
Density-Matrix Propagation Driven by Semiclassical
Correlation

Peter Elliott[a] and Neepa T. Maitra*[b,c]

Methods based on propagation of the one-body reduced

density-matrix hold much promise for the simulation of corre-

lated many-electron dynamics far from equilibrium, but diffi-

culties with finding good approximations for the interaction

term in its equation of motion have so far impeded their

application. These difficulties include the violation of funda-

mental physical principles such as energy conservation, posi-

tivity conditions on the density, or unchanging natural orbital

occupation numbers. We review some of the recent efforts to

confront these problems, and explore a semiclassical approxi-

mation for electron correlation coupled to time-dependent

Hartree-Fock propagation. We find that this approach captures

changing occupation numbers, and excitations to doubly-

excited states, improving over TDHF and adiabatic approxima-

tions in density-matrix propagation. However, it does not guar-

antee N-representability of the density-matrix, consequently

resulting sometimes in violation of positivity conditions, even

though a purely semiclassical treatment preserves these condi-

tions. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25087

Introduction

Time-resolved dynamics of electrons in atoms, molecules, and

solids are increasingly relevant for a large class of problems

today. The electrons and ions are excited far from their ground

states in photo-induced processes such as in photovoltaics or

laser-driven dynamics, and control of the dynamics on the

attosecond time-scale is now experimentally possible. To theo-

retically model these processes an adequate accounting of

electron correlation is required. Clearly solving the full time-

dependent Schr€odinger equation (TDSE) is impossible for

more than a few electrons, and, moreover, the many-electron

wavefunction contains much more information than is needed.

Most observables of interest involve one- or two-body opera-

tors, suggesting that a description in terms of reduced varia-

bles would be opportune: in particular, obtaining directly just

the one- and two-body time-dependent reduced density mat-

rices (TD RDMs)[1] would enable us to obtain any one- or two-

body observable (e.g., electron densities, momentum profiles,

double-ionization probabilities, etc). Even simpler, the theo-

rems underlying time-dependent density functional theory

(TDDFT) prove that any observable can be obtained from

knowledge of simply the one-body density. However, hiding in

any of these reduced descriptions is the complexity of the full

many-body interacting electron problem, in the form of recon-

struction functionals for the RDM case and exchange-

correlation potentials as well as observable-functionals in the

TDDFT case. In practice, these terms must be approximated,

and intense research has been underway in recent years to

determine approximations that are accurate but practically effi-

cient. The temptation to simply use approximations that were

developed for the ground-state cases, whose properties for

the ground-state have been well-studied and understood, has

proved profitable in some cases giving, for example, usefully

accurate predictions of excitation spectra.[2–4] But when used

for non-perturbative dynamics, these same approximations can

become rapidly unreliable. These problems will be reviewed in

the next section.

Solving the full TDSE scales exponentially with the number

of electrons in the system, while the computational cost of

propagating RDMs is in principle independent of the system-

size. Classical dynamics of many-body systems on the other

hand scales linearly with the number of particles, which raises

the question of using semiclassical approaches to many-

electron systems. Usually used for nuclear dynamics, a semi-

classical wavefunction is built using classical dynamical infor-

mation alone, in particular the phase arises from the classical

action along the trajectory[5–10]; in this way semiclassical meth-

ods can capture essential quantum phenomena such as inter-

ference, zero-point energy effects, and to some extent

tunneling.

We present some results from an approach that uses semi-

classical electron dynamics to evaluate the correlation term in

the propagation of the reduced density-matrix, with all the

other terms in the equation of motion treated exactly, as intro-

duced in Refs. [11,12]; thus it is a semiclassical-correlation

driven time-dependent Hartree-Fock (TDHF). We study dynam-

ics in perturbative and non-perturbative fields in two one-

dimensional (1D) model systems of two electrons: one is a

Hooke’s atom, and the other a soft-Coulomb Helium atom.
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The method improves over both TDHF and the pure semiclass-

ical method for the dynamics and excitation spectra in the

Hooke’s atom case, but gives unphysical negative density

regions in the soft-Coulomb case. This is due to violation of N-

representability conditions, even though the pure semiclassical

dynamics and the TDHF on their own preserve these

conditions.

Propagating reduced density matrices: A brief review

We start with the TDSE for the electron dynamics of a given

system (defined by the external potential, vextðrÞ):

i _Wðx1::xN; tÞ5
X

j

2r2
j =21

X
j

vextðrjÞ1
X

i<j

vINTðri; rjÞ
 !

Wðx1::xN; tÞ

(1)

where x5ðr;rÞ is a combined spatial and spin index, W is the

wavefunction, and vINT is the 2-body Coulomb interaction

between the electrons, vINTðr; r0Þ51=jr2r0j. Atomic units are

used throughout this paper, (me5�h5e251). Additionally, the

initial wavefunction W0 must be specified in order to begin

the propagation. However solving Eq. (1) is computationally an

extremely costly exercise and becomes intractable as the num-

ber of electrons in the system grows. Thus we must seek an

alternative approach that aims to reproduce the result of Eq.

(1) but at a much more reasonable computational cost. Fur-

ther, as mentioned in the introduction, the many-electron

wavefunction contains far more information than one usually

needs.

Most observables that are experimentally measurable or of

interest involve one- and two-body operators, such as the den-

sity e.g. in dipole/quadrupole moments, the momentum-

density e.g. in Compton profiles, and pair-correlation functions

in e.g. double-ionization. So a formulation directly in terms of

one- and two-body density-matrices, bypassing the need to

compute the many-electron wavefunction, would be more

useful.

