left) as a function of electronic (r) and nuclear (R) coordinates and its approximation (right) on a set of

nuclear trajectories g(l)(t). In this case, the molecular wave function is known only at the given positions EI) (t).

parametrically depends on the nuclear configuration, two
coupled equations of motion for the two components of the
full wave function are derived from the TDSE. These equations
contain the answer to the above questions. The purpose of this
paper is to provide a systematic procedure to develop the
necessary approximations when the nuclei are represented in
terms of classical trajectories. The final result will be a mixed
quantum-classical (MQC) algorithm® that we have imple-
mented and tested in various nonadiabatic situations. The
numerical scheme presented here is based on the analysis
performed so far in the framework of the exact factorization. In
previous work, we have first focused on the nuclear dynamics,
by analyzing the time-dependent potentials®® of the theory,
with particular attention devoted to understanding the
fundamental properties that need to be accounted for when
introducing approximations. Moreover, we have analyzed the
suitability of the classical and quasi-classical treatment®’ ™% of
nuclear dynamics, and we have proposed an independent-
trajectory MQC scheme®”’” to solve the coupled electronic
and nuclear equations within the factorization framework
approximately. This result can be viewed as the lowest order
version of the algorithm presented here, where refined and
more accurate apprommatlons have been introduced.

The new algorlthm, > which is based on a coupled-trajectory
(CT) description of nuclear dynamics, will be presented (i)
paying particular attention to the physical justification of the
approximations introduced, (ii) describing in detail the
fundamental equations of the CT-MQC scheme in the form
they are implemented in practice, and (iii) supporting the
analytical derivation with abundant numerical proof of the
suitability of the procedure for simulating nonadiabatic
dynamics. In particular, we show how the CT procedure
compares with the previous MQC®*”° algorithm based on the
exact factorization and with the Ehrenfest”® and trajectory
surface hopping (TSH)®' approaches. This comparison will
demonstrate that the CT scheme is able (a) to properly
describe the splitting of a nuclear wave packet after the passage
through an avoided crossing, related to the steps® in the time-
dependent potential of the theory, overcoming the limitations
of MQC and Ehrenfest and (b) to correctly account for
electronic decoherence effects, thus proposing a solution to the
overcoherence problem®>®%%7! =84 affecting TSH.

The paper is organized as follows. The first section focuses
on the theory. We construct the algorithm, describe the used
approximations, and derive the equations that have been
implemented. The following section gives a schematic overview
of the algorithm, summarizing the results of the first section.

The steps to be implemented are described here. The third
section shows the numerical results for one-dimensional two-
state model systems, representing situations of (a) single
avoided crossing, (b) dual avoided crossing, (c) extended
coupling with reflection, and (d) double arch. Conclusions are
drawn in the fourth section.

B COUPLED-TRAJECTORY MIXED
QUANTUM-CLASSICAL ALGORITHM

The exact factorization of the electron—nuclear wave

. 63,64
function”™”

provides the theoretical background for the
development of the algorithm described and tested in this
paper. Since the theory has been extensively presented in
previous work,***~7%%7%! ye only refer to Section SL1 of the
Supporting Information for a comprehensive review of the
theory.

It has been prove that the solution of the time-
dependent Schrédinger equation (TDSE) (T, + I:IBO]‘P =
ihd¥Y of a combined system of electrons and nuclei can be

written as the product: ¥(r, R, t) = @g(r, t)¥(R, t). Here,

d63,64

(R, t) is the nuclear wave function, which yields the exact
nuclear many-body density and current density, whereas
D (r, t) is the electronic conditional wave function, which
parametrically depends on the nuclear configuration R. The

squared modulus of @B(g, t) is normalized to unity V R, ¢,
thus I®g (r, t)I* can be interpreted as a conditional probability.

The equations of motion describing the time evolution of the
two terms of the product are derived by determining the
stationary variations”*~"*

with respect to @5(5 t) and y(R, t), yielding

of the quantum mechanical action

(Ayo + Ou[@g, 2] = €(R, ) )P (x, ) = ihgDy(x, t)

(1)
% [—ihV, + A, (R, )]’ + e(R, t)]x(& t)
~ 2M,, B -
= iy (R, t) N

Here, the electron—nuclear coupling operator (ENCO) is
defined as
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The time-dependent vector potential (TDVP) and time-
dependent potential energy surface (TDPES) are given by
the following expressions, respectively:

AR 0 = (@y0] - M%04()) o

coup

(R, 1) = (@y(0)[Ao + T,

x(0) >; ©)

The numerical procedure referred to as the coupled-trajectory
mixed quantum classical (CT-MQC) algorithm, introduced in
previous work® to solve eqs 1 and 2, will be presented here
paying special attention to justifying the approximations and
describing the implementation of the algorithm.

The Lagrangian Frame. Equations 1 and 2 can be
represented on a fixed spatial grid and propagated in time to
compute the evolution of the electronic and nuclear wave
functions. However, our aim is to represent the dynamics of
quantum nuclei via the motion of a set of coupled classical

trajectories, g(l)(t), whose behavior can be assimilated to that of
a moving grid. In turn, the dynamics of the electrons is
governed by eq 1 along each nuclear trajectory. Figure 1 shows
the idea behind such a representation of the nuclei in terms of
classical trajectories: on the left, a molecular wave function (or
better, the density from a molecular wave function) is plotted
on a fixed grid in r, R space; on the right, some information
along the R direction is lost, since the wave function is available
only at the positions of the trajectories, located where the
nuclear density is larger. Therefore, it seems more natural to
work in a reference frame that moves with the trajectories, the
Lagrangian frame, rather than a fixed Eulerian frame, and to
introduce the approximations starting from this picture. In the
Lagrangian frame, time derivatives are calculated “along the
flow”; thus, all partial time derivatives have to be replaced by
total derivatives, using the chain rule d/dt =09, + ), V, - V,.
Here, the quantity V, is the velocity of the moving grid point,
i.e,, the velocity of each trajectory which can be determined
from the equations below.

