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ORBKIT is a toolbox for postprocessing electronic structure cal-

culations based on a highly modular and portable Python archi-

tecture. The program allows computing a multitude of

electronic properties of molecular systems on arbitrary spatial

grids from the basis set representation of its electronic wave-

function, as well as several grid-independent properties. The

required data can be extracted directly from the standard out-

put of a large number of quantum chemistry programs. ORBKIT

can be used as a standalone program to determine standard

quantities, for example, the electron density, molecular orbitals,

and derivatives thereof. The cornerstone of ORBKIT is its modu-

lar structure. The existing basic functions can be arranged in an

individual way and can be easily extended by user-written mod-

ules to determine any other derived quantity. ORBKIT offers

multiple output formats that can be processed by common vis-

ualization tools (VMD, Molden, etc.). Additionally, ORBKIT pos-

sesses routines to order molecular orbitals computed at

different nuclear configurations according to their electronic

character and to interpolate the wavefunction between these

configurations. The program is open-source under GNU-LGPLv3

license and freely available at https://github.com/orbkit/orbkit/.

This article provides an overview of ORBKIT with particular focus

on its capabilities and applicability, and includes several exam-

ple calculations. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24358

Introduction

In today’s computational and theoretical chemistry, quantum

chemical methods (or electronic structure methods) are routinely

applied for the investigation of molecular systems. Modern quan-

tum chemical programs are characterized by their general applic-

ability, increasing functionality, and high efficiency due to

methodological and numerical progress in the field. There exists a

wide range of such program packages, covering different levels

of theory and offering assorted features. The spectrum extends

from open source packages, for example, GAMESS-US,[1] PSI4,[2]

or Tonto,[3] over commercial closed source programs such as

Gaussian,[4] Molpro,[5] Turbomole,[6] or Q-Chem,[7] to software

freely available for academic usage such as ORCA[8] or

NWChem.[9] Depending on the methodological requirements of a

quantum chemical problem, the user has to deal with a multitude

of differently formatted input and output data. In this context,

projects such as the Atomic Simulation Environment (ASE),[10] the

Basis Set Exchange library,[11,12] cclib,[13] and OpenBabel[14] con-

tributed tremendous standardization efforts.

Despite this software diversity, most quantum chemical pro-

grams dealing with molecules share the same basic approach to

the solution of the time-independent molecular Schr€odinger

equation: They solve it for clamped nuclei, and they use an atom-

centered Gaussian basis set to represent the electronic wavefunc-

tion at the selected nuclear configuration. A typical output of a

quantum chemical calculation contains not only the energy and

other relevant properties of the molecular system, but also the

expansion coefficients of the electronic wavefunction in the

selected basis set. The latter allow the calculation of additional

quantities for the system characterization. Conceivable quantities

include those based on the reconstructed electronic wavefunc-

tion, for example, the electron density, and others quantities, such

as molecular orbitals (MO), that are constructed from various com-

binations of the basis set and the expansion coefficients. These

quantities are typically represented on a grid in the configuration

space of one electron, which facilitates their analysis and enables

their visualization. The necessary postprocessing tools for the

analysis are sparsely implemented in most of the quantum chemi-

cal program packages. Additionally, there is usually no possibility

to adjust the postprocessing parameters, for example, grid param-

eters, or to request further quantities after finishing the electronic

structure calculation.

To overcome this problem, two strategies can be pursued: the

modification or extension of a quantum chemical program package,

or the usage of standalone postprocessing programs. The first
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approach is practicable only for open source and well-documented

programs; additionally it is a formidable, time-consuming work to

understand, adapt, and extend the respective source code. For the

second approach, a handful of specialized tools are available offer-

ing diverse functionalities. An easy visualization of the molecular

structure, the MOs, the electron density, etc., based on the output

of a quantum chemical program, can be carried out with programs

such as Molden[15] or Avogadro.[16] To calculate properties from the

electronic wavefunction (i.e., from the basis set used and the coeffi-

cients obtained in the electronic structure calculation) the programs

Checkden,[17,18] DGrid,[19] Multiwfn,[20] or DensToolKit[21] are well-

suited and provide an impressive number of features. However, if

the desired feature is not already available, extending these codes

may become prohibitively difficult.

For such situations, we have developed the Python toolbox

ORBKIT, which meets all common requirements of postprocessing

electronic wavefunctions. ORBKIT stands out by its broad applic-

ability in terms of postprocessing electronic structure data. It offers

similar features such as Checkden, DGrid, or Multiwfn, and it can

be employed as a standalone program for investigating in detail

the characteristics of a molecular system and for visualizing impor-

tant position space quantities. Its modular design allows the user

to combine the individual functions in any manner. Furthermore,

ORBKIT also comes with a library and application programming

interface. This can be used to create new programs, without in-

depth knowledge of the internal structure. Additionally, the library

can be extended by user-written functions. Programming is greatly

facilitated using Python as major language with its user-friendly

syntax and large number of function libraries. Consequently, also

non-standard or new problems can be quickly solved by adding

new user-written functions to the standalone program ORBKIT, or

by combining existing functions and new functions in a user-

written program. In this article, we want to present the capabilities

and several selected applications of ORBKIT.

The paper is structured as follows. Section “Methodology”

briefly introduces the theoretical background, and Section

“Program” describes the structure and main aspects of ORBKIT.