This leads to the concept of reduced density-matrices,

where the p-RDM involves tracing the full N-electron wave-

function over N – p degrees of freedom:

qpðx01::x0p; x1 . . . xp; tÞ5
N!

ðN2pÞ!

ð
dxp11 . . . dxNW�ðx01::x0p; xp11 . . . xN; tÞWðx1::xp; xp11 . . . xN; tÞ

(2)

The diagonal of the p-RDM gives the p-body density,

Cðx1::xp; tÞ, the probability of finding any p electrons at points

r1::rp with spin r1::rp at time t. One can also define spin-

summed RDMs: e.g. q1ðr0; r; tÞ5
P

r;r2 ...rN
q1ðx0; x; tÞ. The Bogo-

liubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy of equa-

tions of motion for the RDMs were written down sixty years

ago[13,14]. The first in the hierarchy is that for q1, which spin-

summed is:

i q1

_ ðr0; r; tÞ5 2r2=21vextðr; tÞ1r02=22vextðr0; tÞ
� �

q1ðr0; r; tÞ

1

ð
d3r2feeðr; r0; r2Þq2ðr0; r2; r; r2; tÞ

(3)

where

feeðr; r0; r2Þ5vINTðr; r2Þ2vINTðr0; r2Þ (4)

The electron-interaction term in the equation for the 1RDM

involves the 2RDM, whose equation of motion, the second in

the hierarchy,

i q2

_ ðr01; r02; r1; r2; tÞ5
 X

i51;2

ð 2r2
i =21vextðri; tÞ

� �
2 2ri

02=21vextðri0 ; tÞ
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2vINTðr01; r02Þ
!

q2ðr01; r02; r1; r2; tÞ1
ð

dr3ðfeeðr1; r01; r3Þ

1feeðr2; r02; r3ÞÞq3ðr1; r2; r3; r01; r02; r3; tÞ

(5)

involves the 3RDM, and so on. Solving the full hierarchy is

equivalent to solving Eq. (1) and no less impractical for many-

electron systems. The hierarchy is usually therefore truncated,

typically using a “cluster expansion” where one reconstructs

higher-order RDMs as antisymmetrized products of lower order

ones plus a correlation term, sometimes referred to as a cumu-

lant. Putting the correlation term to zero becomes exact for the

case when the underlying wavefunction is a single Slater deter-

minant (SSD). For example, in the case of truncation at the first

equation, the equations reduce to TDHF, and, for a spin singlet

of a closed shell system, q2 in Eq. (3) is replaced by,

qSSD
2 ðr0; r2; r; r2; tÞ5qðr2; tÞq1ðr0; r; tÞ2 1

2
q1ðr0; r2; tÞq1ðr2; r; tÞ

(6)

If instead, the truncation is done at the second equation in

the BBGKY hierarchy, putting the correlation term to zero in

q3, one obtains the Wang and Cassing approximation.[15,16]

One has then the choice of propagating the equation for q2

alone or propagating it simultaneously alongside the equation

for q1.[17] However, recently it was found that, in the former

case, propagating while neglecting the three-particle correla-

tion term leads to the eventual violation of energy conserva-

tion.[17,18] Now the p-RDM can be obtained from higher-order

RDMs via contraction (i.e., partial trace),

qpðx01::x0p; x1::xp; tÞ5 1

N2p

ð
dxp11qp11ðx01::x0p; xp11; x1::xp; xp11; tÞ;

(7)

as follows from the definition Eq. (2). So an important condi-

tion to consider when formulating reconstructions is whether

they are contraction-consistent, i.e. whether they satisfy Eq.

(7). In fact, in Ref. [18], it was shown that the reconstruction

approximation of Refs. [15,16] violated this condition; the
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underlying reason was that the spin-decomposed three-parti-

cle cumulant,[19] neglected in this approximation, has non-zero

contraction. This realization enabled the authors of Ref. [18] to

derive a “contraction-consistent” reconstruction for q3 by

including the part of the three-particle cumulant that has non-

zero contraction, which fortunately is exactly known as a func-

tional of the 2RDM. This was able to conserve energy in the

dynamical simulations. However, one cannot breathe easy just

yet: propagation with this contraction-consistent reconstruc-

tion violated N-representability, another fundamental set of

conditions that wreak havoc if not satisfied. Ref. [17] showed

that contraction-consistency, and energy conservation, can be

enforced if both 1RDM and 2RDM are propagated simultane-

ously, even while neglecting the three-particle correlation

term. However again, N-representability was violated in this

approach, leading to unphysical dynamics, instabilities and

regions of negative densities.

N-representability means that there exists an underlying

many-electron wavefunction whose contraction via Eq. (2)

yields the matrix in question.[20,21] For 1RDMs, the N-represent-

ability conditions are simple, and usually expressed in terms of

its eigenvalues gj, called natural orbital (NO) occupation num-

bers, as defined via:

q1ðr0; r; tÞ5
X

j

gjðtÞn�j ðr0; tÞnjðr; tÞ (8)

for the spin-summed singlet case, where njðr; tÞ are natural

orbitals. The N-representability conditions are that 0 � gj � 2,

and
P

j gj5N. (For the spin-resolved case, the first condition

becomes 0 � gj � 1). The 1RDM should be positive semi-

definite, with trace equal N, and each eigenvalue bounded

above by 2. If this is violated, densities can become negative

in places, even when the norm is conserved. (Note that it can

be shown that particle number is always conserved by any

approximation[17]). For 2RDMs, only very recently has a com-

plete set of conditions for ensemble N-representability been

discovered[21]; for pure states, not all the conditions are

known, although some are. One important condition regards

positive semi-definiteness of the 2RDM, which is challenging

to maintain in dynamics when using approximate reconstruc-

tions. Yet without positive semi-definiteness, the propagation

becomes unstable. The condition is in fact violated even by

the contraction-consistent reconstruction introduced in Ref.