We introduce now the first approximation; namely, we derive
the classical Newton’s equation from the TDSE (eq 2). We
have previously proposedé()é5 7% a derivation based on the
complex phase representatlon > of y(R, t). Here, we present
an alternative procedure,”® by writing the nuclear wave function

in polar form, y(R, t) = ly(R, t)le(i/h)s(g’t). Then, the real
part of eq 2 yields

N 2
() _ . [Vys(g) t) + Ay(g) t)] _
SR, 1) = E m e(R, 1)
e i 1 V(R 1)
1 2M, Iy(R, 1)l (6)

a Hamilton—Jacobi equation (HJE) in the presence of the
TDVP A,(R, t) and of a potential term (last term in eq 6)
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known in the framework of Bohmian dynamics as quantum
potential. The imaginary part of eq 2 yields a continuity
equation for the nuclear density. Neglecting the quantum
potential, eq 6 becomes a (standard) classical HJE,

SR, ) = -, Y

v=1

< l[VbS(g, t) + AR, )]

—wmago]—dgﬂ
?)

where S stands for the full time derivative of S. In previous
work,°>”° rather than S(R, t), the HJE contained Sy(R, t), the
lowest order term in an expansion of the complex phase in
powers of Planck’s constant. The comparison with this result®”
allows us to define the canonical momentum of the moving grid
MV, =V,S\(R, t) + A (R, t) = P,. Taking the spatial de-
rivative V,, on both sides, eq 7 reduces to a classical evolution
equation for the characteristics

v|e®, 0 + ZA(R £)- ;“)]

At time ¢, all quantities are evaluated at the grid point 5(1) ().

Py(t)lgl}(t) = -

R(1)

+ AR, Dlgog (8)

Equation 8 identifies the classical force used to evolve the
grid points g(l)(t). In the proposed implementation, the
following occur: (i) At the initial time, N, iroj points will be
sampled from the probability distribution associated with the
initial nuclear density ly(R, t = 0)I%. (i) The time evolved of
those points will give information about the molecular wave
function in the regions of nuclear configuration space of large
probability at every time, as shown in Figure 1. (iii) The nuclear
density at time ¢ can be reconstructed from a histogram®”®*”°
representing the distribution of classical trajectories.

Choice of Gauge. It is straightforward to prove, as
described in Section SL1 of the Supporting Information, that
the product form of the electron—nuclear wave function is
invariant under a (R, t)-phase transformation of ®g(r, t) and

(R, t). In order to fix this gauge freedom, eqs 1 and 2 have to
be solved with an additional constraint, which is chosen in this
case to be

P(R, t)

(R, t)+ZA(R )= =

v=1 '/

©)

This condition is imposed in both the electronic and nuclear
equations. In particular, eq 8 simplifies to P,(t) = A, (t). When
the electronic (eq 1) and nuclear (eq 2) equations are
integrated by imposing eq 9, this gauge condition is
automatically satisfied but it should be checked during the
evolution in order to test the numerical accuracy.
Time-Dependent Potential Energy Surface. The
expression of the TDPES in the Lagrangian frame becomes

P (R, 1) = (g ()| Hyo|Pg (1)), — iA( Dy (£)IDg(£)),

O
- _D'AV(E) t)
E M, (10)
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where we have introduced here the second approximation;
namely, we have neglected the first term on the right-hand side
in the definition (eq 3) of the ENCO. This term contains
second-order derivatives of the electronic wave function with
respect to the nuclear positions, whose calculation requires a
larger numerical effort than first-order derivatives. Studies have
shown that this term is indeed negligible™ if compared to the
leading contribution, i.e., the second term on the right-hand
side of eq 3. Furthermore, the term containing the second-
order derivatives is the only term that contributes to the
TDPES, the other being identically zero when averaged over

@ (r, t). Therefore, in order to maintain gauge invariance, the

ENCO cannot appear”®®” in the expression of the TDPES, as is
clear in eq 10. Moreover, eq 10 is obtained by replacing the
partial time derivative from eq 5 with the total time derivative.
The additional term from the chain rule used above contains
V,, which leads to the appearance of the TDVP when averaged
over the electronic wave function.

Born—Huang Expansion. Classical trajectories evolve
according to the force in eq 8, where the gauge condition
(eq 9) is imposed at each time and are coupled to an

approximated form of the electronic equation, namely,

—ihV, (R, t)

x(R, 1) tAR D

N
. ~ ol !
iy (r, ) = lHBo 2 (

v=1

_ Pb(t)](—ihVD)]QDK(g, t)

|2

+ e™(R, t):ICDR(EJ £)

—lflV)((_, )
)((&) t)

+ A, (R, t)]Ay(g, t)
(11)

where we have replaced once again the partial time derivative

with the total derivative,
i N, B(®)
0}135(;, t)lgf)(t) = (D&(g, t) - ZD 1,

Notice that all quantities in eq 11 are evaluated along the

according to

V, Qg (x, )0y

classical trajectories 5(1)(15) and that no further approximation

than those described so far has been used to derive this
the

electronic wave function is expanded according to the so-called

. . 6
expression. In the numerical scheme proposed here,”

Born—Huang expansion in terms of the adiabatic states qJR)(r),
which are eigenstates of the Hamiltonian Hgo with eigenvalues
(1) (R) Inserting the expansion

Dg(x, t) = Z C(R, Doy (x)
(12)

in eq 11, we derive a set of coupled partial differential equations
for the coefficients C,(R, t)

2130

% PO(t) + P ()
M

v=1 v

C'lm(t) _ %leg)o(l) _ eapx(l)(t) -

Z ISDM(t) v C(I)(t)

v=1 v

Au(t)}czm(t)

P(I)(t) + lP( )(t) Z C(I)(t)d(l)
k

,k
M, ’ (13)

v=1
The nonadiabatic coupling vectors (NACVs) have been
introduced in the above expression, i.e.

%{ = ((pR(,)(t)lv (pR(,)(t)) We have used here a superscript

(D to indicate that all quantities depending on R are to be
calculated at the position 5(1)(1‘) at time t. Henceforth, the
spatial dependence will only be indicated by such superscript

symbol. In deriving eq 13, we have employed the polar
representation of the nuclear wave function in Uy, of eq 3, ie,,

)
B A
x7(t)
AP0
[v,s(t) + AD($)] + i—r
(@)l

=P(t) + iPU(t) (14)
This equation contains the quantities P{(¢) and Pg)(t), which
will be discussed in detail below.

