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We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear
wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit
of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on
the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We
observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic
properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its
dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in
different non-adiabatic regimes. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4959962]

I. INTRODUCTION

A landmark in the description of the coupled motion of
electrons and nuclei in molecular systems was the seminal
paper by Born and Oppenheimer.1 In the so-called Born-
Oppenheimer (BO) method the time-independent Schrödinger
equation is solved by expanding in orders of the electron-
nuclear mass ratio. The lowest order equation corresponds to
solving the electronic problem for fixed nuclei, while higher
orders allow to consider nuclear vibrations, rotations and
their coupling to the electronic degrees of freedom. What is
nowadays usually referred to as the BO approximation (BOA)
is the combined solution of (i) the electronic eigenvalue
problem at fixed nuclear positions, i.e., the lowest order of
the BO time-independent expansion and (ii) the nuclear time-
(in)dependent Schrödinger equation, where the potential is
provided by a single eigenvalue of the electronic Hamiltonian,
the so-called BO Hamiltonian, at each nuclear position.2 In the
time-dependent version of the BOA, the electronic and nuclear
equations are derived from the full Schrödinger equation as
a consequence of an approximation, based on the adiabatic
hypothesis: it assumes that the electrons react instantaneously
to the motion of the nuclei. Therefore, they “statically” occupy
an eigenstate corresponding to a given configuration of the
nuclei.

The BOA is the cornerstone of molecular dynamics
because it allows to simulate a variety of complex molec-
ular time-dependent phenomena efficiently and accurately.
However, even in those situations where it conveys an overall
correct description of the problem, a treatment based on the
BOA is not free of inconsistencies. A few examples have
been reported in the literature: the electronic mass is not
properly accounted for in the dynamics of the nuclei,3–5

which can lead to inaccuracies when calculating vibrational
and rotational excitation energies of light molecules;6,7 in
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the absence of degeneracies and external magnetic fields,
the electronic state computed within the BOA is real. As
a consequence, the electronic current density vanishes and
the continuity equation is violated.8–13 For similar reasons,
the vibrational circular dichroism computed within the BOA
requires corrections14–17 to yield agreement with experimental
measurements. Various approaches5,6,11,12,15,17–20 have been
proposed to cure these inconsistencies perturbatively. In
this paper we further develop this idea by focusing on the
following questions: Is there a procedure to systematically
identify corrections to the BOA? Can a “small” parameter
be identified that justifies the treatment of such corrections
as perturbation? What physical quantities are affected by the
corrections?

The starting point of the analysis is the exact factorization
(XF) of the electron-nuclear wave function.21 In this
framework, the solution of the time-dependent Schrödinger
equation (TDSE) is written as a single product of a nuclear
wave function and an electronic factor with parametric
dependence on the nuclear configuration. The full TDSE
splits into two coupled equations for the nuclear and for the
electronic components. Such factorization of the molecular
wave function is exact, thus it incorporates non-adiabatic
effects arising from the coupling between electronic and
nuclear motion. The form of the electron-nuclear wave
function in the XF framework looks deceptively similar to
the electron-nuclear wave function in the BOA. It is therefore
natural to ask under which conditions the BOA is recovered
from the XF. We will show that BOA emerges from the XF in
the adiabatic limit,22–25 i.e., when the electron-nuclear mass
ratio tends to zero. Strong indications that this is indeed the
correct limiting procedure to recover the BOA from the XF
have been reported in a recent numerical study,26 where it
was shown that characteristic features of the BOA, related
to molecular geometric phases, only appear in the limit of
infinite nuclear masses in the XF, except if one chooses
current-carrying eigenstates in systems with degeneracies.27
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In the framework provided by the XF, the nuclear equation
is a TDSE, where a time-dependent vector potential (TDVP)
and a time-dependent scalar potential, also referred to as
time-dependent potential energy surface (TDPES), mediate
the coupling to the electrons. The electronic equation is a
less standard evolution equation, where an electron-nuclear
coupling operator (ENCO), which acts on the parametric
dependence of the electronic factor, is responsible for inducing
non-adiabatic transitions. The nuclear equation describes how
the nuclei evolve, while the electronic equation describes
how the electrons follow the nuclear motion. This is the
consequence of choosing the product form of the full wave
function as a proper nuclear wave function and a conditional
electronic wave function, similarly to what is done within
the BOA. This way of decomposing the electron-nuclear
problem provides the same perspective as the BOA. In the
electronic equation, when the ENCO vanishes, the explicit
coupling to the nuclear motion vanishes as well. Therefore, the
exact electronic equation is expected to yield the eigenvalue
problem associated with the BO Hamiltonian at fixed nuclear
configuration. We will show that this situation is formally
recovered in the adiabatic limit.