[18] and by the joint 1RDM and 2RDM propagation in Ref.

[17]. Even for ground-state problems (where the analog of the

BBGKY equations is referred to as the contracted Schr€odinger

equation), the reconstruction functionals can violate such con-

ditions, and iterative “purification” schemes have been intro-

duced to yield self-consistent N-representable ground-state

solutions.[22,23] Even when the initial RDM satisfies N-represent-

ability conditions, one can find violations building up at later

times in the propagation when approximate reconstruction

functionals are used.[17,18] Ref. [18] presented promising results

where a dynamical purification scheme was applied at each

time-step in the dynamics of molecules in strong-fields, lead-

ing to stable and accurate propagation. A similar method[24]

uses an energy-optimization procedure to obtain the 2RDM at

each time-step while also enforcing various N-representability

conditions, but the resulting dynamics is unable to change

occupation numbers.

From a different angle, it has been recently shown that the

BBGKY equations can be recast into a Hamiltonian formula-

tion,[25] that opens the possibility of using advanced approxi-

mate methods of classical mechanics to analyze the equations

and derive different reconstructions, in terms of equivalent

classical variables.

On the other hand, “time-dependent density-matrix func-

tional theory” (TDDMFT),[26] which deals only with Eq. (3), pro-

ceeds from a somewhat different philosophy: the idea is that

the 2RDM and all observables can in principle be obtained

exactly from the time-dependent 1RDM due to the Runge–

Gross theorem of TDDFT. The latter theorem[3,27] proves that

given an initial state, there is a one-to-one mapping between

the time-evolving one-body density (qðr; tÞ, diagonal of the

1RDM), and the externally applied potential. This means that,

in principle, knowledge of qðr; tÞ is enough to determine the

many-electron wavefunction, up to a purely time-dependent

phase, and hence all pRDMs also. Since q1ðr; r; tÞ5qðr; tÞ, this

means in turn that q1ðr0; r; tÞ determines all properties of the

system. The only assumption is that time-evolution of q1

occurs in a local potential, meaning a multiplicative operator

in space, which raises questions about v-representability.[28]

There has been significant effort to approximate the 2RDM

of Eq. (3) as a functional of q1, or of its NOs and occupation

numbers [Eq. (8)]. A natural starting point is to insert the time-

evolving 1RDM into an approximation developed for ground-

state density-matrix functional theory,[29–34] thus making an

“adiabatic” approximation. These functionals can give very

good approximations for ground-state properties, especially

important for strongly-correlated systems where common

approximations in alternative scalable methods like density-

functional theory fail. However, when used in time-

propagation, these same functionals keep the occupation

numbers fixed,[35–39] which leads to erroneous dynamics. The

first real-time non-perturbative application of TDDMFT[36]

resorted to an extra energy-minimizing procedure to deter-

mine occupation numbers at each time-step that resulted in

time-evolving occupation numbers. By considering perturba-

tions around the ground-state, a frequency-dependent

response theory can be formalized[35] from which excitation

energies can be computed, and it was shown that adiabatic

functionals cannot capture double-excitations. Phase-including

NO (PINO) functional theory[39–41] has been introduced to

overcome this problem. Here the functional depends on the

phase of the NO, which extends out of the realm of TDDMFT

since any phase-dependence of the NOs cancels out when q1

is formed.

Computationally, it has been argued that there is an advant-

age to propagating the NOs and occupation numbers directly

instead of working with Eq. (3).[38,42] By renormalizing the NOs

via their occupation numbers, ~nðtÞi5
ffiffiffiffiffiffiffiffiffi
giðtÞ

p
jnðtÞi, Refs. [42–44]

showed that the equations of motion for the orbitals and

those for the occupation numbers can be instead combined
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into one for each renormalized-orbital, which is numerically far

more stable than the coupled equations for giðtÞ and jniðtÞi.
By studying model two-electron systems, for which the exact

2RDM is known in terms of the NOs and occupation num-

bers,[45] Refs. [42–44] could propagate the renormalized NOs in

strong fields, with the only approximation being propagating

a finite number of orbitals. Even relatively few orbitals gave

very good results for challenging phenomena in correlated

strong-field dynamics: autoionization, Rabi oscillations, and

non-sequential double-ionization. For more than two electrons,

one will however run again into the challenge of finding an

accurate approximation for the 2RDM in terms of the renor-

malized NOs.

The progress and applications in time-propagating RDMs as

described above has been relatively recent (the use of RDMs in

static electronic structure theory is much older and more estab-

lished), although the BBGKY equations were written down sixty

years ago. This is partly because of the instabilities stemming

from violating N-representability when one truncates the hierar-

chy, or the inability of the adiabatic approximations for the

functionals q2½q1� to change occupation numbers, as reviewed

above. TDDFT, on the other hand, formulated about thirty years

ago,[3,27] has seen significant applications, especially for the cal-

culations of excitations and response, while the past decade has

witnessed exciting explorations into strong-field regime. As dis-

cussed above, the Runge–Gross states that all observables can

be obtained from the one-body density, but, instead of working

directly with the density, TDDFT operates by propagating a sys-

tem of non-interacting electrons, the Kohn–Sham system, that

reproduces the exact interacting density. The potential in the

equation for the Kohn–Sham orbitals is defined such that N

non-interacting electrons evolving in it have the same time-

dependent one-body density as the true interacting problem.

