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Abstract Technical applications of plasmonic nanostruc-
tures require a careful structural optimization with respect
to the desired functionality. The success of such optimiza-
tions strongly depends on the applied method. We extend
the generalized multiparticle Mie (GMM) computational
electromagnetic method and use it to excite a system of plas-
monic nanoparticles with an electron beam. This method is
applied to EELS calculations of a gold dimer and compared
to other methods. It is demonstrated that the GMM method
is so efficient, that it can be used in the context of structural
optimization by the application of genetic algorithms com-
bined with a simplex algorithm. The scheme is applied to
the design of plasmonic filters.
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Introduction

Electron energy loss spectroscopy (EELS) in the low loss
region and cathodoluminescence spectroscopy (CLS) have
evolved to common tools to investigate electromagnetic
excitations of metallic nanoparticles [1–3]. Especially scat-
tering properties of plasmonic nanostructures like Yagi-Uda
antennas [2], plasmonic ridge nanoantennas [4], or plas-
monic resonators [5] have been investigated.

Both EELS and CLS experiments are typically per-
formed in transmission electron microscopy (TEM). EELS
uses electrons, which are accelerated to 50–300 keV while
CLS uses energies of 1–30 keV. In the low loss region, i.e.,
in the UV-VIS-IR region, we are concerned with the interac-
tion of the electron’s electromagnetic field with the sample
(typically metallic nanoparticles and systems thereof). The
electron interacts with the field scattered back from the
sample, which causes characteristic energy losses yielding
information on the electromagnetic near field. CLS directly
measures the resulting far field scattering patterns. Consid-
ering plasmonic particles as nanoantennas, the question of
the optimal shape of an antenna for a given purpose arises.
Clearly, such an optimization will require computational
approaches. We can distinguish semi-analytical approaches
mainly based on Mie theory [6] or numerical methods based
on the discretization of Maxwell’s equations [7].

The original Mie theory describes the scattering of elec-
tromagnetic fields at a sphere in terms of an expansion
in spherical vector wave functions (SVWF, see Appendix).
Since most structures are more complex than a single
sphere, more sophisticated methods are needed.
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A first generalization of Mie theory was described by
Waterman [8] as T-matrix method. The T-matrix contains
all interaction contributions, i.e., the interaction of the inci-
dent and scattered fields. The T-matrix is calculated from
integrals on the surface of the scattering particle. The
description of scattering processes at multiple particles can
be achieved with the help of rotation and translation addition
theorems [9] to create a T-matrix describing the scattering
system as a whole including all multiple scattering events
[10]. An additional approach, which is used in the present
paper, describes the multiple scattering in terms of a system
of equations, which relates the coefficients of incident and
scattered fields of each particle [11, 12].

Besides these Mie-type codes, the particles can be
described as a grid of discrete dipoles (discrete dipole
approximation (DDA) [13]), by field expansion using multi-
poles (generalized multipole technique (GMT) [14]), by the
boundary element method (BEM [15]), or by finite element
methods like the Discontinuous Galerkin Time Domain
method (DGTD [16, 17]).

This wide range of available methods opens up the pos-
sibility for optimizations of plasmonic nanostructures with
respect to almost any property of interest. Such an optimiza-
tion will require an efficient method for solving Maxwell’s
equations and should be flexible with respect to the geome-
try of the plasmonic system.

The finite element methods offer high flexibility as the
spatial discretization allows for an accurate approxima-
tion of even complicated structures. Considering efficiency,
however, the BEM requires the solution of a dense system
of linear equations for each frequency, the DGTD requires
the time propagation of the electromagnetic fields until all
induced fields have decayed. This results in rather high
computational costs for the characterization of a single plas-
monic structure. The same holds true for the DDA, which is
in principle flexible regarding the geometry of the system,
however, a huge number of dipoles have to be used in order
to give accurate results, especially in the context of EELS
[18].