Then, we present several “Practical Applications” that illustrate

the features of ORBKIT, followed by a conclusion.

Methodology

In this section, we present the main functions implemented in

ORBKIT for postprocessing results from electronic structure cal-

culations. Quantities that can be constructed from these fun-

damental components and that are included in ORBKIT are not

listed here but presented in Section “Program”. All theoretical

aspects and quantities considered in Section “Practical

Applications” will be briefly discussed there, in the respective

subsection. We use atomic units throughout the article.

The Electronic Wavefunction

For the solution of the time-independent molecular Schr€odinger

equation for clamped nuclei, most molecular quantum chemis-

try methods introduce localized one-electron basis set functions

to expand the many-body electronic wavefunction. Accordingly,

a standard output of a quantum chemical program provides

the data to reconstruct the electronic wavefunction, that is, the

expansion coefficients of the wavefunction, the selected atom-

centered basis set (the atomic orbitals), and the nuclear config-

uration (position and type of the nuclei). Gaussian-type orbitals

are by far the most commonly used atom-centered basis sets,

and they can be handled with ORBKIT.

In general, the many-body electronic wavefunction is

arranged in the form of a single Slater determinant or a linear

combination of multiple Slater determinants. These are defined

as antisymmetrized products of N one-electron functions,

which correspond to orthonormal MOs. In the MO-LCAO

(Molecular Orbital—Linear Combination of Atomic orbitals)

ansatz, each MO ua can be reconstructed by the linear expan-

sion of a finite set of contracted Gaussian basis functions[22]

ua rð Þ5
XNA

A

XNAO

i

Ciawi r2RAð Þ; (1)

where Cia is the ith MO coefficient for the MO a, wi is the

respective atomic orbital centered at atom A, r are the Carte-

sian coordinates of one electron, RA denotes the spatial coor-

dinates of nucleus A, NAO represents the number of atomic

orbitals, and NA is the number of atoms.

The atomic orbitals correspond to the real-valued contracted

Gaussian basis functions, which are defined by the linear com-

bination of primitive Gaussian functions[23]

wi rAð Þ5
XL

p

dpgp rA; ap; lp;mp; np

� �
; (2)

where dp labels the contraction coefficients, L is the length of

the contraction, and rA5r2RA is the position vector of an

electron relative to the nucleus A.

A primitive Cartesian Gaussian function gp has the form[23]

gp r; ap; lp;mp; np

� �
5Np ap; lp;mp; np

� �
xlp ymp znp exp 2apr2

� �
; (3)

where x, y, and z are Cartesian coordinates, r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y21z2

p
is

the magnitude of r, ap labels the Gaussian orbital exponents,

and lp, mp, and np are declared as exponents whose sum

determines the angular momentum and, thus, the type of the

orbital, for example, l 5 lp 1 mp 1 np 5 0 for an s-orbital.

The normalization constant Np is given by[23]

Np ap; lp;mp; np

� �
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ap

p

� �3
2 ð4apÞlp1mp1np

ð2lp21Þ!! ð2mp21Þ!! ð2np21Þ!!

s
:

(4)

In addition to the Cartesian Gaussians, ORBKIT can process

spherical harmonic Gaussians using the transformation

described by Schlegel and Frisch.[24]

As a position space one-electron quantity, the experimen-

tally observable electron density can provide further insights

for the analysis of electronic and chemical characteristics of

the system, for instance, bonding properties. For a single Slater

determinant ansatz, the one-electron density reads
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qe rð Þ5
XNocc

a

najua rð Þj2; (5)

where Nocc is the number of singly or doubly occupied MOs with

the respective occupation number na. For multideterminant

wavefunctions, as obtained from configuration interaction meth-

ods or coupled cluster methods, the one-electron density can be

constructed, for instance, using the Slater–Condon rules or by

converting the wavefunction into a single Slater determinant rep-

resentation built from natural orbitals. These orbitals possess non-

integer occupation numbers na between zero and two.[22] The

default version of ORBKIT supports all single-determinant wave-

functions. Hence, it can directly be used for the results of a Har-

tree–Fock or Density Functional Theory calculation as well as of a

Post-Hartree–Fock calculation in natural orbital representation.

The evaluation of quantities directly from a multideterminant

wavefunction can be accomplished using the Slater–Condon

rules mentioned above. Depending on the complexity of the

wavefunction, the level of difficulty and effort for this task varies

significantly. An essential prerequisite is a profound understand-

ing of the underlying basis set expansion of the wavefunction.[25]

With that, it is feasible to implement self-written modules in ORB-

KIT that extract the required data from quantum chemical out-

puts and evaluate one- and two-body operators over the

multideterminant wavefunction. This has been accomplished

with ORBKIT, for example, for a configuration interaction singles

and for a multireference wavefunction.[26,27]

Analytical Derivatives and Integrals

Further basic components, which can be derived from an elec-

tronic structure calculation and are relevant for the determina-

tion of other postprocessing quantities, include analytical

derivatives and integrals of the basis functions, MOs, and of

the electron density.