Let us now introduce the gauge condition (eq 9) in eq 13,
namely

N, (D)
. (1 —1 IPU (t)
60 = e = XA [

v=1 14

N, . (I) ¢
_ Z MVDCI(I)(t)
M

14

Z B,(t) + iP() Z cO()al),

v=1 l/

(15)

This preserves the norm of the electronic wave function along
the time evolution. On the right-hand side of eq 15, the terms

not containing SDS,I)(t) are exactly the same as in other
algorithms, ie., Ehrenfest and TSH. The additional terms
follow from the exact factorization and are all proportional to

P,(JI)(t), the so-called quantum momentum, that will be
discussed below. Moreover, since the coefficients in the
expansion (eq 12) depend on nuclear positions, spatial
derivatives of such coeflicients need to be taken into account.

Spatial Dependence of Coefficients of the Born—
Huang Expansion. The coefficients C{’(f) of the Born—
Huang expansion of the electronic wave function are written in
terms of the their modulus |C(1) (t)! and phase yl(D(t)

vIc()l

v,c(t) =
: IcO ()

i
Evvﬂ(l)(t) CI(I)(t)
(16)
The third approximation introduced to derive the CT-MQC
algorithm consists of (i) neglecting the first term on the right-

hand side of the above equation and (ii) neglecting all terms
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depending on the NACVs in the expression of the remaining
term. On the basis of the analysis reported in previous
work,**"® the contribution of the first term is indeed negligible
if compared to the spatial derivative of the phase 7{"(t). We
present our argument below and give the expression of the
remaining term. A semiclassical analysis is provided in Section
SL2 of the Supporting Information.

On the basis of the solution of the full TDSE®~®® for one-
dimensional systems, we have observed that at a given time the
quantities IC,(R, t)| are either constant functions of R or
present a sigmoid shape.68 In particular, this second feature
appears when the nuclear wave packet splits after having
crossed a region of strong coupling. In regions where the
IC/(R, t)! values are constant, their derivatives are zero; thus,
our approximation holds perfectly. In the sigmoid case,
IC/(R, t)! is constant, ie., either 0 or 1, far from the step of
the sigmoid function, and linear around the center of the step.
Furthermore, the center of the step is the position where the
nuclear density splits,(’é and only in this region is the gradient of
IC/(R, t)lsignificantly different from zero. We have analytically
demonstrated that these properties are generally valid®® in the
absence of external time-dependent fields. It is important to
keep in mind that the nuclear density is reconstructed from the
distribution of classical trajectories; thus, it seems reasonable to
assume that when the nuclear density splits into two or more
branches, the probability of finding trajectories in the tail
regions is very small. It follows that v, ICOI/ICPI = 0 is an
approximation only for few trajectories, located in the tail
regions, while it is true for all other trajectories. Therefore, we
expect that such an approximation will not affect drastically the
final (averaged over all trajectories) results.

We now come back to the expression of V,y{(t). First of all,
let us show the time derivative of y{’(t), namely, 77(t) =
—e% D + nonadiabatic terms. The derivation of the additional
“nonadiabatic terms”, containing the NACVs is tedious and
only requires the knowledge of eq 15. If we assume that the
NACVs are localized in space, that is an approximation which is
valid in many physically relevant situations,’””’ ™" we can
simply write V,7{0(t) = —=V,e{} or equivalently

t
V() = - / 4V, e = £0(r) (17)

Therefore, the approximate form of the spatial derivative of the
coefficient of the Born—Huang expansion becomes V,CO(t) =
(i/W)ED(HCP(f). The quantity fD(¢), the time-integrated
adiabatic force, can be determined by only computing
electronic adiabatic properties. It follows that the electronic
evolution, eq 15, is no longer a partial differential equation but
rather an ordinary differential equation.

Related to the discussion just presented, we can now give the
explicit expression of the TDVP in terms of the adiabatic
electronic properties, namely,

Ny Ny
AP = X PO + aim Y p P (1)dl),
1=1 Lk=1 (18)

with pP(f) = CP*(t)CP(t) being the elements of the
electronic density matrix.

Quantum Momentum. The crucial difference between
standard Ehrenfest-type approaches and our new quantum-
classical algorithm for nonadiabatic dynamics is the appearance
of the quantum momentum in the equations of motion. In the

framework of the exact factorization, the electronic eq 1
contains the exact coupling to the nuclei, which is expressed in
terms of — iV, y/y. As in eq 14, this dependence on the
nuclear wave function is written as

—ihV, (¢
S ® 4 AD@) = p00) + 200
x(t) (19)

In writing the first term on the right-hand side, we are using the
first approximation introduced above, where the gradient of the
phase of the nuclear wave function (see eq 14 for comparison)
is truncated at the zeroth order term in the 7 expansion. The
second term is the quantum momentum, related to the spatial
variation of the nuclear density (notice that the relation V lyl/
lyl = V,Iy1*/(2ly*) holds). This term, which has the dimension
of a momentum and is purely imaginary, is a known quantity in
the context of Bohmian mechanics.'” When presenting the
numerical results, it will become clear that the quantum
momentum is the source of decoherence effects on electronic
dynamics.

In the nuclear eq 7, we have discarded the quantum
potential, while in the electronic eq 15, we have taken the
quantum momentum into account. On the one hand, the
quantum potential appears O(#”), while the correction to the
nuclear momentum is O(#); thus, our approximations are
consistent up to within this order in Planck’s constant. On the
other hand, we have already shown’® that neglecting the
quantum momentum in the electronic equation from the exact
factorization produces an Ehrenfest-like evolution, where the
spatial splitting of the nuclear wave packet cannot be captured.
The introduction of the quantum momentum is thus essential.
Further studies on incorporating the quantum potential in eq 7
following the strategies such as the ones discussed in the
context of Bohmian dynamics'”'%" are indeed a route to be
investigated.