The T-matrix method is very efficient due to its semi-
analytical approach and can handle a variety of differ-
ent particle geometries [9], covering most of the shapes
typically encountered in experiments. A drawback of the
method is, however, that in the context of EELS experiments
the trajectory of the exciting electron has to lie outside the
smallest sphere circumscribing the scatterer. If the scatterer
consists of a system of particles, this is obviously a serious
restriction.

Several investigations can be found in literature, com-
paring the advantages and disadvantages of the different
methods (cf. [19, 20]).

Plasmonic nanostructures are already a primary target
for optimization calculations like optimization of structures

with desired resonance spectra by modification of the par-
ticle shapes [21], structures for coherent control of light
propagation by variation of particle positions and source
[22–24], or enhancement of the local electric field by vari-
ation of particle positions and sizes [25]. While the first
optimization was carried out by evolving a structure towards
the desired solution, the latter calculations applied genetic
algorithms. The optimization of plasmonic nanostructures
in terms of GMM with genetic algorithms was already
applied to plane wave excitations [25]. We extend this to an
electron beam excitation. Optimization strategies with elec-
tron beam excitation are, to the best of our knowledge, not
investigated up to now.

If the electron beam excitation is implemented in the
generalized multiparticle Mie solution [11, 12], the restric-
tion on the electron’s trajectory can be overcome and allows
for an optimization of plasmonic structures under electron
excitation.

After discussing the theory, the implementation of elec-
tron excitation in the GMM method is tested against the
T-matrix method and DGTD. The full power of the method
in combination with optimization strategies is then demon-
strated by means of the design of plasmonic filters.

Theory

Generalized Multiparticle Mie-Solution

The description of scattering by a cluster of spheres starts
from Mie theory [6] for a single metallic sphere. Thus, the
incident field Einc, the internal field Eint, and the scattered
field Esca are expanded in spherical vector wave functions
(SVWF) M(1,3)

mn and N(1,3)
mn .

Einc =
∞∑

n=1

n∑

m=−n

amnM(1)
mn + bmnN(1)

mn (1a)

Eint =
∞∑

n=1

n∑

m=−n

cmnM(1)
mn + dmnN(1)

mn (1b)

Esca =
∞∑

n=1

n∑

m=−n

fmnM(3)
mn + gmnN(3)

mn (1c)

The boundary condition at the surface (with normal vector
n) of the sphere

(Einc + Esca − Eint) × n = 0 (2)

yields the well-known Mie coefficients,

T 1
n = − (mrLn(mrx)+n/x)jn(x)−jn−1(x)

(mrLn(mrx)+n/x)h
(1)
n (x)−h

(1)
n−1(x)

(3a)

T 2
n = − (Ln(mrx)/mr+n/x)jn(x)−jn−1(x)

(Ln(mrx)/mr+n/x)h
(1)
n (x)−h

(1)
n−1(x)

(3b)
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which describe the relation between the coefficients of the
incident and scattered field in dependence of the relative
refractive index mr = √

εi/εs, with relative permittivities εi

and εs in the sphere and its surrounding, respectively. The
dimensionless size parameter x = k R is the product of the
wave number and the radius of the sphere. The functions
jn(x) and h

(1)
n (x) are spherical Bessel and Hankel functions,

respectively. The logarithmic derivative Ln is defined as:

Ln(x̃) = d

dx̃

[
ln(x̃jn(x̃))

]
. (4)

Using the Mie coefficients, the relation of the expansion
coefficients of the incident field Einc and the scattered field
Esca

fmn = T 1
n amn gmn = T 2

n bmn (5)

can be rewritten in matrix form
(
f
g

)
= T

(
a
b

)
=

(
T1 0
0 T2

) (
a
b

)
(6)

where T defines the scattering matrix (T-matrix) for a sin-
gle spherical particle [26]. The multiple scattering of N

spheres can be described by means of a system of equations,
which relates the coefficients of the scattered waves of all
involved spheres using the SVWF’s translation coefficients
A

μν
mn(j, i) and B

μν
mn(j, i). The translation coefficients trans-

form the scattered waves from particle j with indices μ, ν

into incident waves on particle i with expansion coefficients
m, n, i.e., the coefficients depend on the relative separation
and direction of the particles.

