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We study spin excitation spectra of one-, two-, and three-dimensional magnets featuring nonmagnetic defects at
a wide range of concentrations. Taking the Heisenberg model as the starting point, we tackle the problem by both
direct numerical simulations in large supercells and using a semianalytic coherent-potential approximation. We
consider the properties of the excitations in both direct and reciprocal spaces. In the limits of the concentration c

of the magnetic atoms tending to 0 or 1 the properties of the spin excitations are similar in all three dimensions. In
the case of a low concentration of magnetic atoms the spin excitation spectra are dominated by the modes confined
in the real space to single atoms or small clusters and delocalized in the reciprocal space. In the limit of c tending
to 1, we obtain the spin-wave excitations delocalized in the real space and localized in the reciprocal space.
However, for the intermediate concentrations the properties of the spin excitations are strongly dimensionality
dependent. We pay particular attention to the formation, with increase of c, of the Lorentzian-shaped peaks in
the spectral densities of the spin excitations, which can be regarded as magnon states with a finite lifetime given
by the width of the peaks. In general, low-dimensional magnets are more strongly affected by the presence of
nonmagnetic impurities than their bulk counterparts. The details of the electronic structure, varying with the
dimensionality and the concentration, substantially influence the spin excitation spectra of real materials, as we
show in the example of the FeAl alloy.

DOI: 10.1103/PhysRevB.94.054407

I. INTRODUCTION

The spin excitations (SEs) in magnets with reduced di-
mensionality, including wires and thin films, attract strong
interest from the experimental, theoretical, and applied physics
perspective. Impressive experimental progress, in particular
the inelastic scanning tunneling microscopy [1,2] and spin-
polarized electron energy loss spectroscopy (SPEELS) [3–5],
allows us to probe directly their properties.

The low-dimensional magnets are often imperfect and
feature deviation from the stoichiometry as well as disorder
caused by alloying and doping, diffusion (intermixing) pro-
cesses, the presence of contaminants during the preparation,
and many more. These features result in the absence of
the translational invariance and, in general, the SEs cannot
feature the Bloch-like (spin-wave) character typical for perfect
crystals. However, under certain conditions, one still antici-
pates the existence of well-defined extended spin-wave states,
which can be pictured as Bloch waves with a finite lifetime
arising from the scattering on the crystal imperfections. This
picture of damped spin waves might break down if the spectra
become dominated by strongly spatially localized modes. The
understanding of the spin-wave formation and their damping
is of great theoretical and practical importance. The damping
mechanism, which is strongly pronounced in metallic magnets,
involves the interaction of the spin waves with single-particle
spin-flips called Stoner excitations [6,7] and is referred to as
Landau damping. It has been shown that contrary to earlier
predictions [8], the Landau damping does not necessarily
increase with the reduced dimensionality [9,10]. In this paper
we consider completely different aspects of the formation and
damping of spin-wave excitations, i.e., we address the impact
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of nonstoichiometric concentration of the magnetic atoms and
their spatial disorder.

We will refer to the systems composed from magnetic and
nonmagnetic atoms or vacancies as magnetic-nonmagnetic
alloys (MNAs). In three dimensions, there exist numerous
important MNA systems, including recently discovered ul-
trastrong low-density steels based on FeAl alloys [11]. The
characterization of their magnetic properties, including SE
spectra, is important from the point of view of prospect
applications. Also the class of diluted magnetic semiconduc-
tors has been extensively investigated [12–15] in the context
of their employment in spintronic devices. Recently, Qin
et al. demonstrated that in the 2D magnetic system, ultrathin
Fe films on Pd, one can substantially lengthen the lifetime
of spin waves by reducing the Landau damping [5]. It is
achieved by means of a band structure engineering, i.e., adding
nonmagnetic atoms into the magnetic film. Also examples
of imperfect one-dimensional magnetic nanowires exist [16],
which makes important the study of the properties of the SEs
in one-dimensional systems.

Chakraborty et al. addressed the magnon spectra of
three-dimensional disordered magnets [15,17,18] using a
self-consistent local random phase approximation [19]. The
same method was used to study lifetime effects of magnons
in two-dimensional magnetic systems [20]. However, little
is known about the properties of magnetic excitations in
disordered magnets as their dimensionality changes from three
dimensions (bulk) to two (films) and to one (wires). SE spectra
can be studied using time-dependent density functional theory
combined with the coherent-potential approximation (CPA).
Unfortunately, such studies exist only for bulk systems [21,22].
Up to now, there are no studies allowing us to assess the
performance of the CPA in the description of SEs in disordered
media by comparing the approximation to an exact result. In
this paper, our starting point for studying SEs is the adiabatic
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spin dynamics based on the mapping of the magnetic states
of the magnets onto the states of the Heisenberg Hamiltonian
[23]. This approach neglects Landau damping, which allows
us to separate clearly the influence of the nonstoichiometry
and disorder on the magnon lifetime from other dissipation
mechanisms.

We consider here only the uncorrelated disorder, as defined
in Sec. II B. Even under this simplifying assumption, the
classical Heisenberg model of randomly distributed interacting
ferromagnetic spins with arbitrary concentration of magnetic
atoms cannot be solved analytically and we tackle this problem
from two complementary perspectives. First, we resort to the
direct diagonalization of the Heisenberg Hamiltonian in the
real space and subsequent statistical averaging of relevant
quantities, in particular the magnetic susceptibility, which
carries information about the SE spectra [24], over different
possible disordered configurations of magnetic atoms. A
similar strategy for three-dimensional disordered magnets was
adopted in Ref. [17]. Because the configurations are sampled
pseudorandomly we refer to this method as “Monte Carlo.”
While this method is numerically exact, it is computationally
expensive. As a possibility to overcome this difficulty, we
developed an approximate analytic solution to the model,
which is based on the coherent-potential approximation. Due
to the presence of off-diagonal disorder [25,26], the CPA is
formally much more involved for the Heisenberg Hamiltonian
than for the electronic problem [27]. Therefore, only simple
cases of binary alloys with primitive three-dimensional lattices
were studied up to now [28–30]. In this paper we generalize the
CPA to incorporate complex unit cells with arbitrarily many
types of impurity atoms.

The paper is organized as follows. In Sec. II we outline
the formalism for describing the SEs and our model of
disordered nonstoichiometric magnetic systems. Following
this, we evaluate the spectra of SEs of the model based
on either the direct diagonalization or the coherent-potential
approximation. In Sec. III we consider disordered magnets in
different dimensions to study the impact of dimensionality on
the SE spectrum. The performance of the coherent-potential
approximation is evaluated. Finally, in Sec. IV we investigate
how the realistic electronic structure influences the properties
of imperfect magnets, studying FeAl alloy at different Al
concentrations in three and two dimensions.