One component of this potential is the exchange-correlation

potential, a functional of the density q, the initial interacting

state W, and the initial choice of Kohn–Sham orbitals U in

which to begin the propagation, vXC½q; W0;U0�ðr; tÞ. In almost

all of the real-time non-perturbative calculations, an adiabatic

approximation is used, in which the time-evolving density is

inserted in a ground-state functional approximation, neglecting

the dependence on the initial-states and the history of the den-

sity. This has produced usefully accurate results in a range of sit-

uations, e.g. modeling charge-transfer dynamics in photovoltaic

candidates,[46] ultrafast demagnetization in solids,[47] dynamics

of molecules in strong fields.[48] Yet, there are errors, sometimes

quite large,[49–53] and investigation of the behavior of the exact

exchange-correlation potential reveals non-adiabatic features

that are missing in the approximations in use today.[54–56] Fur-

ther, when one is interested in observables that are not directly

related to the density, additional “observable-functionals” are

need to extract the information from the Kohn–Sham system:

simply evaluating the usual operators on the Kohn–Sham wave-

function is not correct, even when the exact exchange-

correlation potential functional is used.[57–60] Although it is in

principle possible to extract all observables from the Kohn–

Sham system, it is not known how. A final challenge is that

Kohn–Sham evolution maintains constant occupation numbers,

even with the exact functional, which results in strong

exchange-correlation effects. The one-body nature of the Kohn–

Sham potential means that the Kohn–Sham state remains a SSD

throughout the evolution, even though the interacting system

that it is modeling can dramatically change occupation num-

bers,[38,61] evolving far from an SSD (e.g., if a singlet single exci-

tation gets appreciably populated during the dynamics). This

leads to large features in the exact exchange-correlation poten-

tial that are difficult to model accurately.

So, although computationally attractive, one could argue that

operating via a non-interacting reference leads to a more difficult

task for functionals. This has motivated the revisiting of the

1RDM dynamics in recent years as discussed above: any one-

body observable can be directly obtained from the 1RDM using

the usual operators, and one does not need the effective poten-

tial to “translate” from a non-interacting system to an interacting

system. This suggests the terms in the equation that contain the

many-body physics could be easier to model. As discussed in the

previous paragraphs, the difficulty then is to come up with

approximations for the 2RDM that can change occupation num-

bers and maintain N-representability of the 1RDM. In this work,

we implement the idea first introduced in Ref. [11], using a semi-

classical approximation for the correlation term in Eq. (3).

Semiclassical-correlation driven TDHF

From now on we deal only with singlet states and consider

only the spin-summed RDMs. We begin by extracting the cor-

relation component of Eq. (3), by decomposing q2 via an SSD-

contribution from Eq. (6), plus a correlation correction:

q2ðr0; r2; r; r2; tÞ5qSSD
2 ðr0; r2; r; r2; tÞ1q2Cðr0; r2; r; r2; tÞ (9)

Then the last term of Eq. (3) can be written

ð
d3r2feeðr; r0; r2Þq2ðr0; r2; r; r2; tÞ5 vHðr; tÞ2vHðr0; tÞð Þq1ðr0; r; tÞ

1FXðr0; r; tÞ1v2Cðr0; r; tÞ
(10)

where

vHðr; tÞ5
ð

d3r0 qðr
0; tÞ

jr2r0j (11)

is the familiar Hartree potential of DFT and

FXðr0; r; tÞ52
1

2

ð
d3r2feeðr; r0; r2Þq1ðr0; r2; tÞq1ðr2; r; tÞ (12)

is the Fock exchange matrix. The final term of Eq. (10) we refer

to as the correlation potential:

v2Cðr0; r; tÞ5
ð

d3r2feeðr; r0; r2Þq2Cðr0; r2; r; r2; tÞ (13)

Without v2C, the propagation of Eq. (3) using the first two

terms of Eq. (10), reduces to TDHF. In the present work, we
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will evaluate v2C via semiclassical Frozen Gaussian dynamics,

so turn now to a short review of this.

Frozen Gaussian dynamics

Semiclassical methods aim to approximate the solution of Eq.

(1) via an expansion in �h; the zeroth order recovers the classi-

cal limit while the first-order Oð�hÞ terms are referred to as the

semiclassical limit. For propagation, a popular example is the

Heller–Herman–Kluk–Kay (HHKK) propagator[5–10,62–64] where

the N-particle wavefunction at time t as a function of the 3N

coordinates, denoted r5fr1; . . . ; rNg, is:

WFGðr ; tÞ5
ð

dq0dp0

ð2p�hÞN
hr jqtptiCq;p;t eiSt=�hhq0p0jW0i (14)

where fqt;ptg are classical phase-space trajectories at time t

in 6N-dimensional phase-space, starting from initial points

fq0;p0g. In Eq. (14), hr jqpi denotes the coherent state:

hr jqpi5
Y3N

j51

cj

p

� �1=4

e2
cj
2ðrj2qjÞ21ipjðrj2qjÞ=�h (15)

where cj is a chosen width parameter. St is the classical action

along the trajectory fqt;ptg. Finally, each trajectory in the inte-

grand is weighted by a complex pre-factor based on the

monodromy (stability) matrix, Cq;p;t which guarantees the solu-

tion is exact to first order in �h. Computing this pre-factor is

the most time-consuming element in the integral, scaling cubi-

cally with the number of degrees of freedom.