The calculation of the quantum momentum requires
calculation of the spatial derivatives of the nuclear density,
which is known numerically only at the positions of the classical
trajectories. Therefore, in order to evaluate such a derivative at

the position 5(1) (t), nonlocal information about the position of

neighboring trajectories g(]) (t) is necessary. This requirement is
what makes the algorithm based on eqs 8 and 15 a coupled-
trajectory scheme. The procedure to calculate the quantum
momentum used in the current implementation of the
algorithm is described below for a two-level system since all
numerical tests are performed on such model situations. The
extension to a multilevel system is presented in Section SL.3 of
the Supporting Information.

Two-Level System. The nuclear density can be expressed as
the sum of BO-projected densities. In Section SL1 of the
Supporting Information, it is proved that if the full wave
function W is expanded on the adiabatic basis with coefficients
F(R, t), then the factorization ¥ = ®gy implies that > =

MIF/* and F, = Cy. Therefore, in a two-level system the
quantum momentum becomes

—n VxR, )P

PR, t) =
®0=5 (R, O
_ __h VJH(&, t)lz + VD|FZ(§, t)|2
2 IER, 6P + IE(R, £)P (20)
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We now assume that each BO-projected nuclear wave packet is
a single Gaussian. Notice that we make this approximation only
to evaluate the quantum momentum, whereas the nuclear
dynamics will still be represented in terms of classical
trajectories. This is the fourth approximation introduced to
derive the CT-MQC algorithm. We write

N, _ RO\ 12
IF(R, ) = (t)— H l w}
l v=1 9] (t)

= (DG, (R — (1)) 1)

where 6,(t) and R¥(¢) are the time-dependent variance and
mean value, respectively, of the normalized Gaussian G,,. Here,
pu(t) accounts for the normalization (the integral over R of the
function IF(R, t)I” is the population of the corresponding BO
state; see for this Section SL.3 of the Supporting Information),
and MV, is the normalization constant. Computing the gradient
of the Gaussians, the quantum momentum becomes

[R, - RV(D)] )
PR, t)=h ) ————"IC(R, 1)
N lzzl;z 0; (t) l (22)

and this expression can be calculated analytically if the mean
position and variance are determmed from the distribution of
the classical tra]ectorles, according to®®

RO = —t) [ arR JE(R 0)F

e 2
I=1 Z] ml P )(t) (23)

2N 2
) = 5 B,

tra) (1)
= ¥ RO - ROOF A
=1 Z = =P (f) (24)
Here, we have used the following approximations

= L3 00s(r - 1)

traj [=1 (28)

- RYHPIFR, 1)

lFl(&) t)lz

tra)

p®) = — Y p ()

Newj 151 (26)

with Ny, the total number of trajectories. The first equation
associates a weight, p” (t), to each trajectory in order to

reconstruct the BO-projected densities from the histogram, i.e.,
N i O(R — R(t)), which approximates the full nuclear

density. The second equation is instead used to determine the
population of the adiabatic state | as an average of the
coefficients associated with each trajectory. The prefactor Ny,
stands for the weight of each trajectory, chosen to be constant.
In eqs 25 and 26, the integrals over the positions R have been
replaced by the sum over the trajectories since the nuclear
density, for each trajectory, is a d function centered at the
position of the trajectory itself.

An additional simplification can be introduced at this point,
based on the following observations. If the quantum

momentum #,(R, t) is neglected in the electronic eq 15,
then the quantum-classical equations derived from the exact
factorization yield Ehrenfest dynamics: the nuclear wave packet
propagates coherently, and its spatial splitting cannot be
reproduced.”’ In this case, the spatial distribution® of the
coefficients ICSP(£)| is not correctly reproduced, as they are
more or less constant. The lack of spatial distribution is related
to the lack of decoherence: the indicator used in the following
analysis to ?uantlfy decoherence (eq 30) depends in fact on the
shape of IC{)(¢)l. Also, we have seen in previous studies” that
steps developmg in the exact TDPES, bridging regions of space
where it has adiabatic shapes, is instead able to induce the
splitting of the nuclear density. Outside the step region, the
force is then simply adiabatic (i.e., the gradient of an adiabatic
surface). The region of the step is where the additional force,
beyond the adiabatic force, acts. Furthermore, the steps in the
TDPES appear in the region where IC,(R, t)I, the moduli of the
coefficients in the Born—Huang expansion (eq 12), are neither
0 nor 1 (remember that IC)(R, )| is either constant in space or
has a sigmoid shape between the values 0 and 1°°7%).
Therefore, it seems natural to assume that an additional effect,
responsible for the splitting of the nuclear density, should be
localized in space in the region of the steps in the TDPES,
meaning in the region between the two Gaussian-shaped BO
densities. There, #,(R, t) can be represented, approximately, as
a linear function, which can be determined analytically. Notice
that an analogous treatment of the quantum momentum, which
follows from the hypothesis that the nuclear density can be
approximated as a sum of Gaussians, has already been discussed
in the context of Bohmian mechanics.'”” Due to this
approximation, however, the coupled electronic and nuclear
equations do not fulfill some fundamental properties, ie.
population exchange between electronic states might be
observed even when the NACVs are zero.

The linear function used to approximate the quantum
momentum is determined by associating two parameters to it: a
y-intercept, R’, by imposing in eq 15 that no population
variation shall be observed if the NACVs are zero, and a slope,
a, determined analytically from eq 22 evaluated at go‘ The first
parameter is determined by setting the terms containing the
NACVs in eq 15 to zero and then imposing that the remaining

part, pl(I) = Zb [ZSDSI)/(EMD)]-[A? - f(I)]pH(I), has to be

Ly
zero when summed up over the trajectories. When imposing
this condition, the expression used for the quantum momentum

is simply P(f) = a(RSI) -
intercept is known, it is inserted into eq 22, and the slope is
obtained analytically, yielding the quantum momentum as

IC(R, £)Plgogy
POt =n| Y, ——5—= Rt
Ot ]Z 20 Dt

- Y RO PP 0P O(£0)) - £0(0))
e Y, 0 0pd (t)(f (t)_fgl(t))

R?). As indicated above, once the y-

(27)

This expression is only used in the region between the centers
of the BO-projected densities, (Z)(t) Outside this region, the
quantum momentum is set to zero.
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B NUMERICAL IMPLEMENTATION