One of these components is the gradient of the electron

density with respect to the electronic coordinates, which has

the general form

~r � qe rð Þ52
XNocc

a

na ua rð Þ ~r � ua rð Þ
� �

(6)

for real-valued functions. ~r � ua rð Þ is constructed from the

analytical gradients of the primitive Gaussian functions within

the MO-LCAO ansatz

~r � gp ap; lp;mp; np;~r
� �

5

lpx21 2 2apx

mpy21 2 2apy

npz21 2 2apz

0
BB@

1
CCAgp ap; lp;mp; np;~r

� �
:

(7)

Note that the contraction coefficients dp from eq. (2) and the

MO expansion coefficients Cia from eq. (1) are independent of

the electronic coordinates and thus not affected by the deriva-

tive operator. The gradients can be used to calculate, for

example, the transition electronic flux density, as shown in an

application below.

Closely related to the gradient is the Laplacian of the elec-

tron density, which is defined as

r2qe rð Þ5 @2

@x2
1
@2

@y2
1
@2

@z2

� �
qe rð Þ: (8)

By revealing information about the local depletion and con-

centration of the electron density, the Laplacian plays a key

role in the specification of bonding properties, and therefore,

it is also used in the Atoms in Molecules (AIM) theory.[28–31]

To complete the set of essential functions incorporated in

ORBKIT, we introduce the MO overlap matrix

huajubi5
XNAO

i

XNAO

j

CiaCjbhwijwji (9)

and the atomic orbital overlap matrix

hwijwji5
XL

p

XL

q

dpidqjhgpjgqi: (10)

Here, hgpjgqi is calculated based on the article of Hô and

Hern�andez-P�erez.[32] Possible quantities that can be derived

from these overlap matrices involve, for example, Mulliken and

L€owdin atomic populations or total and transition dipole

moments.[22]

Program

For the development of ORBKIT, we pursued the goal to make

it practically useful for a large group of users, ranging from

end-users who are interested in a simple and straightforward

calculation of standard quantities, via university teachers who

want to illustrate the computational ideas of quantum chemis-

try, to developers looking for a toolbox that provides core

functions to build on. To this end, we made a number of

design decisions: First, we chose Python as a programming

language because of its user-friendliness, its vast amount of

standard libraries, and its cross-platform portability. The stable

version of ORBKIT has been tested on Linux, Mac OS X, and

Windows platforms. Furthermore, we tried to retain a readily

comprehensible modular structure, that is, we implemented a

broad set of functions that can be separately called in a user-

assembled driver program. This design facilitates the execution

of the single components of ORBKIT and opens up the oppor-

tunity to implement self-written features in combination with

the already existing functions. Besides, there is a standalone

version of ORBKIT which can calculate a selected number of

quantities, such as the one-electron density or the MOs on a

user-defined rectilinear grid. Its simple handling allows quickly

getting started with ORBKIT. In general, we attempt to ensure

a universal applicability that comprises the readability of

standard quantum chemistry programs, the writing of output

files which are easy to handle, and an adequate number of

standard quantities. Table 1 gives an overview of the possible

input and output file formats and lists the computable

quantities.
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Concerning the efficiency of ORBKIT, we use the highly scal-

able NumPy[33] and SciPy[34] Python libraries for processing

large, multidimensional arrays. Moreover, computationally

expensive operations are implemented in C and Cython[35]

and can be run on multiple processors using the Python pack-

age multiprocessing. Position space quantities are then calcu-

lated by dividing the grid into slices and distributing them on

the requested number of processors, thus offering linearly scal-

ing parallelization.

To understand how to use ORBKIT, it is recommended to

read the detailed documentation and to work through the

example applications in this article or in the ORBKIT example

package. The documentation also contains function references

for advanced usage. In addition, a flowchart visualizing the

internal design of ORBKIT is depicted in Figure 1.

Input and Output

In general, ORBKIT requires as main input the data of a single

determinant wavefunction. To this end, it extracts the expan-

sion coefficients of the MOs, the selected atomic basis set, and

the specification of the molecular structure from the output of

a quantum chemical calculation. The data files of almost all

major quantum chemical programs can be handled with ORB-

KIT (cf. Table 1). Besides output files, such as Gaussian log-files,

the Molden file format[36] is our main input format. This file

format can be both directly written by some programs, such

as Molpro,[5] and transformed with Molden[15] from output files

of other program packages, such as GAMESS-US. In addition,

there exists an interface to the library cclib,[13] which is a

package-independent platform for parsing and extracting

information of several computational chemistry programs.

With this extension, many further file formats can be read.

However, it is also straightforward to read the output of any

other electronic structure program with a self-written Python

routine and transfer it into the specific ORBKIT data structure.

The data formats used by ORBKIT are described in detail in the

documentation.

Based on the extracted data, ORBKIT can compute all stand-

ard position space functions (cf. Table 1) on an equidistant

zero- to three-dimensional Cartesian grid with user-defined

grid parameters. Besides, the calculation can be performed on

Figure 1. Schematic flowchart of ORBKIT’s modular organization. Modules are illustrated as rectangles with double-struck vertical edges. Solid arrows represent a

module call, dashed arrows signify data communication between two modules, and curved dashed lines represents Input/Output. The overall procedure is con-

trolled by the program main and includes the following steps: (1) options reads command line arguments, for example, grid parameters or calculation settings,

(2) read extracts the QC program output and qcinfo stores the data, (3) grid initializes the grid with the user-defined parameters, (4) if composite functions

are requested extras controls the ensuing operations (blue arrows), (5) core computes all grid-based quantities, and (6) output saves the data in a user-

defined format. The calculation progress is written in a LOG file with display.