When the prefactor in Eq. (14) is set to unity, HHKK reduces

to the simpler Frozen Gaussian (FG) propagation,[7] which is

more efficient. As a consequence, it is no longer exact to order

�h and the results are no longer independent of the choice of

width parameter cj, unlike in HHKK. For our calculations we

take cj51. Neither the HHKK propagation nor FG is unitary;

typically we find the norm of the FG wavefunction decreases

with time, and so we must renormalize at every time-step. In

previous work,[12] the FG dynamics of electrons was investi-

gated and found to give reasonable results for a number of

different quantities and systems. Some of these will be

referred to in the Results presented here.

TDDMFG

In this work, we will implement the idea of Ref. [11] whereby

a FG propagation, running parallel to a propagation of the

1RDM, is used to construct v2C, which is then used in Eq. (10)

and Eq. (3) to propagate the 1RDM. From the FG wavefunction

given by Eq. (14), the 1RDM and 2RDM are computed and

then used to construct:

vFG
2C ðr0; r; tÞ5

ð
d3r2feeðr; r0; r2ÞqFG

2Cðr0; r2; r; r2; tÞ (16)

where qFG
2C is found by inverting Eq. (9):

qFG
2Cðr0; r2; r; r2; tÞ5qFG

2 ðr0; r2; r; r2; tÞ2qFGðr2; tÞqFG
1 ðr0; r; tÞ

1
1

2
qFG

1 ðr0; r2; tÞqFG
1 ðr2; r; tÞ

(17)

We then insert this into Eq. (16), and propagate Eq. (3) with

the last term evaluated using Eq. (16). We refer to this coupled

dynamics as TDDMFG, meaning time-dependent density-matrix

propagation with Frozen-Gaussian correlation.

The scheme of Ref. [11] takes advantage of the “forward-

backward” nature of the propagation of the 2RDM (i.e., there

is both a WðtÞ and a W�ðtÞ), which leads to some cancellation

of the oscillatory phase for more than two electrons. We also

observe that the spatial permutation symmetry of the initial-

state is preserved during the evolution (since the Hamiltonian

is for identical particles, exchanging coordinate-momentum

pairs of two electrons does not change the action). We will

study here two-electron singlet states where the wavefunction

is spatially symmetric under exchange of particles. In the FG

propagation, although the energy of each classical trajectory is

conserved in the absence of external fields, the energy of the

FG wavefunction constructed from these trajectories is not

guaranteed to be. As noted earlier, the norm is not conserved

either and the wavefunction must be renormalized at each

time. Thus, in general it is unlikely that energy will be con-

served in the TDDMFG scheme.

Computational details

The phase-space integral in Eq. (14) is performed using Monte

Carlo integration, with the distribution of M initial phase-space

points weighted according to a simple Gaussian initial distribu-

tion. In principle this method scales as
ffiffiffiffi
M
p

, however the oscil-

latory phase from the action St can make the FG propagation

difficult to converge and thus a large number of trajectories

are often needed. This, in turn, means that parallelization of

the numerical computation of Eq. (14) is needed. Fortunately,

the main task is “embarrassingly parallel” as each classical tra-

jectory can be calculated separately, however construction in

real space of the FG wavefunction, 2RDM, 1RDM, and Eq. (16)

is time-consuming and also required parallelization (in a man-

ner similar to the Fock exchange matrix calculations discussed

below). To avoid performing these costly procedures at every

time step, we used a linear-interpolation of Eq. (16) which only

required its construction every DV timesteps. We tested that

the results were converged with respect to DV, finding accu-

rate results for values as high as DV 5 200 for a timestep of

dt 5 0.001 au for the cases we studied.

The 1RDM propagation was performed via the predictor-

corrector method combined with an Euler forward-stepping

algorithm. All quantities were calculated on a real-space grid

and the derivatives in Eq. (3) were done using a 3-point finite

difference rule.

Calculation of the Fock exchange matrix, Eq. (12), also

required parallelization, as it has the worst scaling (cubic) with

respect to the number of grid points of the remaining quanti-

ties. Parallelization often contains additional subtleties which

can make the problem non-trivial, thus in order to parallelize
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efficiently, the problem was first transformed to resemble a

more typical problem in parallel computing. To detail this pro-

cedure, it is convenient to switch to a matrix representation:

q :5qnm5q1ðrn; rmÞ (18)

where rn is the nth point of the real-space grid. We then

define a new matrix

~q :5~qnm5Anmqnm (19)

where

A :5Anm5vINTðrn; rmÞ (20)

which is then used to construct

C 5 q~q :5Cnm5
X

k

qnk ~qkm (21)

The Fock exchange matrix can then be written as

FX5
Dx

2
C

†

2C
� �

(22)

in the case when the Fock integral is evaluated via quadrature

and Dx is the grid spacing. Thus, we have reduced the calcula-

tion of the Fock exchange integral to the calculation of C,

which only involves a matrix–matrix multiplication. In parallel

computing, matrix–matrix multiplication is a well-studied prob-

lem for which standard solutions exist and thus could be easily

implemented in our code without additional difficulty.