In this section, we present the numerical implementation of the
CT-MQC algorithm. First, we summarize the final expressions
of the classical force used to generate the trajectories and the
evolution equation for the coefficients of the Born—Huang
expansion of the electronic wave function. The CT-MQC
equations are cast below in such a way that the first part in both
expressions is exactly the same as in Ehrenfest-like approaches,
while the corrections in the second part of each expression are
(i) proportional to the quantum momentum and (ii) do not
contain the NACVs, ie., the “competing” effects of population
exchange induced by the NACVs and of decoherence induced
by the quantum momentum have been separated (this is the
fifth approximation introduced in eqs 1 and 2 to derive the CT-
MQC algorithm). The classical force

pO(E) = 2 PO ()Y,

S -

zpll(f)(t)(z e p(I)(t) f(l),(t)]

v'=1 v

[Zﬁ%m&w—ﬂﬂﬂ

D),
)t

(28)

is used in Hamilton’s equations, providing positions and
momenta at each time, thus yielding trajectories in phase space.
The velocity Verlet algorithm is used to integrate Hamilton’s
equations. The ordinary differential equation for the evolution
of the coeflicients in the electronic wave function expansion is

(I —i P(t)
¢ = 2Ll (e) - ZcWoZ a,
h ! M,
N, I)
P, (1)
= 32 S ePereD ) - £0(e) [
v=1 hMl/ k

(29)

which is integrated using a fourth-order Runge—Kutta
algorithm.

As stated above, the CT-MQC equations of motion are
similar to Ehrenfest equations, apart from the decoherence

terms, i.e., those proportional to 7)51)(1‘), in both the nuclear
and electronic equations. There, the quantum momentum is
determined at each time t using a multiple-trajectory scheme.
Therefore, the time integration has to be performed for all
trajectories simultaneously, leading to a procedure slightly
different from the “traditional” independent-trajectory ap-
proach of the TSH method. In Figure 2, we give a schematic
description of the steps to be performed to implement the CT-
MQC algorithm, namely,

(1) We select a set of nuclear positions and momenta and
the initial running BO state. The initial phase space
distribution can be obtained either by constructing the
Wigner distribution corresponding to an initial quantum
nuclear wave packet (as done in the results reported
below) or by sampling the Boltzmann distribution at a
given temperature, for instance, via a molecular dynamics
run in the canonical ensemble.
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Figure 2. Flowchart describing the numerical implementation of the
CT-MQC.

(2) (a) The information about the nuclear positions is
distributed on multiple processors. (b) For each
trajectory, the static electronic Schrédinger equation is
solved to obtain BO potential energies e D their
gr(a?dlents \Y% €( ) (I), and NACVs among the BO states
qu

(3) We compute f{)() by accumulating up to time ¢ the BO
force, — V,,el(;% o,

(4) (a) We gather the information about aH nuclear

trajectories R() BO populations pf’, and £ to (b)

compute the quantum momentum from eq 27.

(a) We calculate the nuclear force and (b) the time

derivative of BO coeflicients according to eqs 28 and 29,

respectively, for each nuclear trajectory.

(6) We perform the time integration for both trajectories and
BO coeflicients to get the initial conditions for the
following time step. We repeat the procedure starting
from point 2 until the end of the simulation.

()

Step 4 in the implementation is what distinguishes the CT-
MQC approach from “independent” multiple-trajectory
methods. For all trajectories, the time integration has to be
performed simultaneously since the BO populations, the
positions of the trajectories, and the time-integrated BO forces
have to be shared among all trajectories to compute the
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quantum momentum. The parallelization of the algorithm is
thus essential for numerical efficiency.

One of the advantages of the CT-MQC algorithm compared
to the TSH algorithm is that it is not stochastic. The electronic
equation yields the proper population of the BO states [if the
squared moduli of the coefficients are multiplied by the nuclear
density and integrated over nuclear space, as proven in Section
SL1 of the Supporting Information], including decoherence
effects since it has been derived from the exact factorization
equations. Therefore, even a small number of trajectories is able
to provide reliable and accurate results. The (computational)
bottleneck of the algorithm is that the electronic properties
(BO energies, NACVs, and BO forces) are necessary at each
time for all adiabatic states, whereas in TSH only “running
state” information and the scalar product between the nuclear
velocity and the NACVs are necessary.

B NUMERICAL TESTS

Numerical results will be presented for one-dimensional model
systems”"’* that have nowadays become standard tests for any
new quantum-classical approach to deal with nonadiabatic
problems. Results of the CT-MQC are compared not only with
an exact wave packet propagation scheme but also with other
quantum-classical approaches, namely, Ehrenfest,”*'%>'"?
TSH,**** and independent-trajectory MQC®>”® (the zeroth
order version of the algorithm proposed here). It is clear from
the results that the use of coupled trajectories, rather than
independent trajectories, which all approaches but the CT-
MAQC are based on, is indeed the key to electronic decoherence
in nonadiabatic processes.

The models discussed below are (a) single avoided crossing,
(b) dual avoided crossing, (c) extended coupling region with
reflection, and (d) double arch. The diabatic Hamiltonians are
presented in Section SL4 of the Supporting Information, while
adiabatic PESs and NACVs are shown in Figure 3.

In presenting the numerical results, particular attention is
devoted to decoherence. In order to quantify decoherence, we
use as indicator

N,

traj

J
Ip, (O = 1 PR OO

traj =1

(30)

which is an average over the trajectories of the (squared moduli
of the) off-diagonal elements of the electronic density matrix in
the adiabatic basis. The corresponding quantum mechanical
quantity is

Ip, (P = f dRIC,(R, O)PIC,(R, )Pl (R, )P -
as proven in Section SI.4 of the Supporting Information.