f i
mn = T 1

i,n

×

⎛

⎜⎜⎜⎜⎝
ai
mn −

N∑

j = 1
i �= j

∞∑

ν=1

ν∑

μ=−ν

(
f j

μνA
μν
mn(j, i) + gj

μνB
μν
mn(j, i)

)

⎞

⎟⎟⎟⎟⎠

(7a)

gi
mn = T 2

i,n

×

⎛

⎜⎜⎜⎜⎝
ai
mn −

N∑

j = 1
i �= j

∞∑

ν=1

ν∑

μ=−ν

(
f j

μνB
μν
mn(j, i) + gj

μνA
μν
mn(j, i)

)

⎞

⎟⎟⎟⎟⎠

(7b)

If Eqs. 7a and 7b are recasted in matrix form, standard
solvers for linear systems of equations can be easily applied.

[( I 0
0 I

)
+

(
T1 0
0 T2

)(A B
B A

)] (
f
g

)
=

(
T1 0
0 T2

)( a
b

)

=
(
ã
b̃

)
(8)

To calculate the matrices A and B containing the trans-
lation coefficients A

μν
mn(j, i) and B

μν
mn(j, i), Mackowski’s

three-step-method [27] is used,

Aij (rij ) = R−1(rij )Ãij (rij )R(rij ) (9a)

Bij (rij ) = R−1(rij )B̃ij (rij )R(rij ) (9b)

where the matrices Ãij and B̃ij describe the axial transla-
tion, and the unitary matrix R describes the rotation of the
coordinate system.

As a result, the calculation yields the expansion coeffi-
cients f i

mn and gi
mn of the scattered field at each individual

particle due to the multiple scattering in the particle sys-
tem. In contrast to the GMM method, the T-matrix method
provides one set of expansion coefficients for the whole
scattering system.

Excitation

To perform calculations with the GMM method, it is neces-
sary to expand the incident field in SVWFs. The expansion
coefficients for an incident plane wave [28] and an inci-
dent electron beam [29] are in principle known, but due to
varying definitions of the SVWFs, used in literature, the
coefficients are presented here with respect to the definition
of the SVWFs given by Doicu et al. [9] (cf. Appendix).

In general, the expansion (1a) can be calculated by inte-
gration of the incident field Einc over an auxiliary sphere,
because the SVWFs form a complete set of orthogonal basis
functions on the unit sphere.

amn =
∫ π

0 dθ
∫ 2π

0 dϕEincM
(1)
mn sin θ

∫ π

0 dθ
∫ 2π

0 dϕ|M(1)
mn|2 sin θ

(10a)

bmn =
∫ π

0 dθ
∫ 2π

0 dϕEincN
(1)
mn sin θ

∫ π

0 dθ
∫ 2π

0 dϕ|N(1)
mn|2 sin θ

(10b)

For a given incident field Einc, we are thus able to determine
the corresponding expansion coefficients. In case of an inci-
dent plane wave, the following non-vanishing coefficients

a1,n = −a−1,n = in−1
√

2n + 1 (11)

b1,n = b−1,n = in−1
√

2n + 1 (12)

describe the excitation.
To calculate the expansion coefficients of an electron

beam excitation, we restrict the problem to an electron fly-
ing in z-direction with velocity v while using reduced units,
in particular the speed of light in vacuum is c0 = 1. The
problem is considered in frequency domain, i.e., the coeffi-
cients do not depend on time t but on the frequency ω. The
position of the electron relative to the center of the sphere
is then given in cylindrical coordinates r0 = (b, ϕ0, z0)

(see Fig. 1). The distance b of the electron from the z axis
is commonly known as impact parameter. The derivation
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Fig. 1 Excitation of a sphere by the field by an electron beam. The
actual position of the electron in cylindrical coordinates is r0 =
(b, ϕ0, z0)

[30] shows that the impact parameter has a monotonic influ-
ence on the magnitude of the expansion coefficients, i.e.,
the larger the impact parameter, the smaller the magnitude
of the expansion coefficients. The azimuthal angle ϕ0 and
height position z0 solely result in a complex phase, and thus,
the influence of the electron’s position r0 is summarized in
the factor Rm.