RESULTS

In this section, we present the results of the TDDMFG formula-

tion for various time-dependent problems and compare the

results to the TDHF (i.e., v2C50), the pure FG, and the exact

cases. In order to compare with the exact results, we work in

1D and focus on two-electron systems, as it allows us to solve

the full TDSE in a reasonable time with reasonable computa-

tional resources.

We first tested our TDDMFG propagation algorithm by cou-

pling to the exact dynamics, i.e. we used the exact wavefunc-

tion to calculate the exact v2C at each time which is then used

within the 1RDM propagation to verify it recovers the exact

dynamics. To remove any error due to the initial ground state

we start the FG dynamics in the exact GS wavefunction and

the 1RDM propagation in the exact GS density matrix.

Each of TDHF and FG calculations on their own can yield

reasonably good results for particular cases, thus the goal of

the coupled TDDMFG propagation should be to either

improve upon both, or at least, improve the results in scenar-

ios where one or the other performs poorly.

Hooke’s atom

We begin by studying Hooke’s atom in 1D, which consists of a

harmonic external potential:

vextðxÞ5
1

2
k0x2 (23)

and a softened Coulomb interaction between the electrons:

vINTðx0; xÞ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2x0Þ211:0

q (24)

In our first application we drive the system by applying an

oscillating quadrupole field

dvextðx; tÞ5kðtÞx2 (25)

where kðtÞ520:025sin ð2tÞ and k051. The frequency of this

perturbation is chosen to be resonant with an allowed excita-

tion of the system. We then compare in Figure 1 the change

in the quadrupole moment relative to the ground state quad-

rupole (Q0),

QðtÞ5
ð

dx qðxÞx22Q0 (26)

as computed via exact propagation, TDHF, FG semiclassical

dynamics, and TDDMFG propagation. In this case we see an

improvement to both the TDHF and the FG calculations. While

the exact quadrupole is seen to continue increasing in ampli-

tude over time, the TDHF does not, and in fact oscillates in a

beating pattern. This is partly due to the fact that TDHF spec-

tra cannot describe this particular excitation (which will be dis-

cussed in more detail later) and leads to an off-resonance Rabi

oscillation. However even running TDHF at the resonance fre-

quency of TDHF does not show Rabi oscillations either;

although the quadrupole begins to grow, it ultimately fails

because of the spurious detuning effect explained in Ref. [65].

The FG, in contrast, overestimates the amplitude of the oscilla-

tions, while the TDDMFG coupled dynamics lies in between

these two extremes and is much closer to the exact result. In

previous work we found that the quadrupole is more sensitive

than other quantities to the number of trajectories used in our

Figure 1. Comparison of the quadrupole moment for Hooke’s atom driven

by a quadratic field at frequency x 5 2 for the exact case, TDHF, FG, and

the coupled TDDMFG. For the FG run, a total of 100,224 classical trajecto-

ries were used.
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FG calculation, in this case 100,224. Thus we could expect bet-

ter agreement if we further increase the number of trajecto-

ries. It is interesting to note that all three approximate

calculations work reasonably well for the first 10 au.

Buoyed on by this success, we next examine the NO occu-

pation numbers to probe the 1RDM in more detail than the

quadrupole, an averaged expectation value, can provide. As

noted in the earlier review, a major shortcoming of adiabatic

functionals in TDDMFT is their inability to change these occu-

pations. As can be seen in Figure 2 this behavior manifests

itself as straight lines, labeled ATDDM, constant at the initial

state NO occupations. This is also true for the TDHF case

shown previously. Since we spin-sum, the NOs go between 0

and 2, and we plot the highest occupied NO occupation,

which this case begins very close to 2, indicating the initial

state is strongly of an SSD character. The time-dependence of

this occupation is shown in Figure 2. The exact value

decreases toward a value of 1 as the system becomes excited

and the wavefunction moves away from SSD-like state. In Ref.

[12], it was shown that FG propagation can quite accurately

capture the evolution of the NO occupations, so the question

is whether the coupled dynamics of TDDMFG is also able to

do so. Examining the TDDMFG values, we see that TDHF

coupled to the FG correlation is able to evolve the occupa-

tions accurately. In fact TDDMFG is slightly better than the

pure FG values where FG has sometimes spuriously large

oscillations.

Although the amplitude of the oscillations of the TDDMFG

quadrupole is closer to those of the exact than the FG oscilla-

tions, the phase of the oscillations of the latter is closer to the

exact case than the TDDMFG case. This becomes more evident

carrying the propagation out to longer times. This can be

understood from considering the resonant frequencies of the

system: the frequency of the perturbation k(t) is on-resonance

with an excitation of the exact system which FG in fact cor-

rectly describes. The TDDMFG excitation frequency is however

shifted slightly leading to the difference in phase observed

here. We will now examine the respective excitation frequen-

cies of each method in more detail.

Turning to how well the TDDMFG captures excitation spec-

tra, we focus in particular on so-called double excitations

(defined loosely as excitations which have a large fraction of a

doubly excited state character, with respect to the SSD ground

state of a non-interacting reference system[66]). It is known

that these excitations are missing from all TDDFT spectra cal-

culations within the adiabatic approximation. Since TDHF is

equivalent to adiabatic exact exchange in TDDFT for the 2-

electron case studied here, we do not see double excitations

in the uncoupled 1RDM TDHF spectra. This point is illustrated

in the upper panel of Figure 3 which shows the TDHF power

spectra. The spectra are calculated via the linear response

method, utilizing a “kicked” initial state defined as:

W0ðx; yÞ5eikðxn1ynÞWGSðx; yÞ (27)

where WGS is the ground-state wavefunction, k is a small con-

stant, and n is an integer (we define a quadratic kick as n 5 2

and a cubic kick as n 5 3). An expression for the initial 1RDM

can be easily derived from this. A dipole kick (n 5 1) is com-

monly used when calculating optical spectra as it corresponds

to an electric field consisting of a d2 function at time t 5 0

Figure 2. Evolution of the occupation of the highest occupied natural

orbital for the driven Hooke’s atom in the exact case, TDHF, FG, and

TDDMFG.