(a) Single Avoided Crossing. A Gaussian wave packet is
prepared on the lower adiabatic surface and launched from the
far negative region with positive initial momentum toward the
avoided crossing. Two values of the mean momentum are
shown in the figures below, namely, 7k, = 10 au and 7k, = 25
au. We have computed the populations of the adiabatic states as
functions of time (upper panels, Figure 4), along with the
indicator for the decoherence (lower panels, Figure 4), given in
eq 30. Figure 4 shows those quantities for the low initial
momentum (left) and for the high initial momentum (right).
Numerical results are shown for exact wave packet propagation
(red lines), TSH (blue lines), Ehrenfest dynamics (mean field,
MF, cyan line), MQC (independent-trajectory version of the
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Figure 3. BOPESs (first, red line; second, blue line) and NACVs
(dashed green line) for the four model systems studied in the paper.
The panels correspond to the problems of (a) single avoided crossing,
(b) dual avoided crossing, (c) extended coupling region with
reflection, and (d) double arch. In panel (a), the curve representing
NACV has been reduced 50 times and in panel (b) 30 times. All
quantities are shown in atomic units (au).

algorithm proposed here, orange), and CT-MQC (based on
eqs 28 and 29, green lines). While all methods correctly
predicted the electronic population after the passage through
the avoided crossing, only the CT-MQC scheme is able to
qualitatively account for electronic decoherence effects. The
CT-MQC results are not in perfect agreement with the exact
ones, but indeed, the algorithm captures a trend that is
completely missed by the other methods.

As we have derived the CT-MQC scheme from the exact
factorization, we have access to the time-dependent potentials
of the theory, i.e., TDPES and TDVP. In Figure S (left panels),
we report the gauge invariant part of the TDPES (red line), €¢;
in the figures, and we compare it with the same quantity
computed with the CT-MQC procedure (blue dots), € in the
figures, for both initial momenta at a given time step as
indicated in the figure. The gauge invariant part of the TDPES
is given by the first two terms in the definition (eq 5) of
€(R, t), whose approximation in the quantum-classical case is
simply the first term on the right-hand side of eq 10. In Figure
S, the adiabatic PESs are shown for reference as black lines. If
we observe the shape of the TDPES and of its approximation
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Figure 4. (Left) Upper panel: populations of the BO states as functions of time, computed via exact wave packet dynamics (red) and via the
approximate schemes, TSH (blue), Ehrenfest MF (cyan), MQC (orange), and CT-MQC (green), for model (a). Lower panel: indicator of
decoherence as a function of time. The color code is the same as in the upper panel. The results are shown for model (a) using the value 7k, = 10 au
for the initial momentum. (Right) Same as in the left panels but for the value fk, = 25 au of the initial momentum.
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Figure S. (Left) Snapshots (at time ¢ = 2700 au for the low initial momentum 7k, = 10 au, upper panel, and at time ¢ = 1140 au for the high initial
momentum %k, = 25 au, lower panel) of the gauge invariant part of the TDPES (eg;), shown as red lines for model (a). The black lines represent the
BO surfaces, €53 and €. The blue dots are the quantum-classical approximation to the potential. The regions highlighted in the green boxes are the
regions where the calculation of the TDPES is reliable since the nuclear density is different from zero. Outside this region, the density is
(numerically) zero, and the results are affected by numerical noise. (Right) Snapshots at the same time steps indicated in the left panel of the nuclear
density (black lines) and of the BO-projected densities (IF,|* orange lines; IF,I* cyan lines) for the two initial momenta (upper panel, 7ik, = 10 au;
lower panel, fiky = 25 au). The colored dots represent the quantum-classical approximation of the BO-projected densities.

highlighted by the box (region where the nuclear density is calculation of the TDPES), we see that the steps are
significantly different from zero; thus, it allows for the reproduced very well in the quantum-classical picture. Since
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Figure 6. (Left) Same as in Figure 4 but for the model system (b) and for the value 7k, = 16 au of the initial momentum. (Right) Same as in the left

panel but for the value ik, = 30 au of the initial momentum.
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Figure 7. (Left) Same as in Figure 5, but the snapshots are shown at time ¢ = 1700 au for the low initial momentum %k, = 16 au (upper panel) and at
time t = 590 au for the high initial momentum %k, = 30 au (lower panel) for model (b).

the CT-MQC correctly captures the shape of the potential, the
nuclear density and the BO-projected densities are well
reproduced. This is shown in the right panels in Figure S, for
both initial momenta and at the same time steps indicated in
the left panels. Here, the nuclear density is indicated in black,
while the BO-projected densities |F|* with | = 1,2 are indicated
as colored lines (exact) and dots (CT-MQC).
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It is important to notice that the quantity shown in Figure 5,
the gauge invariant part of the TDPES, is the only meaningful
quantity that can be compared with exact results. For instance,
the TDVP, being a gauge-dependent potential, is different if
different gauges are used within the exact factorization. In
particular, in the exact case, we have chosen to work in a gauge
where the TDVP is always zero, while quantum-classical
calculations are performed in the gauge defined by eq 9.
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Figure 8. (Left) Same as in Figure 4 but for the model system (c) and for the value fiky = 10 au of the initial momentum. (Right) Same as in the left

panel but for the value ik, = 30 au of the initial momentum.
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Figure 9. Same as in Figure S, but the snapshots are shown at time t = 2850 au for the low initial momentum %k, = 10 au (upper panel) and at time ¢
= 1300 au for the high initial momentum %k, = 30 au (lower panel) for model (c).

(b) Dual Avoided Crossing. The same initial conditions as
for model (a) have been used for the dual avoided crossing,
with 7k, = 16 au and #ik, = 30 au chosen as the initial
momenta. We notice in Figure 6 that for low initial momentum
the new algorithm is not able to correctly reproduce the final
population of the adiabatic states after the two consecutive
passages thorough the avoided crossings. For both momentum
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values, also decoherence is not correctly captured. We observe
however a slight deviation of the CT-MQC results from the
other (independent trajectory) algorithms since the green lines
in the lower panels of Figure 6 decay, but such decay is much
slower than the expected behavior predicted by quantum
mechanical results (red lines). In model (b), the avoided
crossing regions are very close to each other. Therefore, the
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Figure 10. (Left) Same as in Figure 4 but for the model system (d) and for the value 7ik, = 20 au of the initial momentum. (Right) Same as in the

left panel but for the value 7k, = 40 au of the initial momentum.

overall effect of NACVs is not localized in space, in constrast to
what we have assumed in deriving eq 17. Furthermore, in the
fifth approximation introduced above, we have assumed that
population exchange due to the NACVs and decoherence due
to the quantum momentum are separated effects. Model (b), at
low initiall momentum, is a situation where this does not
happen. The nuclear wave packet encounters the first avoided
crossing and branches on different surfaces. Then, decoherence
starts appearing, but at this point, the wave packets cross the
second nonadiabatic region. The combined effect of NACVs
and quantum momentum is thus not completely taken into
account by the CT-MQC equations. It follows that the CT-
MQC scheme does not capture correctly the adiabatic
populations. However, we do capture the separation of the
nuclear wave packet on different BO surfaces, as described
below.