II. FORMALISM

A. Description of spin excitations

The adiabatic spin dynamics approximates a magnetic sys-
tem with the classical Heisenberg Hamiltonian of interacting
magnetic moments located on lattice sites

H = −1

2

∑
pr

Jprep · er , (1)

where p,r, . . . label the sites, ep is the direction of the moment
on the site p, and Jpr are the so-called exchange parameters. In
the case of ferromagnets the energetically lowest excitations
of this Hamiltonian are spin excitations involving small-
amplitude precessions of the moments around the direction
of the ground-state magnetization. Their properties are de-
scribed by the retarded transverse magnetic susceptibility
χpr (ω + i0+) (0+ stands for an infinitesimal positive quantity)

[10]. The susceptibility gives the amplitude of the precession
of the magnetic moment on the site p around its ground-state
direction upon applying oscillating magnetic field on the site r
with frequency ω and direction transverse to the ground-state
magnetization.

The susceptibility can be represented as

χ = gGS, (2)

where g is the electron g factor, which we assume to be equal
to 2 in this work, and G and S are matrices in the space of
atomic sites. S is a diagonal matrix

Spr = Spδpr , (3)

where Sp is the spin moment at the site p and G is the magnon
spin propagator

G(z) = G0(z) + G0(z)gST G, (4)

G0(z) = Iz−1, (5)

where z stands for the complex frequency, I is the unit matrix,
G0 is the free spin propagator, and the torque matrix T is
defined as

(ST )pr = S−1
r δpr

∑
l

Jpl − S−1
r Jpr . (6)

Equation (5) can be formally solved by the matrix inversion

G−1 = G−1
0 − gST , (7)

which allows us to compute the susceptibility for any
frequency using Eq. (2). The evaluation of the magnetic
susceptibility of the disordered nonstoichiometric magnets of
different dimensions is the main theoretical tool employed in
this paper, since this quantity directly yields the spectrum of
the SEs.

The anti-Hermitian part of the susceptibility

Lχ (ω + i0+) = 1

2i
[χ (ω + i0+) − χ (ω + i0+)†], (8)

where χ † stands for the Hermitian conjugate of the sus-
ceptibility, is called the loss matrix. It is particularly useful
in the description of SEs [10]. Its eigenvalues yield the
spectral density of the excitations at the given energy ω and
the corresponding eigenvectors give the spatial form of the
excitations.

B. Model of disorder

In this work we consider the substitutional disorder.
Magnetic and nonmagnetic atoms of different types randomly
occupy the sites R + si of a periodic crystal, where R are
the vectors of the Bravais lattice and i labels the positions
of the basis sites in the primitive cell. The dimensionality of
the lattice is arbitrary. Atomic types are denoted with Greek
letters α,β, . . .. We define the occupation function pα(R + si),
which is 1 if the site R + si is occupied by the atom of
type α and 0 otherwise. Some sites might be not occupied
giving rise to vacancies. To simplify the notation we define
pαi(R) ≡ pα(R + si).

If the energy of the mixture depends only weakly on the
relative positions of atoms, the fact that the site p is occupied
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by the atom α does not influence the occupation of the neighbor
site r and we speak about uncorrelated disorder. The model
of uncorrelated disorder is widely adopted in the studies of
metallic alloys and, as mentioned in the introduction, the
correlation effects are neglected in this study. The uncorrelated
disorder is fully specified by the probability ciα of finding an
atom of the type α on the basis site i.

C. Direct numerical averaging

The magnetic susceptibility can be readily computed for
a finite fragment of an infinite crystal by means of the direct
inversion of the Iz − gST matrix. In parallel to this real-space
technique, it is useful to consider the Fourier transformation
of the susceptibility, since this quantity can be directly probed
in a scattering experiment, e.g., SPEELS [31] or STM [2]. We
consider a supercell featuring periodic boundary conditions,
so that the Fourier transformation of the susceptibility

χij (q,q′) =
∑
RR′

e−iq·Reiq′ ·R′
χ (R + si ,R′ + sj ) (9)

is defined for discrete values of the wave vectors (q,q′) from the
first Brillouin zone consistent with the size of the supercell.
Again, i and j label the basis sites. The pair of indices iR
specifies the particular crystal site p. The frequency argument
is suppressed for brevity.

The atomic occupation of the sites in the supercell is chosen
randomly according to the probabilities ciα . Each concrete
realization of the atomic arrangement in the supercell is called
a configuration. The susceptibility is computed for numerous
different configurations (typically between 100 and 1000)
and subsequently averaged. We sample the configurations
by means of pseudorandom numbers and thus refer to this
method as Monte Carlo. The standard deviation of the mean
is computed in order to prove the convergence with respect
to the number of samples. In addition, the cells of growing
size are considered in order to eliminate the influence of the
finite-size effects.

A single random configuration of atoms does not in
general feature the translational symmetry of the underlying
lattice. However, the averaging described above restores this
symmetry such that the average susceptibility 〈χ (R,R′)〉
depends only on the difference R − R′ between the lattice
vectors of the primitive cells. This in turn implies that only the
diagonal terms of the Fourier-transformed susceptibility with
q = q′ become nonzero:

〈χij (q,q′)〉 = �BZδ(q − q′)〈χij (q)〉 (10)

≈ Nδqq′ 〈χij (q)〉. (11)

Here, �BZ is the volume of the first Brillouin zone. The latter
approximation is valid for supercells containing N primitive
cells, and

〈χij (q)〉 = 1

N

∑
RR′

e−iq·(R−R′)W 〈χ (R + si ,R′ + sj )〉. (12)

D. Coherent potential approximation

The coherent-potential approximation [27] allows us to
compute the statistical average (12) approximately but in
a numerically efficient semianalytic manner, without the

necessity of working in the real space with large supercells and
thus inverting large matrices. Its formulation for a MNA fer-
romagnetic Heisenberg model on a simple three-dimensional
lattice was given by Matsubara [25] and is based on earlier
works by Matsubara and collaborators (see references in paper
[25]). A detailed discussion of the account for the off-diagonal
disorder in the study of the electronic properties was given
by Blackman et al. [26]. The electronic off-diagonal disorder
corresponds to the random intersite hopping parameters that
has close mathematical analogy to the random interatomic
exchange parameters of the Heisenberg model. A number of
later studies [28–30] refer to the electronic CPA by Blackman
et al. as the basis of their developments on the CPA for the
Heisenberg spin Hamiltonian. Although the implementations
of the method by different authors differ in details, the
foundations of all works on Heisenberg-CPA are similar. In
the Appendix, we follow the derivations by Matsubara and
Yonezawa, generalizing the CPA formalism to the case of
complex crystals featuring multiple sites in the primitive cell,
arbitrary number of atomic species forming the disordered
alloy, and arbitrary dimensionality.