Figure 3. Excitation spectra of Hooke’s atom calculated via linear response

with quadratic/cubic kicked initial states and the Fourier transform of the

relevant moment for TDHF (upper panel) and TDDMFG (lower panel).
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which excites all dipole allowed excitations.[67] However due

to symmetries of Hooke’s atom, to access the double excita-

tions, higher moment kicks were necessary.[12] To obtain the

spectra, for each run we calculate the appropriate moment

(e.g., quadrupole moment for quadratic kicks) and Fourier

transform to frequency space to reveal the excitation peaks.[12]

In the TDHF case, we do not see the pair of excitations peaks

at frequencies (1.73,2.0), nor the pair (2.73,3.0) but instead see

a single peak in between. This behavior is commonly seen for

TDDFT calculations with an adiabatic approximation, where a

frequency-dependent XC kernel is required to split the peak

into two separate excitations[66,68]; any adiabatic approxima-

tion in TDDMFT will also only display one peak.[35]

Moving to the lower panel of Figure 3, we plot the TDDMFG spec-

tra calculated in the same manner. It can be seen that including vFG
2C

into the TDHF propagation correctly splits the single peak into two

peaks, for both the quadratic and cubic kick cases. Thus we have

demonstrated that our coupled dynamics does indeed capture dou-

ble excitations. Identifying the position of the peaks, we compare in

Table 1 the values given by each method for the lowest 5 excitations

of Hooke’s atom. It was found in Ref. [12] that FG on its own also

describes double excitations quite well, and in fact is exact for cer-

tain excitations in Hooke’s atom. This is due to the fact that the Ham-

iltonian becomes separable in center-of-mass and relative

coordinates, and that in the center-of-mass coordinate is a simple

harmonic oscillator.[12] It is well-known that harmonic potentials are

a special case for semiclassical methods as they often perform

exactly. With this in mind, although the value of the TDDMFG fre-

quencies are worse than the pure FG values, they are competing

with a special case, but in fact the splitting between the peaks is bet-

ter described by the TDDMFG. In particular, in the second multiplet,

the exact splitting is 0.27, while that of the TDDMFG is 0.28,

improved over the bare FG result of 0.4 (and obviously over TDHF

Table 1. The singlet excitation frequencies xn5En2E0, where the

ground-state energy is E051:774040 a.u., solved exactly for Hooke’s

atom, and the corresponding TDHF, FG, and TDDMFG values as

calculated by real-time linear response.

Exact TDHF FG TDDMFG

1.000000 0.99 1.0 0.99

1.734522 1.86 1.6 1.58

2.000000 – 2.0 1.86

2.734522 2.79 2.6 2.58

3.000000 – 3.0 2.77

Figure 4. Comparison of the real part of the density matrix at time T 5 10 au for strongly driven soft-Coulomb Helium.
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where there is no peak). We emphasize again that these excitations

are completely missing in the TDHF case, or in any adiabatic TDDFT

or TDDMFT functional. It is better to have the excitations shifted

slightly from the exact result than to not describe them at all.

Soft-Coulomb Helium

We now move to the more realistic case of soft-Coulomb

Helium where the external potential is:

vextðxÞ52
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x211:0
p (28)

which mimics the 3D case as for large x it decays as 21=jxj. In

the previous case of Hooke’s atom, we saw that the problem

was well described by the FG dynamics whereas the TDHF per-

formed poorly (i.e., not changing the NO occupations or captur-

ing double excitations). Driving the TDHF with FG correlation in

TDDMFG interestingly improved over FG for the NO occupations

and quadrupole moment, with slightly worse performance for

the double-excitations. For dynamics in the soft-Coulomb Helium

case we will see, in contrast, that the FG is worse than the TDHF

for some quantities. Will the coupled dynamics of TDDMFG

improve the situation? As detailed in Ref. [12], this case is much

more difficult for the FG method due to classically auto-ionizing

trajectories (where one electron gains energy from the other and

ionizes while the other slips below the zero-point-energy), thus a

far greater number of trajectories are required. Ref. [12] discussed

how in a truly converged Frozen Gaussian calculation, the contri-

butions from these unphysical trajectories cancel each other out,

but a very large number of trajectories are required; otherwise

methods to cut out their contribution to the semiclassical inte-

gral can be used. In the presented calculations, 2,000,448 trajec-

tories were used and all were kept.

We apply a strong laser pulse with a linearly-switched-on

electric field:

�ðtÞ5 1ffiffiffi
2
p cos ð0:5tÞ

t

20
t � 20

1 t > 20

8<
: (29)

which is included in our Hamiltonian via the dipole approxima-

tion, i.e. dvextðxÞ5�ðtÞx. We begin by examining the 1RDM

itself at time T 5 10 au: the real part is shown in Figure 4 and

Figure 5. Comparison of the imaginary part of the density matrix at time T 5 10 au for strongly driven soft-Coulomb Helium.
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the imaginary part in Figure 5. At this time, while the structure

of the FG 1RDM is broadly correct, it can be seen that the

TDHF 1RDM is much closer to the exact. The TDDMFG 1RDM

also captures more of the correct structure compared to the

pure FG case, although it generally overestimates the peaks

and valleys. Thus, while the vFG
2C is constructed from the poorer

FG calculation, the TDDMFG follows more closely the more

accurate TDHF description.