Figure 7 shows the gauge invariant part of the TDPES (left
panels) and the nuclear densities (right panels) for both initial
momenta. Despite the deviations of quantum-classical results
from exact results for the electronic properties, the time-
dependent potential and, consequently, the nuclear dynamics
are correctly reproduced in the approximate picture.

(c) Extended Coupling Region with Reflection. This
and the following model systems represent critical tests of
decoherence. In both cases, the structure of the adiabatic
surfaces, one with a well and one with a barrier, is responsible
for yielding a high probability of reflection, especially at low
initial momenta. In the case when one branch of the nuclear
wave packet is reflected and the other is transmitted, the two
wave packets propagate along diverging paths in nuclear space
thus they lose memory of each other. This effect can be
accounted for in a coupled-trajectory picture but not if
independent trajectories are used since the electronic equations
are propagated fully coherently along each (independent from
each other) trajectory.

2138

Figures 8 and 9 show results for two values of the initial
momentum, namely, ik, = 10 au and %k, = 30 au, for model
system (c), in analogy to what has been presented in the
previous examples. In particular, we notice that for the low
initial momentum, CT-MQC is able to reproduce the time
dependence of the adiabatic populations in very close
agreement with exact results, yielding a better agreement than
TSH. The population exchange occurring after 4000 au (upper
left panel, Figure 8) is not captured by Ehrenfest and the MQC
algorithm since these approaches cannot reproduce nuclear
dynamics along diverging paths, as already discussed in
previous work.””’® Such a second nonadiabatic event is
observed when the reflected wave packet crosses for the
second time the extended coupling region. This channel is not
accessible in Ehrenfest and MQC calculations.

CT-MQC yields decoherence effects in strikingly good
agreement with exact results. The electronic equations in TSH
and Ehrenfest are given by the first two terms on the right-hand
side of eq 29, and as shown in the lower panels in Figure 8,
those procedures completely miss the decay of coherence
predicted by wave packet propagation. The additional term in
eq 29 containing the quantum momentum is sufficient to
correct for this effect.

As expected, also the TDPES and the nuclear densities are
very well reproduced by the CT-MQC procedure, when
compared to exact calculations.

(d) Double Arch. The double arch model has been
introduced’” to enhance decoherence effects on electronic
dynamics. For low initial momenta, this model is similar to
model (c) since the nuclear wave packet is partially transmitted
and partially reflected. After the splitting though, both
components go a second time through a region of extended
coupling; thus, they experience once again a nonadiabatic event.
We observe this behavior when 7ik, = 20 au is chosen as the
initial momentum. By contrast, at higher initial momentum, i.e.,
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Figure 11. (Left) Same as in Figure S, but the snapshots are shown at time t = 1600 au for the low initial momentum ik, = 20 au (upper panel) and
at time ¢ = 800 au for the high initial momentum 7k, = 40 au (lower panel) for model (d).
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Figure 12. Dependence of the final transmission/reflection probabilities on the initial momentum #k,. Transmission probabilities at the final times
on the lower and upper surfaces are indicated as T1 and T2, respectively; similarly, the reflection probabilities are indicated as R1 and R2. The lines
refer to exact calculations and the dots to the results of the CT-MQC algorithm. The initial variance of the nuclear wave packet is chosen as ¢ = 20/

(fiko)-

hky = 40 au, both wave packets are transmitted and propagate
in the positive region until they recombine. Capturing correctly
the dynamics of the recombination is what makes this model

2139

system a challenge for the inclusion of decoherence effects.
After the two transmitted wave packets propagate independ-
ently of each other on the two (very different) adiabatic
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surfaces, they recombine with some time delay; therefore,
decoherence should first decay and then reappear as a
consequence of the recombination.

Figure 10 shows that all features related to decoherence
discussed above are indeed captured by the CT-MQC
algorithm, in very good agreement with exact results, and are
completely missed by all other methods. At high initial
momentum, only TSH and CT-MQC are able to reproduce
the electronic population after the second nonadiabatic event
after 1000 au (as shown in Figure 10, upper right panel), but
only the CT-MQC results are in perfect agreement with exact
results.

The nonadiabatic process represented in model (d), as well
as in model (c), presents very different BO surfaces. Therefore,
the correct nuclear dynamics cannot be captured by methods,
such as Ehrenfest and MQC, relying on a single potential
energy surface which is (or is close to) an average potential.
Such an average potential cannot reproduce the very different
forces that are experienced by the nuclear trajectories in
different regions of space. By contrast, the single TDPES from
the exact factorization is able to capture very different shapes
because of the steps® that bridge piecewise adiabatic shapes. At
a given time, depending on where the classical trajectory is
located, it can experience very different forces. This is clearly
shown in Figure 11.

Dependence on Initial Momentum. It is interesting to
investigate the dependence of the final transmission/reflection
probabilities on the initial momentum of the nuclear nuclear
wave packet for the four model systems studied here. Similar
studies have been already reported in the literature,®"*>7*'"!
focusing on the performance of TSH in comparison to
quantum propagation techniques. Here, we will only bench-
mark the CT-MQC algorithm against exact results. We refer to
the above-mentioned references for TSH results since we are
considering the same initial conditions used there. Moreover,
we will not show the results for Ehrenfest and for the
independent-trajectory version of the MQC algorithm derived
from the exact factorization. The reason is that neither method
is capable of following the evolution of nuclear wave packets
along diverging paths (at least with the initial conditions chosen
below), as we have previously discussed.”