Table 1. Available input and output formats as well as computable quantities and other features of ORBKIT.

Input Output

Molden files HDF5 files

AOMix files Gaussian cube files

GAMESS-US output files VMD script files

Gaussian log-files ZIBAmiraMesh files and network files

Gaussian formatted checkpoint files Mayavi visualization

wfn and wfx files XYZ and PDB files

cclib library

Standard Quantities Additional Feature

Electron (spin) densities Input of real-space grid as regular grid or as point set

Atomic and molecular orbitals Order molecular orbitals of different nuclear structures

Orbital derivatives Interpolate between different nuclear structures

Gross atomic densities Symmetry transformations of the Cartesian grid

Molecular orbital transition flux densities Center grid around specified nuclei

Total dipole moments Adaptive integration with Cubature

Mulliken and L€owdin charges
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a list of (x, y, z) coordinates, which we call vector grids. This

includes equidistant spherical coordinates, random grids, or

user-defined arbitrary point sets. It is also possible to adapt

the Cartesian grid to the molecular structure or to perform

symmetry transformations on it.

During an ORBKIT calculation, a LOG file is written to record

the basic information concerning the selected computational

parameters, for example, grid type, grid parameter, chosen

input or output file, or the progress of the calculation. Subse-

quently, the results, that is, the electron density, the MOs, etc.,

given on the user-defined grid, are typically saved as HDF5

files.[37] This hierarchical data format can efficiently store and

organize numerical data with a small need of disk space. Fur-

thermore, there are many programs and tools that support

this data type.

For 3D visualizations with standard molecular graphics pro-

grams such as VMD,[38] ORBKIT provides the option to save

the data as Gaussian Cube files. These plain text files contain

the volumetric data, the grid parameters, and the atomic posi-

tions of the molecular system. Besides, ORBKIT can create VMD

script files, which are directly callable with VMD for a quick

depiction of any position space function. It is also possible to

use a simple interface to Mayavi,[39] which enables an immedi-

ate and interactive visualization. In addition to the output of

grid-dependent quantities, there exists the possibility to create

XYZ and PDB[40] files with ORBKIT.

Features

Apart from the usual wavefunction analysis (cf. “Standard

Quantities” in Table 1), several quantum chemical outputs can

be compared simultaneously to highlight for instance the

influence of the change in the nuclear positions on the elec-

tronic structure. In this context, the ordering routine of ORBKIT

should be mentioned, which enables the correct arrangement

of the MOs for different nuclear configurations according to

their overlap [cf. eq. (9)]. This procedure may be useful when

the MOs change their symmetry and/or energetic ordering

with the nuclear configuration. An example for the usage is

given below. Another valuable feature of ORBKIT is the adapt-

ive integration of multidimensional functions using a Python

wrapper[41] for the C package Cubature.[42] This module inte-

grates numerically vector-valued integrands over hypercubes.

In the implemented h-adaptive integration scheme,[43,44] the

integrands are iteratively evaluated by gradually adding more

grid points until a user-defined tolerance is fulfilled. Especially

for functions with localized sharp features such as the one-

electron density, this is a well-suited technique. The basic proce-

dure for the multidimensional integration with Cubature in

ORBKIT can be outlined as follows: First, ORBKIT evaluates a

given function on a predefined coarse grid. Subsequently, Cuba-

ture numerically computes the integral for this function and

refines the grid in the subregions with largest estimated errors.

This is followed by a function evaluation of ORBKIT for the

added grid points and a further integral calculation with Cuba-

ture. These steps are iterated until either the absolute or rela-

tive error, evaluated using different orders of the cubature rules,

falls below a user-defined threshold. In general, Cubature opens

up the opportunity to evaluate the expectation value of any

operator solely on the basis of the data from a quantum chem-

istry program output. This could include any one- and two-

electron operator, like, for instance, Coulomb integrals. Addition-

ally, multiple functions can be integrated simultaneously, reduc-

ing the number of calls to core functions (cf. Fig. 1).

Practical Applications

In this section, we present applications to five molecules: ben-

zene C6H6, the 2-cyclopropenyl cation (C3H3)1, the hydrogen

molecule ion H1
2 , carbon dioxide CO2, and the water dimer.

For all examples, the Molden data file and the execution com-

mand or an extensively commented Python execution code

are provided in the ORBKIT package. Thus, the reader is

encouraged to follow these examples interactively. Additional

examples can be found in the “Supporting Information” and in

the ORBKIT package. All electronic structure calculations are

performed with Molpro[5] using the Hartree–Fock method and

a cc-pVDZ basis set.[45] There are also some applications of

ORBKIT in the literature, see Refs. [26,27,46–48].