If we restrict ourselves to the first term in the expansions
(A21) and (A22) we obtain the so-called virtual-crystal
approximation (VCA). This approximation replaces a non-
stoichiometric disordered system with a periodic one with the
value of the exchange parameter weighted by the concentration
of the magnetic atoms. The VCA was widely used in the
past to provide a crude picture of the magnetic spectrum in
disordered magnets. It is a very convenient approximation,
since it requires no self-consistency and the corresponding
self-energies and weight correction are energy independent.
Unfortunately, as we will see later, the VCA fails qualitatively
to account for several important properties of magnon spectra
in low-dimensional disordered magnets.

The VCA leads to the non-physical picture, in which atoms
of different types are allowed to simultaneously occupy the
same atomic site. The CPA approximately but systematically
takes into account the “exclusion effects” [27], which guar-
antee that for a particular atomic configuration every site is
occupied by one particular atom only. The CPA results in
an energy-dependent self-energy, which defines an effective
uniform (periodic) medium. Its imaginary part gives rise to
the finite lifetime of magnetic excitations. We note also that
the self-energy is not only dynamic but also wave-vector
dependent (nonlocal), unlike the self-energy in the electronic
structure CPA formalism [32]. The reason for that is the
nonlocal character of the interaction: the role of the local
on-site electronic potential is assumed by the nonlocal torque
matrix T .

In the case of a local interaction, the CPA has several
physical interpretations, among them the one that the effective
medium is chosen in such a way that single-site fluctuations
relative to it do not on average lead to any scattering. No
such intuitive picture seems to exist in the Heisenberg model
case, since it is not intuitively clear how the scattering from a
nonlocal potential should be understood. However, as proven
by Yonezawa [27] this intuitive condition is equivalent to the
noncrossed cumulant expansion and in the construction of the
CPA for this type of models one can still follow this formal
path.
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III. DIMENSIONALITY TRENDS: MODEL STUDY

From the point of view of nanoengineering it is of great
importance to investigate how defects in a magnetic system,
i.e., the presence of vacancies or nonmagnetic atoms in the
otherwise magnetic lattice, influence the spectrum of magnetic
excitations in different dimensions.

Nonstoichiometry and atomic disorder influence the SE
spectrum in two different ways. On one hand, they alter the
electronic structure resulting in the change of the values of
atomic moments and the strength of the exchange coupling
constants. On the other hand, even if these quantities were
not affected, the change in the occupation of atomic sites
must influence the properties of the SEs. In this part of our
study, we consider a simple model of an imperfect magnet in
order to disentangle the impact of the electronic structure and
the geometry on the properties of spin waves in magnets in
different dimensions.

In three dimensions, we consider a cubic lattice with the
constant a. Every lattice point features six nearest neigh-
bors. In two dimensions we choose a single (001) plane.
The corresponding lattice is quadratic with the coordination
number four and the distance between nearest neighbors a. The
one-dimensional (100) nanowire counterpart involves lattice
points in a distance a from each other with two nearest
neighbors. In any dimension, each lattice point can be either
occupied by a magnetic moment S or be empty (nonmagnetic).
The concentration of magnetic atoms is given by c so that c = 1
corresponds to a perfect periodic structure and c = 0 denotes
an empty lattice. We assume that in any dimension only nearest
neighbors are magnetically coupled by the exchange parameter
J , which depends neither on the dimensionality nor on the
concentration of imperfections.

Despite these simplifications the model outlined above has
an important property in the context of this study. In the
case of a perfect magnet (c = 1), the magnons with wave
vectors along the (100) direction �-X have the dispersion ωq =
4gJa−1 sin2(q), which does not depend on the dimensionality.
[A similar relationship exists for two and three dimensions
and the direction (110).] Furthermore, the spin-wave stiffness
constant D for the perfect magnets is equal in all three
dimensions to D = gaJ . In what follows we assume a = 1
and J = (4g)−1 so that D1 = 1

4 . Using this property we
can easily assess the impact of imperfections on the spin-
wave energies and lifetimes as a function of dimensionality
and reveal pertinent trends. In Sec. IV we will drop these
simplifying assumptions to recover the impact of the CPA ab
initio electronic band structure on the spin-wave spectra of
disordered alloys for different dimensionalities.

The Monte Carlo technique described in Sec. II C is
employed in Secs. III A and III C to investigate the properties
of spin-wave spectra in general and in the long-wavelength
regime, respectively. In Sec. III B the applicability of the CPA
and VCA approaches to study the properties of magnons in
disordered magnets will be assessed.

A. Spin excitation spectra

An example of a one-dimensional random structure of
the type considered in this work is presented in Fig. 1. The

FIG. 1. Example of one-dimensional MNA with 32 sites and
periodic boundary conditions. The structure was generated by placing
the magnetic atoms (filled red circles) on a site with probability
c = 0.7. Any magnetic atom interacts at most with two nearest
neighbors.

structure was generated by placing magnetic atoms on a site
with probability c = 0.7. Any magnetic atom interacts at most
with two nearest neighbors, which leads to the splitting of
the structure into separate clusters of different sizes. We vary
the number Ns of sites in the system in order to estimate and
exclude the finite-size effects. Figure 2 presents spin-wave
spectra for the wave vector (0.25,0,0)2π/a and systems
of different sizes. The spectra correspond to the imaginary
part of the susceptibility − 1

π
Im〈χ (ω + iγ,q)〉 averaged over

Nc different, randomly generated atomic configurations. The
limiting case of Nc = 1 is also considered and corresponds to
the susceptibility of one particular configuration.

The most pronounced feature of the spectra is the presence
of a series of sharp SEs with the linewidth induced only by the
artificial broadening γ = 10−2. The corresponding localized
modes emerge in the separate atomic clusters of different sizes,
which are formed in the structure; cf. Fig 1. The different
height (intensity) of the peaks is a consequence of the different
number of states with the particular energy as well as of the
value of the overlap integral between the particular SE and the
plane wave with the wave vector q.