Rm = Km

(
ωb

v

1

γ

)
exp

(
−imϕ0 − i

ωb

v

z0

b

)
(13)

amn = Rm

in−2mk

π

(
2

n(n + 1)

) 1
2

m P |m|
n (v−1) (14)

bmn = Rm

in−2mk

π

(
2

n(n + 1)

) 1
2 i

2vγ

×
(
c+
m−1

√
(n − m + 1)(n + m)P |m−1|

n (v−1)

−c−
m−1

√
(n + m + 1)(n − m)P |m+1|

n (v−1)
)

(15)

The functions P
|m|
n are associated Legendre polynomials,

and the Km are modified Bessel functions of the second
kind. The Lorentz factor is given by γ −1 = √

1 − v2 in our
units and the factors c

+/−
m take care of the correct signs due

to the usage of |m| in the associated Legendre polynomials.

c+
m =

{
1 m < 0
−1 m ≥ 0

c−
m =

{
1 m ≤ 0
−1 m > 0

(16)

Electron Energy Loss Spectroscopy and
Cathodoluminescence Spectroscopy

The numerical calculation of EELS and CLS differs,
because the scattered field Esca enters the signals in a
different way.

The electron energy loss is the result of the force, the
electron with velocity ve(t) experiences along its path re(t),
due to the interaction with the scattered field Esca

	E = e

∫ ∞

−∞
dt ve(t) · Esca(re(t), t) . (17)

The electron energy loss can be expressed also in terms of an
integral over the frequency dependent electron energy loss
probability P(ω)

	E = �

∫ ∞

0
dω ωP(ω) . (18)

Using the Fourier representation of the scattered field Esca

and the assumption that the momentum of the electron
remains constant (no-recoil approximation, NRA), Eq. 17
can be reformulated as an integral in frequency domain
similar to Eq. 18. By comparison of both expressions, the
electron energy loss probability can be calculated (cf. [17])
from

PEELS(ω) = 2e

�ω

∫ ∞

−∞
dt �

{
ve(t) · Esca(re(t), ω)e−iωt

}
.

(19)

Due to a further application of the NRA, i.e., by substituting
re(t) = r0 + vt , Eq. 19 becomes suitable for frequency
domain calculations. Assuming that the electron moves only
in z-direction, we find the following alternative definition:

PEELS(ω) = 2e

�ω

∫ ∞

−∞
dz �

{
ez · Esca(r0, ω)e−iωz/v

}
. (20)

The cathodoluminescence probability is given by the
amount of scattered energy and thus can be calculated by
integrating the Poynting vector over a closed surface cir-
cumscribing the scatterer. For the sake of simplicity, this
surface should be a sphere.

	E =
∫ π

0
dθ

∫ 2π

0
dϕ

∫ ∞

−∞
dt r2er · (E × H) (21)

Again, this energy loss can be expressed in terms of a loss
probability in frequency domain.

	E =
∫ π

0
dθ

∫ 2π

0
dϕ

∫ ∞

0
dω ω PCL(ω, θ, ϕ) (22)

Thus, the Fourier transform of Eq. 21 compared with Eq. 22
provides an expression for the angular-dependent cathodo-
luminescence probability

PCL(ω, θ, ϕ) = r2

ω
� {[E(ω, θ, ϕ) × H(ω, θ, ϕ)] · er} .

(23)

The far field expressions of the fields can be used, if the
radius of the circumscribing sphere goes to infinity. This
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removes the magnetic field from the calculation. Finally, the
cathodoluminescence probability is calculated from

PCL(ω, θ, ϕ) = 1

ω

√
εs

μs
|E(θ, ϕ)|2 . (24)

Optimization

A two-step approach was used to achieve optimization
of nano-plasmonic structures. First, starting from a set of
random configurations of the system of interest, genetic
algorithms were used for a large-scale scan of the parameter
space and a coarse optimization towards the optimal config-
uration. In a second step, further optimization was achieved
by means of the simplex algorithm of Nelder and Mead [31]
to get the best configurations according to the optimization
criteria.