Electron Density of Benzene

In the first application, the usage of ORBKIT as a standalone

program via the terminal interface and the subsequent visual-

ization of grid-based one-electron quantities are demonstrated

with the example of benzene. To characterize the nature of a

chemical bond in a given quantum system, the calculation and

analysis of the electron density and its Laplacians, as well as

the partitioning of the electron density in certain subsets of

electrons, are useful tools.[30,31,49–51] In the benzene molecule,

Figure 2. a) The electron densities of benzene for all electrons (gray) and for the p-electrons (blue). The isocontour value for the electron densities is

0:01 a23
0 . b) Laplacians of the molecular electron density and c) of the p-electron density for benzene. The isocontour values for the Laplacian of the total

electron density are 20:5 a25
0 (red) and 0:5 a25

0 (blue) and 20:1 a25
0 (red) and 0:1 a25

0 (blue) for the p-electron density. The visualization was performed

with VMD.
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for example, we can look at the p-electron density. The respec-

tive MOs can be identified by their nodal plane being the

plane spanned by the nuclei. Hence, the associated p-electron

density is distributed above and below the benzene ring. The

electron density qe(r) [cf. eq. (5)] for all electrons and for the

specified set of electrons (p-electrons) and the respective Lap-

lacians r2qe(r) [cf. eq. (8)] are calculated with ORBKIT and

visualized (cf. Fig. 2) with VMD.[38]

Tasks such as the selection of groups of MOs and the subse-

quent calculation of grid-based one-electron quantities are

straightforward with ORBKIT. The associated data can be

stored in output formats like Gaussian cube files. This facili-

tates its visualization with graphical programs such as VMD,

etc. In addition, a direct visualization in ORBKIT is feasible also

with Python packages, for example, matplotlib[52] or Mayavi.[39]

Angular Electron Density of (C3H3)1

Our second application illustrates the ease of utilizing the

ORBKIT library with an existing program. In this case, the inter-

face of ORBKIT to Cubature[43,44] is introduced, and its virtue

for integrating the density in a region of space is demon-

strated. The example at hand shows the integration of the

three-dimensional electron density q(x, y, z) of (C3H3)1 to

obtain the angular electron density qangð/Þ. The angle / is

defined as the polar angle in the plane of the nuclei (cf. inset

of Fig. 3). Thus, an integration over z and over r5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y2

p
has

to be performed. Additionally, to obtain a smooth angular

density close to the positions of the nuclei, an averaging along

/ has to be done. Hence for each discrete point /i on our

grid, we have to integrate over z � [–1, 1], r � [0, 1], and

/ 2 ½/i2D/=2;/i1D/=2�.
The choice of grid coordinates is not as straightforward as it

may seem. While cylindrical coordinates are a natural choice, they

have a major disadvantage if used equidistantly: Because of the

fixed number of points along /, there will be a high density of

points for small r but very few for larger r. Thus, the number of

points needed to accurately integrate the density around the

nuclei quickly becomes prohibitively large. Calculating the density

on a grid in Cartesian coordinates is not an alternative. While the

point density in space does not change, the number of points

per angle varies significantly. As a consequence, integration using

Cartesian coordinates needs far too many points to calculate the

angular density efficiently and can yield artifacts nevertheless

(see chapter 3.4 of Ref. [53] for an example).

Thus, we implemented an interface to a Python wrapper[41]

for Cubature.[42] This program can integrate multidimensional

functions with moderate dimensionality adaptively to a speci-

fied error. A function for integrating in cylindrical coordinates

converts the points asked for by Cubature (which are assumed

to be cylindrical coordinates r;/; z) into Cartesian coordinates,

calls ORBKIT using the list of Cartesian vectors as input, and

returns the density multiplied with r to account for the vol-

ume element of the integration. This implementation is

straightforward, as ORBKIT is designed to be used as both a

standalone program and a function library.

The upper and lower panel of Figure 3 show the angular

density and the integrated molecular orbital densities, respec-

tively. The integration of the regions of strong localization

around the nuclear positions are well-converged, which would

have been difficult to achieve using simple integration

schemes on equidistant grids.

In general, the adaptive integration by Cubature of grid-

based quantities computed in ORBKIT, in any user-defined

Figure 3. Angular electron density qang (upper panel) and integrated

molecular orbital densities qMO
ang (lower panel) for angular segments of D/5

1
�

for the 2-cyclopropenyl cation (C3H3)1 using a Cubature interface. The

inset in the upper panel shows the Lewis structure of the 2-cyclopropenyl

cation and the orientation of the polar angle /. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Upper panel: Molecular orbital coefficients Cia of the MO (initially

the LUMO) as a function of the \ OCO angle before (solid line) and after

(dashed line) sorting by ORBKIT. Lower panel: Isosurface plots of the lowest

unoccupied molecular orbital (LUMO) of CO2 at an OACAO angle of 1708
(left), of the LUMO and LUMO 1 1 (degenerate) at 1808, and of the LUMO

at 1908. Solid and dashed arrows correspond to the solid and dashed lines

in the upper panel. The isosurface value is 60:1 a23
0 . The isosurface plots

were visualized with VMD. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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volume, opens up a wide spectrum of conceivable applica-

tions, for example, the determination of Voronoi deformation

density atomic charges, etc.

Ordering Molecular Orbitals along a Reaction Coordinate

In quantum chemistry, it can be of interest to follow the

change of molecular properties during the variation of the

nuclear structure, for example, along a reaction coordinate.

While the comparison of most properties is straightforward

but possibly cumbersome because data may have to be

extracted from several output files, the comparative analysis of

the molecular orbitals can be a problem: Most quantum chem-

istry programs are sorting the orbitals according to their

energy and additionally, if applicable, according to their sym-

metry. However, often the energetic order of the orbitals

changes with the nuclear configuration, and it is necessary to

order them according to a different criterion. For these issues,

ORBKIT offers a set of useful functions to simultaneously han-

dle multiple files, and it provides several MO ordering routines.