As expected, the number and intensity of peaks depend on
the size Ns since for larger systems more different types of
atomic clusters of varying sizes (and, in higher dimensions,
shapes) emerge; please compare Figs. 2(a) and 2(b). For large
enough systems the spectra become weakly dependent on
the size, which signifies that the distribution of cluster sizes
within one single realization of the magnetic system practically
approaches the thermodynamic limit; cf. Fig. 2(c). Finally, as
evident from Fig. 2(d), the limit can be also reached for much
smaller clusters but upon averaging over many different atomic
configurations.

In our model of MNAs, the magnetic atoms interact only
with the nearest neighbors, which makes the model affine to the
problem of site percolations [33]. The percolation threshold
cp is the critical value of the occupation probability, above
which a connected cluster of occupied sites spanning the entire
system emerges. In one dimension any value of c < 1 leads
to a split of the structure into separate clusters of different
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FIG. 2. Spin-wave spectra for a one-dimensional random MNA
and the wave vector (0.25,0,0)2π/a. Atomic sites are occupied by a
magnetic atom with the probability c = 0.7. Systems of different sizes
Ns and averaging over different number of random configurations Nc

are considered. The artificial broadening γ = 10−2 was applied. The
spectrum corresponding to the structure depicted in Fig. 1 is presented
in panel (a).

sizes, while for square and simple cubic lattices in two and
three dimensions cp amounts to about 0.59 [34] and 0.31
[35,36], respectively. Reference [36] reports values 0.25 and
0.20 for body-centered and face-centered cubic structures,

respectively. Figure 3 presents examples of two-dimensional
uncorrelated MNAs at concentrations well below, around,
and above the percolation threshold. The emergence of large
connected clusters of interacting magnetic atoms has, as will
be shown below, a profound impact on the spectra of magnetic
excitations.

It must be stressed that the clusters arise randomly and
are not driven by any attracting interaction as considered in
Ref. [18].

Figure 4 shows the evolution of the SE spectra as the
dimensionality of the disordered magnets is varied. While
the spectra in one dimension are composed of sharp peaks
corresponding to localized standing SEs, the two- and three-
dimensional magnets above the percolation threshold feature
continua of the SE states for a given wave vector; i.e., the SE
peaks feature intrinsic finite widths. The continua form due
to the presence of many excited states close to each other in
energy. Because of the presence of the disorder the wave vector
q ceases to be a good quantum number of the individual SE.
From the physical point of view the broadened SE peaks can be
treated as SEs with a finite lifetime. As evident from Fig. 5 the
impact of the nonstoichiometry and disorder decreases with
increasing dimensionality, as the lattices in higher dimensions
are generally better connected resulting in lower values of cp.
Indeed, in three dimensions we obtain well-formed, relatively
narrow magnon peaks at lower concentrations of magnetic
atoms.

Figure 5 presents selected spectra for a larger wave vector
in different dimensions. Comparing Figs. 4(b) and 5(b) we
notice that well-defined narrow Lorentzian-like peaks are in
general obtained for small wave vectors only, similar to the
case of Landau damping in materials such as bcc Fe [10]. The
example of the spectrum in Fig. 5(c) shows that the region in
the Brillouin zone, in which single well-formed SE peaks are
obtained, increases with the dimensionality.

Below the percolation threshold the localized SEs become
strongly pronounced again, due to the formation of small
detached islands; cf. Fig. 6.

We remark that the concentration of magnetic atoms above
cp does not mean that finite atomic islands cannot form at
all. The spectrum in Fig. 5(b) still features, in addition to
the continuum of delocalized SEs, sharp peaks with energies
0, 0.25, and 0.5 corresponding to such small islands not
connected to the extensive atomic clusters spanning large
areas of the crystal. We can quantify the contribution of
these islands to the spectrum of magnetic excitations. The
detached clusters feature necessarily only a few standing
SE modes, among them the Goldstone mode, i.e., the mode
with the vanishing frequency. Because of the finite spatial
localization, the latter mode appears in the spectra for any
wave vector q, contrary to perfect crystals, in which it is
seen only for q = 0. Therefore, we can use the intensity (area
under the peak) I0(c) of this zero-energy feature to estimate the
influence of the detached islands on the magnetic excitation
spectrum. In order to allow easy comparison, we normalize the
intensity to the concentration of the magnetic atoms, I0(c)/c.
In perfect crystals, c = 1, this quantity assumes the value of
2S, where S is the atomic magnetic moment, for q = 0, and
is zero otherwise. For MNAs, it differs from zero in the entire
Brillouin zone. It approaches the value of 2S for any wave
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(a) (b) (c)

FIG. 3. Two-dimensional uncorrelated magnetic-nonmagnetic mixtures at different concentrations of magnetic atoms: (a) diluted limit at
c = 0.15, (b) at the percolation threshold cp = 0.59, and (c) in the dense limit c = 0.85.

vector in the limit of small concentrations. In this regime,
practically only single, not-connected magnetic atoms appear
in the system. We recall that such single atoms have only
one resonant mode of the vanishing energy. The evolution of
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FIG. 4. Spin-wave spectra for random MNAs in different dimen-
sions, the wave vector (0.125,0,0)2π/a, and different concentrations.
The artificial broadening γ = 10−2 was applied.

I0(c)/c for q = (0.25,0,0)2π/a as a function of concentration
in different dimensions is presented in the Fig. 7. There are
two important conclusions that follow from the analysis of
Fig. 7. First, for any concentration, the zero-energy peak is
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FIG. 5. Spin-wave spectra for random MNAs in different dimen-
sions, the wave vector (0.25,0,0)2π/a, and the concentration c = 0.7.
The artificial broadening γ = 10−2 was applied.
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FIG. 6. Spin-wave spectrum for a random two-dimensional
MNA, the wave vector (0.25,0,0)2π/a, and the concentration c = 0.4
below the percolation threshold. The artificial broadening γ = 10−2

was applied.

more pronounced in the systems with lower dimension. For
the 1D case, it vanishes only in the limit of perfect structure.
Such a behavior is explained by the increased probability of
forming the isolated islands in systems with lower dimension.
Second, as mentioned above, in two and three dimensions the
peak survives also above the percolation threshold, though
with decreasing weight.

Further insight is gained by analyzing the distribution of
the spectral density in the reciprocal space, cf. Fig. 8, the
so-called constant-energy scans. The reference energy zero,
corresponding to the Goldstone mode, allows a particularly
clear interpretation. The figure depicts the distribution of
the Goldstone mode in the reciprocal space along the (100)
direction. We clearly observe that the Goldstone mode be-
comes more localized in the real space (delocalized in the
reciprocal space) as the concentration decreases. Figure 8(b)
shows that the localization is more pronounced in systems with
the reduced dimensionality.