The genetic algorithms were developed with natural evo-
lution processes in mind. The basic idea is that a population,
consisting of a larger amount of different configurations,
evolves over time. To achieve this, the fitness for each
individual configuration (also called individuum) gets eval-
uated. This fitness is usually a measurable quantity like the
field strength at a certain position but can be any arbitrary
quantity, which should be optimized. The fitness function,
used during the optimization of plasmonic filters in this
paper, is the ratio of magnitude of the electric field next to a
receiver sphere for two different wavelengths.

F = log

( |Eλ1 |
|Eλ2 |

)
(25)

This definition is inspired by typical near field enhancement
optimizations, where the local field is compared to the nor-
malized intensity of the incoming plane wave excitation [25]
and optimization of surface structures for surface enhanced
raman spectroscopy (SERS) [32]. Possible applications for
resulting structures include the frequency filtered, localized
excitation of molecules positioned at the measuring point.

After calculating the fitness, the best configurations of
the population get used to create the next generation’s
population by direct copying (elitism), interchange of com-
ponents of the configurations (crossover), or modification
of single quantities in the configurations (mutation). By
repeating these steps for several generations, the population
converges to good approximants of the optimal structure.

At this point, the simplex algorithm from Nelder and
Mead [31] gets used, to optimize the best structures,
selected from the previous calculation. The idea of this
algorithm is to calculate the fitness of configurations with
small deviations from the original configuration, thus span-
ning a simplex in configuration space, whose vertices are
assigned the corresponding fitness. Then, a replacement for
the vertex with the worst fitness is calculated in a way that
either a better vertex is found or the simplex gets contracted

towards the best vertex. Repeating this process, the simplex
converges to the local minimum which is likely a global
minimum, due to the precedent optimization with genetic
algorithms.

However, the search of nearly-optimal structures with
genetic algorithms is subject of a quick reduction of param-
eter space, which requires either a brute-force approach to
search in a larger set of parameters or a sophisticated algo-
rithm to preserve/restore the spanned parameter space dur-
ing the optimization. The latter approach can be achieved by
principal component analysis to recover from a population
degeneration [33].

In this study, the traditional genetic algorithms were
implemented using the GENETIC ALGORITHM UTILITY

LIBRARY [34]. To overcome the problem of population
degeneration, 100 distinct populations with 20 individuals
each have been used during the optimization. Crossover
happened in 80 % and mutation in 30 % of all evolution
steps. The evolution was calculated over 100 generations.
The simplex algorithm was implemented using the GNU
SCIENTIFIC LIBRARY [35].

Additionally, the SHUFFLED COMPLEX EVOLUTION

WITH PRINCIPAL COMPONENTS ANALYSIS (SP-UCI
[33]), which incorporates a modified simplex algorithm and
multinormal resampling for avoidance of population degen-
eration, was used to compare to the other procedure. For
this algorithm, 20 distinct populations with 155 species each
were used.

Examples and Application

First, a dimer of two gold spheres is used to compare our
implementation of EELS and CLS calculation in the GMM
method with the results of T-matrix method and DGTD [17,
36]. The combination of the advantages of the generalized
multiparticle Mie (GMM) method with the above mentioned
optimization strategy leads to a very efficient method to
optimize complex plasmonic nanostructures. This will be
demonstrated by the design of plasmonic filters.