The most useful ordering routine sorts the MOs of different

nuclear configurations and the associated signs according to

their overlap. It starts from the first two structures in a list,

computes the analytical overlap between all the orbitals [cf.

eq. (9)] of both structures, and sorts them accordingly. There-

after, it proceeds with the second and third structure, etc. Sub-

sequently, the expansion coefficients for the ordered orbitals

data can be interpolated using B-Splines to approximate inter-

mediate nuclear configurations. B-Splines (cf. Ref. [54] and

references therein) are piecewise polynomial functions with

many useful properties, one of which is their analytical differ-

entiability. This substantiates their usage for the accurate

determination of non-adiabatic coupling terms.

To illustrate the functionality of this ordering routine, we

performed a set of quantum chemical calculations for CO2,

varying the \ OCO angle from 1708 to 1908 with a step size

of 28. For a sorted set of molecular orbitals, one expects

smooth curves for the coefficients as a function of the slightly

modified nuclear configurations. In Figure 4 (upper panel), the

MO coefficients are displayed for a selected orbital of CO2.

Solid lines correspond to the MO coefficients Cia for the lowest

unoccupied MO (LUMO) of the energetically ordered list of the

quantum chemical output, and dashed lines signify the coeffi-

cients of the orbital after sorting them according to the MO

overlap. To illustrate the difference between a sorted and

unsorted MO list, the curve of one chosen coefficient is

marked in blue. For linear CO2 (\OCO5180
�
), the selected

orbital, the LUMO, is energetically degenerate with another

one, the LUMO 1 1, which leads to an interchange of both in

the energetically ordered list of the quantum chemistry pro-

gram. Following the procedure described above, ORBKIT can

sort all orbitals according to their overlap and in groups

according to their symmetry properties, if this information is

available. The lower panel of Figure 4 shows the orbitals that

were incorrectly assigned to each other (solid arrows) and

those assigned to each other after ordering (dashed arrows).

Note that the results of the ordering routine depend on the

validity of the overlap as a measure of the character of the

orbital. Hence, the prerequisites for a successful MO sorting

are moderate structural variations between the quantum

chemical calculations and the identical orientation of the mol-

ecule. Nonetheless, a failure of the ordering routine can be

easily detected and corrected by inspecting the graphs of, for

example, the orbital energies or orbital coefficients, and using

the manual ordering function of ORBKIT. To the best of our

knowledge ORBKIT is the only postprocessing program that

provides such an orbital ordering function. This is comple-

mented by a number of convenience functions to save, load,

and plot the computed quantities.

Transition Electronic Flux Density of H1
2

The example of this section illustrates the computation of the

transition electronic flux density (TEFD) between two selected

Figure 5. Contour plots of selected molecular orbitals (MO) of the hydrogen molecule ion H1
2 for an internuclear distance of R 5 1.4 a0: a) MO 1rg and b)

MO 1ru. c) Vector plot of the stationary transition electronic flux density (STEFD) JSTEFD
e;1rg 1ru

for the transition between the state 1rg and the state 1ru. The

nuclear positions are marked with black crosses. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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electronic Born–Oppenheimer states in the hydrogen molecular

ion H1
2 with ORBKIT.[26] In general, the TEFD is the nonvanishing

component of the electronic flux density in the framework of the

Born–Huang expansion and is defined for the transition from the

electronic state k to the electronic state m as

JTEFD
e;km ðr; tÞ5

ð
dR qn;kmðR; tÞ � JSTEFD

e;km ðr; RÞ (11)

with the nuclear transition density qn;kmðR; tÞ5v?kðR; tÞvmðR; tÞ
and the purely imaginary static transition electronic flux den-

sity (STEFD)

JSTEFD
e;km ðr; RÞ52

i
2

Wkðr; RÞreWmðr; RÞ2Wmðr; RÞ ~reWkðr; RÞ
� �

;

(12)

where Wk, Wm are the real-valued electronic wavefunctions,

and the gradient ~re is taken with respect to the electronic

coordinates.[55] The TEFD is a crucial quantity to analyze the

contributions to infrared absorption or vibrational circular

dichroism spectra,[56,57] as a complement to the study of the

adiabatic electronic flux density,[26] or for the visualization of

electron processes, for example.

The hydrogen molecular ion H1
2 is the simplest diatomic

molecule consisting of two protons and one electron. The

fact that the molecular orbitals of H1
2 correspond to its elec-

tronic states simplifies the calculations of the TEFD. However,

it is nonetheless feasible to determine this quantity for more

complicated quantum systems with ORBKIT. This can be

accomplished with the help of the Slater–Condon rules, but

it is necessary to take into account the underlying basis set

expansion of the wavefunction (e.g., single Slater determi-

nant, configuration state functions, multireference configura-

tion interaction representation, etc.). The required modules

for this computational task can be easily incorporated

into the modular structure of ORBKIT. In addition, the sim-

ple and platform-independent parallelization techniques

within Python can be used to enhance the efficiency of

the implemented code. Currently, ORBKIT is being used to

investigate the ultrafast photoelectron transfer in a Dye-

Sensitized Solar Cell by analyzing the corresponding time-

dependent TEFD constructed from configuration interaction

wavefunctions.