B. Performance of the CPA

As we have seen in the previous section, even the simplified
model of MNAs features rich physics of SE dynamics. We
recall that the Monte Carlo simulations yield numerically
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FIG. 7. The normalized intensity I0(c)/c of the zero-energy peak
in the spin-wave spectra for the wave vector (0.25,0,0)2π/a in
different dimensions as a function of concentration.
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FIG. 8. The intensity of the Goldstone mode for different dimen-
sionality, concentrations, and wave vectors along (100) direction.
The figures represent constant-energy scans for zero energy and
thus the distribution of the Goldstone mode in the Fourier space:
(a) three-dimensional system at different concentrations, (b) impact
of the dimensionality for concentration c = 0.7.

exact results. Now, we address the question of how far the
physics of the SE can be captured within the coherent-potential
approximation.

Figure 9 compares the Monte Carlo and the coherent-
potential approximation results for a disordered nanowire. We
clearly see that the CPA is unable to reproduce the series of
sharp SE resonances yielding a continuum of states instead.
The qualitative failure of CPA stems from its mean-field
character and as such CPA cannot account for the details of the
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FIG. 9. Comparison of spin-wave spectra from Monte Carlo,
CPA, and virtual-crystal approximation. The spectra correspond to
a random MNA in one dimension, the wave vector (0.25,0,0)2π/a,
and the concentration c = 0.7. The artificial broadening γ = 10−2 is
applied.
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disordered local atomic environment leading to the formation
of islands supporting the local SE modes. It is interesting
to analyze the origin of the zero-energy peak in Fig. 9 in
the CPA spectrum. In one dimension, the density of states
[ImG(R = 0,ω + i0+)] diverges for small energies as ω−1/2.
The behavior is reflected also in the imaginary part of the
magnetic weight W leading to the enhanced imaginary part
of the susceptibility in the limit of small ω. Thus, this feature
is absent in the case of two- and three-dimensional systems,
where the density of states is nonsingular at small energies.
On the other hand, the peak at higher energies stems from a
pole of the magnon propagator G corresponding to the value
of the self-energy; cf. Fig. 20(c).

A careful inspection of the low-energy CPA spectrum shows
a small shift of the spectral weight to the region of negative
energies. This is an artifact of the method that results from
the poor performance of the CPA in one dimension and the
difficulty of performing a precise analytic continuation of
the strongly asymmetric peak. In two and three dimensions,
this problem does not appear. However, the tail of the peak,
reaching towards the region of negative energies, will appear
in all dimensions as it is a result of the artificial broadening γ .

The CPA performs much more satisfactorily in higher
dimensions above the percolation threshold, cf. Fig. 10,
yielding spectra resembling closely the Monte Carlo results.
The success points to the fact that the local details of the atomic
environment become less important in higher dimensions
due to the larger number of nearest neighbors and a better
connectivity of the random magnetic system.
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FIG. 10. Comparison of Monte Carlo and CPA spin-wave spectra
in (a) two and (b) three dimensions. The spectra correspond to the
wave vector (0.25,0,0)2π/a, and the concentration c = 0.7. The
artificial broadening γ = 10−2 is applied.
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FIG. 11. Spin-wave spectra from MCA for a random MNA in
two and three dimensions, the wave vector (0.0625,0,0)2π/a, and the
concentration c = 0.7. The artificial broadening γ = 10−2 is applied.

We note that the virtual-crystal approximation fails com-
pletely and yields just a single infinitely long-living magnon
mode. The reason for that is the essentially static character
of the VCA self-energy. Furthermore, as we will see below,
the VCA is insensitive to the dimensionality of the magnetic
system.

C. Long-wavelength behavior

The discussion in Sec. III A made clear that while in
the one-dimensional case the spectra are dominated by the
localized SE, in two and three dimensions and at higher
concentrations one can expect well-formed spin-wave peaks.
As evident from Fig. 11 the spin-wave peaks for wave vectors
close to the center of the Brillouin zone assume regular
Lorentzian shapes. It is therefore reasonable to investigate
how the energy of the peak (the position of the maximum, ωq)
and its full width at half maximum (FWHM) depend on the
wave vector and the concentration. Our calculations show that
ωq grows quadratically with q for small wave vectors and the
proportionality parameter is called stiffness constant D. As
shown in Fig. 12, both the stiffness constant and FWHM are
dimensionality and concentration dependent.

We note that the definition of the “spin-wave quasiparticle”
is less straightforward close to the percolation threshold; cf.,
e.g., Fig. 4(c). The peaks feature a clear asymmetry, which is
caused by the overlap of the “spin-wave-type peak” at nonzero
energy and the zero-energy peak of the Goldstone mode of the
isolated clusters.

Figure 12(a) shows that in any dimension the function D(c)
deviates strongly from the simple linear dependence predicted
by the VCA. The deviation and damping [cf. Fig. 12(b)] are
larger in two than in three dimensions. The latter trend follows
from the smaller coordination numbers of the two-dimensional
lattice, where the nonstoichiometry and disorder more strongly
influence the neighborhood of the given magnetic moment.
The stiffness constant tends to zero around the percolation
threshold. The vanishing of the stiffness constant means that
the position of the maximum of the low-energy peak does
not vary with the wave vector and remains zero for all q’s. We
note that CPA accounts well for the dependence of the stiffness
parameter and FWHM on c and their dimensionality trends. Its
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FIG. 12. (a) Spin-wave stiffness constant D normalized to the
perfect magnet value of 0.25 and (b) FWHM for the wave vector
(0.125,0,0)2π/a for our model of MNA in two and three dimensions
as a function of concentration c. Solid lines represent CPA results
while point corresponds to the Monte Carlo simulations (2D,•; 3D,
�). In (a) the VCA result is a simple straight line independent of
the dimensionality. VCA yields magnons with infinite lifetimes (zero
FWHM) for any concentration.

performance is clearly less satisfactory in the case of FWHM
in the vicinity of the percolation threshold. It is a hint that the
damping is controlled by the local properties of the disordered
environment, which are necessarily poorly represented within
the mean-field CPA theory.

Finally, we compare the long-wavelength SE properties
of three cubic lattices: simple cubic, body-centered cubic,
and face-centered cubic; cf. Fig. 13. One can again clearly
notice that the disorder influences the lattices with small
coordination numbers more seriously. Concerning the spin-
wave stiffness constant, it tends to zero faster for structures
with smaller number of nearest neighbors. Furthermore, the
damping increases with the decreasing number of nearest
neighbors.