Dimer of two Gold Spheres

First, we compare the electron energy loss propability
PEELS(ω) calculated for a dimer of two gold spheres by the
GMM method with the results from the T-matrix method
and the DGTD. The gold spheres have a radius of 10 nm
and a distance of 1 nm, which are typical parameters from
actual experiments [37]. The electron passes this dimer at
the outer edge with a distance of 0.5 nm at 30 % of the speed
of light. Due to the mentioned restrictions of the T-matrix
method, the electron beam has to pass the dimer outside of
the smallest circumscribing sphere. Although experimental
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Fig. 2 Comparison of the electron energy loss probability PEELS(ω)

for a Au dimer, calculated with T-matrix method (TMM), generalized
multiparticle Mie (GMM) method, and Discontinuous Galerkin Time
Domain method (DGTD)

values for the permittivity can be used in the framework
of the T-matrix and GMM methods, the DGTD method is
restricted to an analytical description of the permittivity. As
the choice of a complex model for the permittivity will heav-
ily influence the computation cost of the DGTD, we chose
the Drude model for a free electron gas

εr(ω) = 1 − ω2
p

ω(ω + iη)
(26)

to get a reasonably fast calculation. Nevertheless, it is well
known that gold is much better described by extending the
Drude model with additional Lorentzian terms [38] or crit-
ical points describing the interband transitions [39]. The
parameters in the Drude model (26) are the plasma fre-
quency ωp (�ωp = 9.073 eV) and the relaxation rate η

(�η = 0.071 eV) that accounts for the electromagnetic
damping. These values were acquired by fitting experi-
mental values [40, 41] and are similar to other previously
published parameters [42–44].

(b)

(a)

Fig. 3 Variation of the position of the exciting electron beam near
the dimer, starting at the center of the dimer. a perpendicular to the
dimer axis, b on a circle around one Au sphere with constant impact
parameter

The calculation of light scattering in the (sub-)nanometer
regime requires, in general, careful consideration of non-
local effects. The implementation of non-local effects could
be achieved in terms of the hydrodynamical model as exten-
sion to the present Drude model [45]. The influence of
non-local effects was already discussed by Abajo [46] the-
oretically and by Duan et al. [47] in comparison of theory
and experiment. Abajo [46] showed that typical effects
like blue-shift of the resonances and plasmon broadening
appears for gold dimers with a radius of 10 nm for a distance
of the spheres much below 1 nm. Therefore, the non-local
effects are not taken into account for the comparison of the
three methods.

Figure 2 shows the comparison of the three methods.
Both the T-matrix method and the generalized multiparticle
Mie method were carried out with a maximum multipole
order of n = 16 to get comparable results. Due to numeri-
cal difficulties, the TMM cannot be used to calculate higher
multipole orders, while the GMM method is more stable
[48].

All curves in the plot are normalized to the height of
the first peak. We can clearly see that the results of the
TMM and the GMM method show very good agreement
for lower frequencies, while there are small differences for
frequencies ω ≥ 0.65ωp. This can be explained by the
poorer convergence properties of the TMM. However, with
increasing multipole order, the TMM results show a ten-
dency towards the results of the GMM method. The results
of the DGTD agree well with the GMM method, but the
peaks at lower frequency are slightly shifted to higher fre-
quency and the magnitude of the loss probability differs for

0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

25

30

di
st
an
ce

fr
om

ce
nt
er

in
nm

0

1

P E
E
L
S
(a
.u
.)

ω ωp

Fig. 4 Electron energy loss probability PEELS(ω) for path (a) from
Figure 3. The solid red line marks the distance, at which the highest
energy loss probability for a given frequency was detected
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the higher frequencies. Again, this could be explained by the
missing convergence, because a very fine real space mesh
is necessary to describe the interaction between the electron
and the gold spheres and the realization of the Fourier trans-
form requires the fields to be mostly decayed, i.e., a long
simulation in the time domain.

In contrast to the other methods, the GMM method
allows a more detailed and fast investigation of the dimer.
We do not have restrictions for the position of the exciting
electron beam; therefore, the excitation can be varied along
the paths shown in Fig. 3.