We next turn to the dipole moment which is plotted in

Figure 6. The TDHF (not shown) essentially matches the exact

case, whereas the FG performs quite poorly, particularly during

the second optical cycle. The TDDMFG, in contrast, is perform-

ing particularly well and follows very closely the exact result,

even at times greater than T 5 10 au, likely due to the guid-

ance of the TDHF component in the evolution.

At this point one might conclude that the TDDMFG is

behaving correctly, however the good results for the 1RDM

and dipole moment are masking the fact that the underlying

description suffers from a major error, described below.

As was the case for Hooke’s atom, a more thorough exami-

nation of the method is given by studying the NO occupa-

tions. The highest two NO occupations are plotted in Figure 7

where the strong field causes a large change in their values. In

fact we see that the FG description of the NO occupations is

working better than we previously anticipated, albeit overesti-

mating their change. Again the TDHF occupations (not shown)

are constant, fixed at their initial values. At T 5 10 au, the

exact 1RDM is still dominated by the highest occupied natural

orbital, explaining why the TDHF appeared so good at this

time.

Unfortunately in the TDDMFG case, we see that the highest

occupation rises above 2 thus violating the exact condition for

N-representability of the 1RDM (positive semidefiniteness). The

effect of this is quite drastic as the density develops negative

regions, due to having negative occupations (the sum of the

occupations remains 2, thus an increase above 2 is accompa-

nied by negative values). At T 5 10 au the value of the highest

NO is only slightly above 2 and so this bad behavior has yet

to truly manifest itself. The FG NO occupation at T 5 10 au is

underestimated, consistent with the FG 1RDM being not so

accurate. At later times, none of the methods provide a partic-

ularly good description of the 1RDM structure, with the TDHF

remaining the closest, despite its constant occupation number,

but the TDHF momentum densities are not good. The

TDDMFG 1RDM resembles the TDHF but with exaggerated

highs and lows, and unphysical negative regions, manifest also

in the momentum density.

It is a frustrating situation where neither the FG nor TDHF

on their own violates the N-representability condition, and FG

does evolve the occupation numbers unlike any adiabatic

approximation, however coupling FG correlation to TDHF in

the TDDMFG leads violation of N-representability. We speculate

this is due to a mismatch in correlation potential and the

Hartree-exchange terms as there is no mechanism to provide

feedback between the two calculations. Implementing a

dynamical purification scheme along the lines of that in Ref.

[18] that iteratively decreases the magnitude of the negative

occupation numbers should be investigated.

Conclusions

The TDDMFG dynamics which uses a Frozen Gaussian calculation

to construct an approximation to the correlation potential in

1RDM propagation gives mixed results. On one hand, it was

shown for Hooke’s atom to be a significant improvement over all

adiabatic 1RDM functionals as it can vary the natural orbital

occupations reasonably accurately. Furthermore it was shown

that double excitations, which are difficult to capture with the

commonly-used TDDFT method and adiabatic TDDMFT, can be

accurately described with the TDDMFG formalism. On the other

hand, for soft-Coulomb Helium the method was seen to fail dras-

tically giving the unphysical result of negative density due to vio-

lation of an exact constraint. Further work is required to

understand why this violation occurs and then hopefully to then

use this information to prevent it from occurring. This same

problem, violation of the positive semi-definiteness, was also

found in other recent approaches propagating RDMs with

approximate correlation terms.[17,18] Dynamical purification

Figure 7. The evolution of the two-highest occupied natural orbital occu-

pations for the strongly driven soft-Coulomb Helium. We omit the ATDDM

occupations as they stay constant at their initial values.

Figure 6. The dipole moment during the strongly driven soft-Coulomb

Helium for the exact calculation, the FG, and the TDDMFG. The FG calcula-

tion required 2,000,448 classical trajectories. Note that the TDHF calculation

(not shown) is very accurate during this time period.
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schemes along the line of that successfully used in Ref. [18] could

be very helpful here. Indeed understanding how the FG correla-

tion potential changes NO occupation or includes double excita-

tions could be used to construct better approximations for

TDDMFT. Finally, in this work, we studied systems of only two

electrons, whereas we might expect that (semi)classical methods

work best for large numbers of particles, and it remains to be

seen whether the problems we encountered become less signifi-

cant for larger systems.

An advantage of using a semiclassical scheme to evaluate the

correlation term is that initial state dependence is automatically

taken care of: in general reconstructions, whether one begins in

an excited state or ground-state, the same approximation for

the 2RDM in terms of the 1RDM is assumed. This is known to

be incorrect; several different initial wavefunctions and different

initial 2RDM’s can give rise to the same initial 1RDM.[69,70] The

resulting correlation effect is clearly different depending on the

wavefunction, but this effect is ignored in all reconstructions in

use today. For this reason, it seems worthwhile to pursue fur-

ther investigations of a semiclassical-correlation driven TDHF,

once the N-representability problem is taken care of, especially

since in many simulations of non-equilibrium dynamics of inter-

est today, the problem starts in a photo-excited state.
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