IV. IMPACT OF THE ELECTRONIC STRUCTURE

In the previous sections we took a careful look at the
evolution of spin-wave energies and lifetimes in model
systems, in which the exchange parameters and magnetic
moments are not altered by the presence of impurities. In
real systems this assumption does not in general hold since the
alloying changes the electronic structure and thus the magnetic
properties. While the effect is necessarily system dependent,
it is instructive to consider a particular example.
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FIG. 13. (a) Spin-wave stiffness constant D normalized to the
perfect magnet value of 0.25 as a function of concentration for three
cubic Bravais lattices: simple cubic (sc), body-centered cubic, and
face-centered cubic (fcc). (b) The corresponding FWHM for the wave
vector (0.125,0,0)2π/a normalized to the peak position at this wave
vector. The results are based on the Monte Carlo simulations.

While the ultrastrong low-density steels based on FeAl
enjoy recently renewed attention [11], the spin dynamics of this
system has not been studied so far. We consider FecAl1−c at low
and moderate Al concentrations and 0 K. In three dimensions
and for concentrations of Al 1 − c < 0.30, the system is
regarded as a substitutionally random alloy in the sense defined
in Sec. II B. Its magnetic and structure phase diagram is
complex but in the regime considered here FeAl features bcc
lattice structure and ferromagnetic ordering [37,38]. The lattice
constant was determined to expand linearly with growing Al
content [39]. Much less is known about the structure and
magnetism of thin FeAl films and nanostructures. To allow
the comparison with the three-dimensional counterpart, we
consider a single free (100) layer of uncorrelated FeAl alloy
with lattice constant of bcc Fe independent of Al concentration.

The ground state of the alloy was determined based on
the local density approximation and the CPA for the electron
subsystem. Figure 14 depicts the dependence of the average
magnetic moment on Fe sites in FecAl1−c as a function
of concentration c. The value does not considerably vary.
We also note the enhanced value of the moment in the
freestanding film. The exchange parameters are evaluated
using the magnetic force theorem as implemented with the
multiple scattering theory [40] and taking advantage of the
vertex cancellation theorem in the disordered case [41,42].
They are presented in Fig. 15. We note the RKKY oscillatory
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FIG. 14. The dependence of the average magnetic moment on Fe
site in FecAl1−c as a function of concentration c.

character of the parameters, which gradually disappears in
the disordered phase. The second-nearest-neighbor interaction
is not negligible but more pronounced in the bulk case.
While in the film the parameters vary weakly with the
concentration, in three dimensions the exchange parameters
between first nearest neighbors grow with the Al concentration
in the considered regime, while those between second nearest
neighbors decrease.

The SEs presented in this section were obtained using the
Monte Carlo approach. In the long-wavelength regime the
SEs in FecAl1−c behave in a considerably more complex way
than the one given by the simple models studied earlier in
this paper; cf. Fig. 16(a). In two dimensions, the spin-wave
stiffness decreases with the Fe concentration, however slightly
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FIG. 15. The exchange parameters between Fe moments in
FecAl1−c as a function of concentration c in (a) two and (b) three
dimensions.
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FIG. 16. (a) The normalized spin-wave stiffness constant and (b)
the normalized FWHM at q = (0.125,0,0)2π/a for FecAl1−c as a
function of concentration c for two dimensions (2D), three dimensions
(3D), and three dimensions with exchange parameters kept constant
and taken from the c = 1 case (3Dc).

faster than in the simple model considered in Sec. III C.
The difference in the trend is caused by the long-ranged
character of the exchange parameters and the fact that
they become antiferromagnetic at the 3rd and 4th neighbor
shell. The random removal of the magnetic atoms influences
more strongly the less numerous ferromagnetic nearest- and
next-nearest-neighbor shells than the more numerous further
antiferromagnetic shells. In three dimensions, it initially
increases reaching maximum around c = 0.8. The origin of
this effect is the increase of the nearest-neighbor exchange
parameters with the rise of Al concentration. The decrease
of the next-nearest-neighbor exchange parameters is weaker
and cannot fully compensate for this trend. Additionally, the
Al doping weakens the antiferromagnetic coupling seen at
further shells. In three dimensions, we performed one more
set of calculations, in which the exchange parameters were
kept constant and taken from the c = 1 case. The spin-wave
stiffness constant decreases in this case almost as predicted in
the simple model disregarding the farther than first neighbors.
The reason for this is the fact that the first and the second
shells with the almost equal number of members (8 and 6,
respectively) are similarly affected by the disorder.

We remark that in general the long-range ferromagnetic
exchange interactions are expected to soften the decrease of
the spin-wave stiffness constant with the concentration. The
farther shells involve more atoms and as such are less sensitive
to the introduction of the nonmagnetic vacancies.

The normalized FWHM of the spin-wave modes depicted
in Fig. 16(b) follows the trend similar to the one observed in
Sec. III C. The FWHM increases with the increasing impurity
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FIG. 17. Comparison of MCA and CPA spin-wave spectra for
FecAl1−c with concentration c = 0.7. The spectra correspond to the
wave vectors (0.125,0,0)2π/a and (0.375,0,0)2π/a. The artificial
broadening γ = 20 meV is applied.

concentration and the effect is more pronounced for lower
dimensionality. However, it can be clearly seen that the
long-range character of the exchange parameters plays an
important role here, as evident from the comparison of the
cases with exchange parameters varying with the concentration
and independent of it.

Finally, we compared the performance of the CPA for the
three-dimensional FecAl1−c alloy for c = 0.7 with the results
of the Monte Carlo calculations (see Fig. 17). The results show
very good agreement, especially for smaller wave vectors. For
larger wave vectors, minor differences appear in the spectrum.
However, the size, position, and width of the main peak is still
in good agreement.

V. SUMMARY AND DISCUSSION

The SEs of low-dimensional disordered magnets feature
a remarkably rich physics. In the case of MNAs with
uncorrelated disorder one can distinguish two regimes. In the
case of low concentration of magnetic atoms the SE spectra
are dominated by localized (standing) SE modes confined to
single atoms or small clusters. As the concentration of the
magnetic atoms increases, the system becomes dominated by
large connected clusters and the extended spin-wave states
emerge. They manifest themselves as well-defined Lorentzian
peaks of a finite width in the imaginary part of the Fourier
transformation of the magnetic susceptibility. The states can
be pictured as Bloch waves with a finite lifetime arising from
the scattering on the crystal imperfections.