At first, we start with the excitation at the center of
the dimer and move it away, perpendicularly to the dimer
axis (path (a) in Fig. 3). The results of the calculation (cf.
Fig. 4) demonstrate that the electron energy loss probabil-
ity (EELP) for higher frequencies decays faster than for
lower frequencies, which is due to the different wavelength,
which influences the decay length of the near field. It is also
remarkable that the maximum achievable EELP (marked in
red in Fig. 4) is not always at the center of the dimer but at a
distance of up to 10 nm. A similar study has been carried out
moving the electron beam with constant impact parameter
of b = 10.5 nm on a circle around one of the gold spheres
(path (b) in Fig. 3). Along this way, the electron beam can
excite certain modes, while other modes cannot be excited
due to symmetry reasons (Fig. 5). The modes excited or
not are classified usually as optical bright and dark modes,
respectively. In dependence on the frequency, the highest
loss probability appears at specific angles, as a result of the
plasmon mode geometries with different nodal points.

The investigation of optical bright and dark modes can
be further extended. Due to their symmetry properties, dark
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Fig. 5 Electron energy loss probability PEELS(ω) for path (b) from
Fig. 3. The solid red line marks the angle, at which the highest energy
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probability for a gold dimer excited at three different points

modes cannot couple to the far field. Thus, the cathodolu-
minescence probability (CLP), which is a physical quantity
determined from the far field, should be zero for these
modes (see Fig. 6). From the symmetry of the structure, we
can predict that the excitation by an electron beam, which
is directed through the center of the dimer, can excite dark
modes oscillating in the x-y-plane. Due to the electron pass-
ing the dimer, it is also possible to excite optical bright
modes with polarization in z-direction.

By examining the resulting spectra (see Fig. 6), one can
see that indeed the excitations at positions 1 and 2 create
strong contributions in both EELS and CLS in the lower
frequency range, while the excitation in the center of the
dimer (position 3) results also in contributions to the EELS
in the higher frequency range, while the CLS shows small to
none contributions in this frequency range. Thus, the modes
c and e can be considered to be dark modes, while there are
also two bright modes (b and d) close to them.
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the spheres
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Table 1 Optimized positions for the plasmonic filter (see Fig. 7)

Sphere x in nm y in nm z in nm

1 −19.5 −0.4 8.4

2 47.0 −2.9 20.1

3 67.2 −2.1 19.2

4 87.2 −3.8 15.4

Fixed sphere 100.0 0.0 0.0

5 119.6 −1.6 5.0

A very interesting contribution to all three spectra is
mode a, with a frequency which corresponds to the fre-
quency of the dipole mode of a single sphere which is
directed along the electron path. This mode can be excited
from all three positions but is most prominent in the
cathodoluminescence spectra.

Plasmonic Filter

The strength of the GMM becomes apparent in the opti-
mization of plasmonic nanostructures. While most authors
concentrate their work on structures with large near field
enhancement [49, 50], necessary for surface enhanced
Raman spectroscopy (SERS), it is also interesting to use
ensembles of spheres as plasmonic filters. This means that,
e.g., a signal of broad frequency range is used to excite the
structure, but only a certain frequency range should pass.
This is a plasmonic analogue to bandpass filters in acous-
tics and electronics. The broad band excitation in our case
is provided by the electron beam.

The structure considered here consists of a fixed sphere
(marked by a cross in Fig. 7) next to the reference point
where the field is measured and a fixed electron beam,
whose electrons had a velocity of v = 0.3 c0. Addition-
ally, five spheres were positioned by means of the described
optimization procedures to get a high contrast between two
wavelengths (we fixed the wavelengths to 500 and 600 nm).
The radii of all six spheres were fixed to 10 nm, and the
positions were restricted to the volume described by x, y ∈
−3030 nm and z ∈ −25125 nm.

According to Eq. 25, the fitness, i.e., the quality of a
structure, was measured to be

F = log

( |E600 nm|
|E500 nm|

)
. (27)

Within the first procedure (i.e. genetic algorithms combined
with simplex algorithm), the coarse optimization process
for the plasmonic filter yielded various different results
indicating a complicated fitness function. From these con-
figurations, the best structures were further optimized using
the simplex method and all results showed a similar struc-
ture, i.e., they consisted of one sphere next to the electron
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Fig. 8 Optimization of the structure with respect to the field strength
at a reference point for a given wavelength

beam to “catch” the field of the electron and an arc formed
by the remaining spheres to guide this field to the measuring
point.