For the TEFD of H1
2 , the transition between the electronic

ground state 1rg and the first excited state 1ru is selected,

since it is experimentally accessible.[58] Contour plots of both

electronic states (MOs) are displayed in Figures 5a and 5b

showing their gerade and ungerade symmetry properties. The

stationary TEFD JSTEFD
e;1rg1ru

for the transition between the ground

state 1rg and the excited state 1ru as a function of the x- and

z-coordinate for an internuclear distance of R 5 1.4 a0 is

depicted in Figure 5c. As expected, this imaginary vector field

shows a gerade parity for the transition between a gerade and

an ungerade state.

Exemplary Implementation of a Grid-Based Quantity

The following example provides a short tutorial for the imple-

mentation of a real space quantity into ORBKIT using the exist-

ing modules. The particular focus is on the creation and

technical description of the Python code that is required for

this task. As an example, the reduced density gradient is

selected, which is an essential quantity for the description of

Figure 6. Isosurface plot of the dimensionless reduced density gradient for

the water dimer. The isocontour value is 0.5. The data visualization was

performed with VMD. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 7. Complete script for the implementation of the reduced density gradient on the basis of modules existing in ORBKIT.
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intramolecular interactions. Its general form defined by John-

son et al.[59] reads

sðrÞ5 1

2ð3p2Þ1=3

jrqðrÞj
qðrÞ4=3

; (13)

where jrq rð Þj is the norm of the gradient of the electron den-

sity. Exemplary, the reduced density gradient is calculated for

a water dimer in accordance with Ref. [59] on the basis of a

Hartree–Fock calculation with a cc-pVDZ basis set.

The general procedure of a postprocessing calculation in

ORBKIT and the involved modules can be seen in Figure 1. To

implement a new quantity into ORBKIT, it is necessary to build

up a user-written script which controls all other modules and

eventually determines and saves the desired quantity. This

script undertakes all tasks of the main module (cf. Fig. 1) in

the standalone version of ORBKIT. To start with, the required

modules are imported via

from orbkit import read, grid, core, output

Note that the ORBKIT directory needs to be defined in the

Python environment variables. Subsequently, the data of the

quantum chemical calculation is extracted with the module

read,

qc5read.main_read(‘h2o_dimer.molden’,

itype5‘molden’)

Here, qc is an instance of the Python class QCinfo, which

stores the specification of the molecular structure, the atomic

basis set, and the expansion coefficients of the MOs. Next, the

spatial grid is adapted to the nuclear configuration and initial-

ized with grid

grid.adjust_to_geo(qc,extend51.0,step50.1)

grid.grid_init()

The essential elements for the calculation of the reduced

density gradient are the electron density and the derivatives

thereof with respect to x, y, and z. Their parallel computation

is accomplished using the module core,

R,dR5core.rho_compute (qc,drv5[‘x’,‘y’,‘z’],

numproc54)

Referring to eq. (13), the following expression is imple-

mented into the script,

from numpy import sqrt,pi

s5sqrt((dR**2).sum(axis50))

s/5(2*(3*pi**2)** (1/3.)*R**(4/3.))

s[R>0.05]51e3

The last line of the code sets a density cutoff to focus solely

on the noncovalent interaction region in the system. Finally,

this low reduced density gradient is saved as Gaussian cube

files using the output routine

output.main_output(s,qc.geo_info,qc.geo_spec,

outputname5‘out’,

otype5[‘cb’,‘vmd’],

iso5(20.5,0.5))

In addition, a VMD script is created for immediate visualization.

The respective isosurface plot is depicted in Figure 6. The com-

plete script can be found in Figure 7 and in the ORBKIT package.

Conclusion

ORBKIT is a modular designed Python toolbox that allows an

individualized cross-platform postprocessing of quantum

chemical data from electronic structure calculations. The vari-

ety of position space one-electron functions and fundamental

quantities that has been implemented serves as the basis for

sophisticated analyses of molecular wavefunctions. Thus, it is

useful for a wide range of applications. In addition, in its cur-

rent state of development ORBKIT offers multiple options and

features for postprocessing issues. For the calculation of one-

electron quantities on arbitrary grids, there exists a standalone

version which is easy to handle and can be executed in paral-

lel to speed up the computation. The results can be directly

visualized with a simple and interactive viewer (Mayavi). This is

complemented by the interoperability of ORBKIT with various

external visualization programs. Besides the standalone execu-

tion, the functions existing in ORBKIT can be individually com-

bined to enable a problem-specific wavefunction analysis.

Furthermore, the possibility to add user-written Python func-

tions into ORBKIT can foster the development of own postpro-

cessing programs. For this purpose, only a basic

understanding of the design and features of ORBKIT is

required. The first steps into the program are facilitated by a

detailed documentation and several application examples.

Hence, ORBKIT appeals to novices as well as experienced theo-

retical chemists.

As a wavefunction analysis toolkit, ORBKIT differs from simi-

lar projects by its portability and its simple modular structures.

They enable the user to build own application programs on

top of ORBKIT with minimal effort and without recompiling. In

conclusion, ORBKIT is a fairly mature open-source program

that provides the basis for many possible further

developments.

Keywords: quantum chemical calculation � electronic

structure � molecular visualization � electron density � grid rep-

resentation of one-electron quantities � molecular orbital

ordering

How to cite this article: G. Hermann, V. Pohl, J. C. Tremblay, B.