The crossover between the low and high concentration
regimes is by no means sharp. Even above the percolation
threshold (i.e., for high concentrations of magnetic atoms)
small detached clusters of atoms can form, giving rise to sharp
SE modes in addition to the continuum spectra of the spin-wave
modes. On the other hand, large connected clusters of atoms
can appear also below the threshold supporting multiple SE
modes with practically continuous energy spectrum. In the
case of magnets with long-range exchange interactions the
crossover is expected to be even less pronounced.

Taking the width of the well-defined magnon peaks as
a measure of the disorder impact (in the perfect case they

feature no intrinsic width), one arrives at the conclusion that
the low-dimensional magnets are more strongly affected by
nonstoichiometry and disorder then their bulk counterparts.
This behavior follows from the smaller coordination number
of atoms in the thin films and wires than in the bulk: the local
environment of a magnetic moment is more strongly disturbed
by the disorder in smaller dimensions. A similar trend can be
seen in bulk phases with different coordination numbers. On
the other hand, as the study of FeAl shows, the details of this
dependence might be altered by the long-range character of
the exchange interactions.

The coherent-potential approximation provides a remark-
ably good description of the magnon excitations for high
concentrations of magnetic atoms in two and three dimensions,
including the actual dimensionality trends. However, due to its
mean-field character, it is unable to predict the emergence of
standing SE modes localized on the detached clusters of atoms.
The CPA performance is better in the case of the spin-wave
dispersion than in the case of their widths, which suggests
that the latter are controlled by the details of local random
configurations of atoms, which cannot be grasped by the CPA.
The virtual-crystal approximation fails qualitatively in the de-
scription of disordered magnets; in particular it cannot account
for the finite width of the spin-wave peaks. Furthermore, the
VCA results are not dimensionality dependent.

There are a number of natural extensions to this work.
Among them are the study of the impact of the correlated
disorder and first-principles study of the spin excitations in the
alloys containing several magnetic atoms. These studies must
be the topics of separate publications.
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APPENDIX: CPA FOR THE HEISENBERG HAMILTONIAN

The coherent-potential approximation for the transverse
magnetic susceptibility of the Heisenberg Hamiltonian is
constructed as follows. We define the species-resolved Fourier
transformation of the susceptibility

χ
αβ

ij (q,q′) =
∑
RR′

pαi(R)e−iq·Rχ (R + si ,R′ + sj )pβj (R′)eiq′·R′
,

(A1)

which allows us to compute the Fourier transform of the full
susceptibility as

χij (q,q′) =
∑
αβ

χ
αβ

ij (q,q′). (A2)

The susceptibility χ (z,q,q′) corresponds to a single random
configuration of the atoms constituting the alloy.
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+ + + . . .

FIG. 18. Expansion of the χ
αβ

ij (z,q,q′) susceptibility.

Following Eq. (5) the susceptibility in the real space can be
developed in a formal series

χ (z) =G0gS + G0gST G0gS + G0gST G0gST G0gS + · · ·,
(A3)

where the ST product is given by Eq. (6).
The Fourier transformation χ

αβ

ij (z,q,q′) can be computed
term-by-term upon a series of tedious algebraic manipulations
and has the diagrammatic representation depicted in Fig. 18.
The diagram consists of three elements listed below. Each
of the elements is a matrix in a space of composite indices
involving basis sites and atomic species. The following
notation is used: (i) ≡ iα,(j ) ≡ jβ,(l) ≡ lγ,(m) ≡ mμ, etc.
Furthermore, in this index space the Einstein summation
convention is used. The elements are

(1) T matrix denoted with filled circle (•):

T αβ

ij (q,q′) = ρ(l)(q − q′)τ (l)
(i)(j )(q,q′), (A4)

where

τ
(l)
(i)(j )(q,q′) ≡ gS−1

β

(
J

βγ

jl (q − q′)δ(i)(j ) − J
γβ

lj (q′)δ(i)(l)
)
,

(A5)

ραi(q) ≡
∑

R

pαi(R)e−iq·R, (A6)

J
αβ

ij (q) ≡
∑

R

J
αβ

ij (R)e−iq·R. (A7)

The two latter quantities are lattice Fourier transformations
of the occupation function and the exchange parameters,
respectively.

(2) S matrix denoted with open circle (◦):

S(i)(j )(q,q′) = ρ(l)(q − q′)σ (l)
(i)(j ), (A8)

σ
(l)
(i)(j ) ≡ gδ(i)(j )δ(i)(l)S(l). (A9)

(3) Propagator of uncoupled magnetic moments ( ):

�(i)(j )(z) = z−1δ(i)(j ). (A10)

This matrix does not depend on the momentum but introduces
the frequency dependence into the equations.

The rules for evaluating the diagrams are as follows:
(1) The matrices in the (i)(j ) space brought together in a

diagram undergo the matrix multiplication in this space.
(2) Every internal free propagator line is associated with

an integration over a Brillouin zone, denoted as

1

�BZ

∫
q∈�BZ

f (q)dq ≡
∫

q
f (q) (A11)

in order to simplify the notation.
For instance, the second term, i.e., including the product

of two random variables ρ(i)(q), in the expansion presented in

Fig. 18 is explicitly written as

χ
αβ

ij (z,q,q′) = z−2
∫

q1

T(i)(m1)(q,q1)S(m1)(j )(q1,q′)

(2nd order) (A12)

= z−2
∫

q1

ρ(l1)(q − q1)τ (l1)
(i)(m)(q,q1)

× ρ(l2)(q1 − q′)σ (l2)
(m)(j ). (A13)

[Note the Einstein convention for the indices (l1),(l2), and (m).]
In the next step, our goal is to compute the averaged

susceptibility. As stated in Sec. II C, upon the averaging,
the translational symmetry of the system is restored and the
susceptibility depends only on one wave-vector variable,〈

χ
αβ

ij (z,q,q′)
〉 ≡ 〈

χ
αβ

ij (z,q)
〉
�BZδ(q − q′). (A14)

In what follows, we will construct the coherent-potential
approximation for 〈χαβ

ij (z,q)〉. We attempt to average every
term of the expansion presented in Fig. 18 separately and
following Yonezawa [32] we resort to the so-called cumulant
expansion. As an example, let us consider again the 2nd order
term given in Eq. (A13):

〈
χ

αβ

ij (z,q,q′)
〉 = z−2

∫
q1

τ
(l1)
(i)(m)(q,q1)σ (l2)

(m)(j )

× 〈ρ(l1)(q − q1)ρ(l2)(q1 − q′)〉. (A15)

We note that only the ρ functions contain random variables p

and require averaging. The cumulant expansion of the product
reads

〈ρ(l1)(k1)ρ(l2)(k2)〉=C2
(l1)(l2)(k1,k2)+C1

(l1)(k1)C1
(l2)(k2), (A16)

where Cn stands for the multivariate cumulant of order n. In
the case of the uncorrelated disorder

Cn
(l1)(l2)...(ln)(k1,k2,. . .,kn) = Pn

(l1)(l2)...(ln)(c)�BZ

× δ(k1 + k2 + · · · + kn), (A17)

where c is the concentration matrix ciα . The weight functions
P in the uncorrelated case are nonzero only if all indices
correspond to the same basis site. They do not have any
straightforward analytic representation but the first two read

P1
iα(c) = ciα, (A18)

P2
iαjβ(c) = δij (δαβciα − ciαcjβ). (A19)

The momentum dependence of the cumulants gives, as
expected from Eq. (A14), that the averaged susceptibility is
diagonal in the momentum arguments and thus proportional
to �BZδ(q − q′).