The results obtained from SP-UCI showed similar behav-
ior, though there are no coarse intermediate results available
because this algorithm already includes a simplex method
for fine optimization. Over the course of this study, the
SP-UCI method yielded the better results.

The spheres are mainly positioned in the x-z-plane and
show a tendency to be perfectly inplane. However, the fine
optimization towards these perfectly optimized structures
requires an extreme amount of evaluations to move the
spheres in place (Table 1).

As a comparison, we also optimized this structure to
get the highest possible field intensity for both wavelengths
separately, by defining the fitness as F = |E|. The result
(cf. Fig. 8) shows that even though the intensity of the
field has its highest peak at 500 nm next to the electron
beam, the intensity at the receiving point differs by an
order of magnitude between the two wavelengths and is
largest for 600 nm. The structures differ strongly for the two
wavelengths (Tables 2 and 3).

Table 2 Optimized positions for 500 nm (see Fig. 8)

Sphere x in nm y in nm z in nm

1 10.1 0.0 −19.4

2 30.2 0.0 −11.1

3 53.4 0.0 −6.5

4 77.5 0.0 −2.6

fixed sphere 100.0 0.0 0.0

5 121.1 0.0 0.0
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Table 3 Optimized positions for 600 nm (see Fig. 8)

Sphere x in nm y in nm z in nm

1 18.5 2.3 −3.1

2 38.8 2.9 −1.5

3 59.2 1.9 −1.3

4 79.7 0.5 −0.5

fixed sphere 100.0 0.0 0.0

5 120.3 0.3 −4.0

It is important to note that the optimized structures have
particle distances down to 0.2 nm. As a result, the scattering
processes might be subject to non-local effects and further
calculations might be necessary.

Conclusions

The generalized multiparticle Mie (GMM) method, devel-
oped in the context of plane wave excitation of particle
systems, was extended to electron beam excitations of sys-
tems of metallic particles. The accuracy of the method was
demonstrated in comparison with the T-matrix method and
the DGTD. The power of the combination of the GMM
method with advanced optimization strategies was demon-
strated by the optimization of plasmonic filter structures. If
the shape of the single particle is a sphere, the method can
be extended to systems consisting of much more particles.

Appendix

The spherical vector wave functions (SVWF) can be con-
structed from the spherical wave functions (SWF). The
SWFs are scalar solutions to the Helmholtz equation and
can be written as

u1,3
mn(k r) = z1,3

n (k r)P |m|
n (cos θ)eimϕ , (28)

with n = 1, 2, . . . , m = −n, . . . , n. (r, θ, φ) are the
spherical coordinates of the position vector r. Following the
definition of [9], the radial part is the spherical Bessel func-
tion of first kind z1

n(kr) = jn(kr) and the spherical Hankel

function of first kind z3
n(kr) = h

(1)
n (kr) for incoming and

outgoing waves, respectively. The polar part of the wave
function is given by the associated Legendre polynomials,
which depends on the magnitude of m.

Finally, the SVWFs can be constructed using the pilot
vector r.

M1,3
mn(k r) = 1√

2n(n + 1)
∇u1,3

mn(k r) × r (29)

N1,3
mn(k r) = 1

k
∇ × M1,3

mn(k r) (30)

The final expressions used in this paper are

M1,3
mn(k r) = z

1,3
n (k r)√

2n(n + 1)

(
imπ |m|

n (θ)eθ − τ |m|
n (θ)eϕ

)
eimϕ (31)

N1,3
mn(k r) = 1√

2n(n + 1)

(
n(n + 1)

z
1,3
n (k r)

k r
P |m|

n (cos θ)er

+[k rz
1,3
n (k r)]′
k r

(
τ |m|
n (θ)eθ + imπ |m|

n (θ)eϕ

))
eimϕ (32)

The angular functions τ and π are defined using the associ-
ated Legendre polynomials P m

n as

τm
n (θ) = d

dθ
P m

n (cos θ), πm
n (θ) = P m

n (cos θ)

sin θ
. (33)
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