Paulus, H.-C. Hege, A. Schild. J. Comput. Chem. 2016, 37, 1511–

1520. DOI: 10.1002/jcc.24358

] Additional Supporting Information may be found in the

online version of this article.

[1] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J.

H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus,

M. Dupuis, J. A. Montgomery Jr, J. Comput. Chem. 1993, 14, 1347.

[2] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A.

Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L.

Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D.

Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, T. D.

Crawford, WIREs Comput. Mol. Sci. 2012, 2, 556.

[3] D. Jayatilaka, D. Grimwood, In Computational Science - ICCS 2003, Vol.

2660 of Lecture Notes in Computer Science; P. Sloot, D. Abramson, A.

SOFTWARE NEWS AND UPDATESWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 1511–1520 1519

info:doi/10.1002/jcc.24358
http://onlinelibrary.wiley.com/


Bogdanov, Y. Gorbachev, J. Dongarra, A. Zomaya ,Eds.; Springer: Berlin,

Heidelberg, 2003; pp. 142.

[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.

R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,

et al., Gaussian’09 Revision D.01, Gaussian Inc.: Wallingford, CT, 2009.

[5] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Sch€utz, P. Celani,

W. Gy€orffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.

R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning,

D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C.

Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. K€oppl, Y.

Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E.

Mura, A. Nicklab, D. P. O’Neill, P. Palmieri, D. Peng, K. Pfl€uger, R. Pitzer,

M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson,

M. Wang, Molpro, Version 2012.1, A Package of Ab Initio Programs,

2012. Available at: http://www.molpro.net.

[6] TURBOMOLE V6.5, a development of University of Karlsruhe and For-

schungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH,

since 2007, 2013. Available at: http://www.turbomole.com

[7] Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit, J. Kussmann, A.

W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn,

L.D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Ku�s, A. Landau, J. Liu, E. I.

Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz, R. P. Steele, E. J.

Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht,

E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K.

Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova, C.-M. Chang, Y.

Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen, R. A.

DiStasio Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A.

Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine,

P. H. P. Harbach, A. W. Hauser, E. G. Hohenstein, Z. C. Holden, T.-C.

Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim, R. A. King, P.

Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D.

Laurent, K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C.

Lochan, A. Luenser, P. Manohar, S. F. Manzer, S.-P. Mao, N. Mardirossian,

A. V. Marenich, S. A. Maurer, N. J. Mayhall, E. Neuscamman, C. M. Oana,

R. Olivares-Amaya, D. P. O’Neill, J. A. Parkhill, T. M. Perrine, R. Peverati, A.

Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W.

Small, A. Sodt, T. Stein, D. St€uck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi,

V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A.

White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You, I. Y.

Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman, C.

J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F.

Schaefer III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu,

A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B.

D. Dunietz, T. R. Furlani, S. R. Gwaltney, C.-P. Hsu, Y. Jung, J. Kong, D. S.

Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov, L. V. Slipchenko, J. E.

Subotnik, T. V. Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-

Gordon. Mol. Phys. 2015, 113, 184.

[8] F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73.

[9] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J.

Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. A. de Jong.

Comput. Phys. Commun. 2010, 181, 1477.

[10] S. R. Bahn, K. W. Jacobsen, Comput. Sci. Eng. 2002, 4, 56.

[11] D. Feller, J. Comput. Chem. 1996, 17, 1571.

[12] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J.

Chase, J. Li, T. L. Windus, J. Chem. Inf. Model 2007, 47, 1045.

[13] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008,

29, 839.

[14] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G.

R. Hutchison, J. Cheminform. 2011, 3, 33.

[15] G. Schaftenaar, J. Noordik, J. Comput. Aided Mol. Des. 2000, 14, 123.

[16] M. Hanwell, D. Curtis, D. Lonie, T. Vandermeersch, E. Zurek, G.

Hutchison, J. Cheminform. 2012, 4, 17.

[17] L. F. Pacios, Comput. Biol. Chem. 2003, 27, 197.

[18] L. F. Pacios, A. Fernandez, J. Mol. Graph. Model. 2009, 28, 102.

[19] M. Kohout, DGrid, Version 4.6, Radebeul, 2011.

[20] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[21] J. Solano-Altamirano, J. M. Hern�andez-P�erez, Comput. Phys. Commun.

2015, 196, 362.

[22] F. Jensen, Introduction to Computational Chichester; Wiley, 2007.

[23] S. Huzinaga, J. Andzelm, Gaussian Basis Sets for Molecular Calcula-

tions, Physical sciences data; Elsevier, 1984.

[24] H. B. Schlegel, M. J. Frisch, Int. J. Quantum Chem. 1995, 54, 83.

[25] A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory; Dover Publications, 1989.

[26] G. Hermann, B. Paulus, J. F. P�erez-Torres, V. Pohl, Phys. Rev. A 2014, 89,

052504

[27] G. Hermann, J. C. Tremblay, J. Phys. Chem. C 2015, 119, 25606.

[28] R. Bader, Atoms in Molecules: A Quantum Theory; Oxford University

Press: New York, 1994.

[29] R. F. W. Bader, Chem. Rev. 1991, 91, 893.

[30] R. Gillespie, P. Popelier, Chemical Bonding and Molecular Geometry:

From Lewis to Electron Densities; Oxford University Press, 2001.

[31] P. Popelier, P. Popelier, Atoms in Molecules: An Introduction; Prentice

Hall, 2000.
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