Examples of the cumulant expansion for the second and
fourth order terms are presented in Fig. 19. The coherent-
potential approximation neglects the terms involving multiple
“crossed” cumulants. The lowest order term of this type ap-
pears in the 4th order average and is marked with (†) in Fig. 19.

In the CPA, the final expression for the averaged diag-
onal part 〈χαβ

ij (z,q)〉 of the susceptibility, cf. Eq. (A14), is
constructed by summing the terms of all order by means of
a Dyson-like self-consistent equation. Because our diagrams
feature two types of vertices, namely T and S, two quantities
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= +

= +

+ + + + + +

+ + +

(†)

+ + + +

(a)

(b)

FIG. 19. Expansion of the second (a) and fourth (b) order term average. The bundles of dashed lines denote cumulants Cn. Crossed terms,
like those denoted with (†), are omitted in the coherent-potential approximation. The remaining symbols are identical to those used in Fig. 18.

appear, namely the CPA effective medium propagator G(z,q)
and the magnetic weight correction W(z,q).

The propagator

G(z,q) = �(z) + �(z)E(z,q)G(z,q) (A20)

is expressed in terms of the self-energy E ,

E(z,q) =
∑
s∈S1

P1
s τ (l1)(q,q) +

∞∑
n=2

∑
s∈Sn

Pn
s

∫
q1

∫
q2

· · ·
∫

qn−1

[τ (l1)(q,q1)G(z,q1)τ (l2)(q1,q2)G(z,q2) · · ·

· · · τ (ln−1)(qn−2,qn−1)G(z,qn−1)τ (ln)(qn−1,q)],

(A21)

=E(a) + + + + . . .

=W(b)

VCA

+ + + + . . .

=
G

(c) Γ
+ EΓ G

=χ(d) WG

FIG. 20. The diagrammatic representation of the Dyson equation
for the CPA susceptibility: expansions of the CPA self-energy (a) and
the magnetic weight (b) given by Eqs. (A21) and (A22), respectively,
(c) the Dyson equation (A20), and (d) the final expression for the
averaged susceptibility corresponding to Eq. (A23). Restricting the
series in (a) and (b) to the first terms only yields the virtual-crystal
approximation.

where Sn 
 s = {(l1),(l2), . . . ,(ln)} is a particular length n se-
quence of composite indices. Similarly, the weight correction
W amounts to

W(z,q) =
∑
s∈S1

P1
s σ (l1) +

∞∑
n=2

∑
s∈Sn

Pn
s

∫
q1

∫
q2

· · ·
∫

qn−1

[τ (l1)(q,q1)G(z,q1)τ (l2)(q1,q2)G(z,q2) · · ·

· · · G(z,qn−1)σ (ln)]. (A22)

The final expression for the averaged susceptibility involves
the matrix product of the effective propagator and the weight
correction

〈χ (z,q)〉 = G(z,q)W(z,q). (A23)

The expansion presented above is depicted in terms of
diagrams in Fig. 20. The calculation process involves self-
consistency, as the effective medium propagator G is found
using the self-energy E , which in turn involves the propagator.

The series given by Eqs. (A21) and (A22) do not converge
term-by-term. Furthermore, it is computationally unfeasible
to work directly in the reciprocal space. Below, we transform
the corresponding quantities to the real-space representation,
where we sum over the series. For simplicity the frequency
arguments are suppressed.

E(q) = E(q,q) ≡
∑
RR′

e−q·(R−R′)E(R,R′), (A24)

W(q) ≡
∑

R

e−q·RW(R), (A25)

E(R,R′) =
∑
iα

ciα

∑
R1

Ê iα(R,R1)τ iα(R1,R′), (A26)

W(R) =
∑
iα

ciαÊ iα(R,0)σαi. (A27)
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The partial self-energies Ê are determined as follows:

Ē i(R,R′) =
∑
α∈Ii

∑
R1

ciαÊ iα(R,R1)Miα(R1,R′), (A28)

where Ii denotes the set of impurity types present on site i.
The terms off-diagonal in the sites’ space are zero in the case
of uncorrelated disorder. In what follows, we will work with
matrices in a space of extended composite indices including
both the composite index (i) as well as the lattice vector R,
i.e., (αiR). It is sufficient to consider only finite clusters of
lattice vectors corresponding to the range of the exchange
parameters J (R). Using the concept of the effective interaction
of Yonezawa the summation of the cumulant series yields

ciαÊ iα = P1
iαI + P2

iβ,iαMiβ + P3
iγ,iβ,iαMiγMiβ + · · · ,

(A29)

Ê iα = [I − (Miα − Ē i)]−1, (A30)

where the M matrices are defined in the reciprocal space by

M(l)
(i)(j )(q,q′) = τ

(l)
(i)(m)(q,q′)G(m)(j )(q′) (A31)

and in the real space consist of two parts:

M(l)
(i)(j )(R,R′)

= gS−1
α J

αγ

il (R)G(i)(j )(R − R′)

−
∑
R1

[
gS−1

μ J
γμ

lm (R1)G(m)(j )(R1 − R′)δ(i)(l)δR0
]
. (A32)

The equations above can be directly implemented on a
computer in order to find 〈χ〉 and we conclude this section
with several remarks concerning our numerical scheme. The
convergence of the CPA self-consistency loop requires a
suitable mixing of quantities from previous iterations and
we resorted to the Broyden method in order to achieve it.
Furthermore, the self-consistent loop does not converge for
complex energies with small imaginary parts. To remedy the
latter difficulty, we resorted to the nearly real axis method
[10]. The self-consistent quantities were converged in a
suitable distance away from the real axis and subsequently
the self-energy Ê(z) was analytically continued towards the
real energies in order to recover the real-time dynamics of the
system.
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