In all cases, the initial variance of the nuclear wave packet is
chosen as ¢ = 20/(#ik,). The initial conditions for the classical
trajectories are sampled in position space from a Gaussian
distribution with variance o, while the same momentum, 7k, is
assigned to all trajectories. For model (d), we have only chosen
large values of 71k, since for lower values model (d) is similar to
model (c).

Figure 12 shows a good agreement between exact and
quantum-classical results for models (a), (c), and (d). As
expected from the results reported for model (b) in Figure 6 at
low initial momentum, the CT-MQC is not able to reproduce
the final probabilities up to 7k, = 20 au, but it improves at
higher values. Still, it slightly underestimates the nonadiabatic
population exchange up to a value of 7iky = 26 au of the initial
momentum. Also, it is worth noting that the (well-known)
unphysical oscillations in model (c), observed for the reflection
channels in TSH,”"”* are not present in our CT-MQC results.
In TSH, the oscillations appear when the initial momenta are
not sampled from a distribution,'** but a fixed value of fk, is
assigned to all trajectories, as done here. They are due to the
phase coherence between the first and the second passage of
the wave packet through the region of extended coupling. The
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CT-MQC algorithm correctly eliminates any sign of spurious
coherence, which is in agreement with quantum mechanical
results.

In model (d), the final probabilities shown in Figure 12
slightly oscillate around the exact value, but the deviation is not
larger than 10%. The model has been initially introduced” to
enhance the overcoherence problem of TSH and to investigate
possible correction strategies. Some studies have been
reported’>'?" where the initial width of the nuclear wave
packet is larger than the cases above, i.e.,, 6 = 100/(#k,), which
yields a very localized wave packet in momentum space. We
have simulated also this situation, following the same protocol
as described above for sampling classical initial conditions, for
the same range of 7k, In a recent work,'’" Curchod and
Tavernelli have shown that TSH (i) is not able to reproduce
the oscillations in the transmitted probabilities, if the initial
positions and momenta of the classical trajectories are sampled
from Gaussian distributions, and (ii) captures the oscillatory
behavior of the transmitted probabilities (even though not the
correct one), if the same positions and momenta are chosen for
all trajectories, which will then differ from each other at later
times, due to the stochastic jumps. In the CT-MQC algorithm,
if option (ii) is chosen, all trajectories will follow the same path
and no splitting will be observed. This is intrinsic of the
deterministic nature of the algorithm. Therefore, we chose the
option to sample the initial positions from a Gaussian
distribution, and we assigned the same initial momentum 7k,
to all trajectories. As shown in Figure 13, the CT-MQC

E | NNV

| | 1 1 1 |
40 42 44 46 48

initial momentum (a.u.)

Figure 13. Dependence of the final transmission/reflection proba-
bilities on the initial momentum #ik, for model (d). The initial
variance of the nuclear wave packet is chosen as o = 100/(%ik,).

algorithm is not able to match the exact results. Here, we
emphasize that this a very pathological situation, introduced to
exaggerate the overcoherence issue of TSH. Further studies and
more accurate approximations might be necessary to cure this
problem in CT-MQC.

B CONCLUSIONS

We have presented a detailed derivation of the CT-MQC
scheme® to nonadiabatic dynamics starting from the exact
factorization of the electron—nuclear wave function. When
compared to the independent-trajectory MQC,**” the CT-
MQC offers a clear improvement since the new method is now
able to correctly reproduce electronic decoherence and the
spatial splitting of the nuclear wave packet, which in turn is
connected to the ability of reproducing the steps®*~*® in the
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gauge invariant part of the TDPES. In the proposed scheme,
the classical trajectories are indirectly coupled through the
electronic equation. This feature is therefore different from the
direct interaction among trajectories provided by the quantum
potential in Bohmian dynamics.

Two key features have been included here that go beyond
our previous lowest order algorithm: (i) The quantum
momentum appears in the electronic equation when consider-
ing O(#) terms in the expression of the ENCO depending on
the nuclear wave function. (ii) The spatial dependence of the
coefficients in the Born—Huang expansion of the electronic
wave function has been taken into account to leading order,
while it was completely neglected in our previous work. In the
new picture, we have been able to distinguish the two effects
induced by nuclear motion on electronic dynamics, populations
dynamics and decoherence. On the one hand, nonadiabatic
transitions are induced by the nuclear momentum, the zeroth
order term of the 7/ expansion, which couples to the NACVs.
On the other hand, decoherence effects are controlled by the
quantum momentum, the first-order term of the 7 expansion,
which is an imaginary correction to the nuclear momentum in
the ENCO. In turn, the effect of the electrons on nuclear
dynamics is represented by the TDPES and the TDVP. As
discussed in previous work,**”*® being able to reproduce their
features, such as the steps, in an approximate scheme results in
the correct description of the nuclear wave packet behavior.

In this paper, the analytical development of the algorithm is
supported by tests performed on some model systems,”"’*
which are typical examples of electronic nonadiabatic processes.
The comparison of the CT-MQC results with wave packet
dynamics has shown that indeed we are able to predict the
correct physical picture, capturing the dynamical details of both
electronic and nuclear subsystems. Moreover, we have proved
that the new algorithm, being a coupled-trajectory scheme, is
able to overcome the issues that are encountered when other
methods, based on an independent-trajectory picture, are
employed.

Further developments are envisaged, mainly focusing on the
application of the method to more realistic problems and on
the semiclassical treatment of nuclear dynamics, possibly
allowing the treatment of nuclear interference effects.

B ASSOCIATED CONTENT
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Section SIL.1 introduces the exact factorization frame-
work, recalling the general theory and the equations that
are the starting point for the approximations developed
in the main text. Section SI.2 justifies the approximations
leading to eq 17 by using semiclassical arguments.
Moreover, we recall there the analysis of the coeflicients
IC/(R, t)! of the Born—Huang expansion of the electronic
wave function that we presented in previous work.*® The
equations to compute the quantum momentum in a
multilevel system are derived in Section SI.3 and are
presented as a generalization of the two-level case
discussed in the main text. Finally, Section SL.4 gives the
computational details for the numerical tests. (PDF)
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