The paper is organized as follows. In Section II, we briefly
recall the XF and compare it to the BOA. In Section III, we
introduce the unit system used to analyze the dependence
on the electron-nuclear mass ratio of the equations of the
XF. We analyze this dependence in the electronic equation
in Section IV and in the nuclear equation in Section V.
The theoretical discussion is supported by numerical results,
presented in Section VI. Conclusions are stated in Section VII.

II. EXACT FACTORIZATION
OF THE ELECTRON-NUCLEAR WAVE FUNCTION

The XF has been presented21 and extensively dis-
cussed28–31 in previous work. Therefore, we only introduce
here the basic formalism and we refer to the above references
for a detailed presentation.

A system of interacting electrons and nuclei, in the
absence of external fields, is described by the Hamiltonian

Ĥ = T̂n + ĤBO, (1)

where T̂n is the nuclear kinetic energy and ĤBO is the BO
Hamiltonian, containing the electronic kinetic energy and
all interactions. The evolution of the electron-nuclear wave
function, Ψ, is described by the TDSE ĤΨ = i~∂tΨ. In the
XF framework, the solution of this TDSE is written as

Ψ(r,R, t) = ΦR(r, t)χ(R, t), (2)

where χ(R, t) is the nuclear wave function and ΦR(r, t) is
an electronic factor parametrically depending on the nuclear
configuration R. Here, the symbols r,R have been used to
collectively indicate the positions of Nel electrons and Nn

nuclei, respectively. ΦR(r, t) satisfies the partial normalization
condition 

dr|ΦR(r, t)|2 = 1 ∀R, t, (3)

which makes the factorization in Eq. (2) unique up to a
gauge-like phase transformation. Starting from the TDSE for
the full wave function and using Frenkel’s action principle,32

where the partial normalization condition is imposed by means
of Lagrange multipliers,33 the evolution equations for ΦR(r, t)
and χ(R, t) are
�
ĤBO + Ûen [ΦR, χ] − ϵ(R, t)�ΦR(r, t) = i~∂tΦR(r, t) (4a)


Nn
ν=1

[−i~∇ν + Aν(R, t)]2
2Mν

+ ϵ(R, t)

χ(R, t) = i~∂t χ(R, t).

(4b)

Note that χ(R, t) fulfills a standard TDSE. The evolution of
the electronic factor ΦR(r, t), however, is governed by a less
common equation. In fact, the difference to a TDSE is the
presence of the so-called electron-nuclear coupling operator
(ENCO),

Ûen [ΦR, χ]
=

Nn
ν=1

1
Mν

 [−i~∇ν − Aν(R, t)]2
2

+

(
−i~∇ν χ(R, t)

χ(R, t) + Aν(R, t)
)
(−i~∇ν − Aν(R, t))


,

(5)

which acts on the parametric dependence of the electronic
factor on the nuclear position. Since the ENCO depends on
the nuclear wave function it describes dynamical effects of the
nuclei on the electrons. The time-dependent vector potential
(TDVP),

Aν(R, t) = ⟨ΦR(t)| −i~∇νΦR(t)⟩r, (6)

and the time-dependent potential energy surface (TDPES),

ϵ(R, t) = ⟨ΦR(t)| ĤBO + Ûen − i~∂t |ΦR(t)⟩r, (7)

mediate the exact coupling between the two subsystems,
thus they include all effects beyond the BOA on the nuclear
dynamics. In the above equations, the symbol ⟨. . . ⟩r has been
used to indicate integration over the electronic coordinates.
The TDVP and the TDPES transform21 as standard gauge
potentials, i.e.,

ϵ̃(R, t) = ϵ(R, t) + ∂tθ(R, t) (8)

Ãν(R, t) = Aν(R, t) + ∇νθ(R, t), (9)

when the electronic and nuclear wave functions transform as

χ(R, t) → χ̃(R, t) = e−
i
~ θ(R, t)χ(R, t)

ΦR(r, t) → Φ̃R(r, t) = e
i
~ θ(R, t)ΦR(r, t),

(10)

with a gauge-like phase θ(R, t) which is a real function of only
nuclear positions and time. This gauge-like freedom is the
only freedom in the definition of the electronic and nuclear
wave functions, that can be removed by fixing the gauge.

The equations driving the evolution of the coupled
electron-nuclear system within the BOA are formally similar
to the exact Equations (4)–(7). In order to show this relation,
we write the BO wave function as

Ψ
BO(r,R, t) = ϕBO

R (r)χBO(R, t). (11)
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Note thatΨBO(r,R, t) is an approximation to the exact solution
Ψ(r,R, t) of the TDSE. In the BOA, the electronic wave
function ϕBO

R (r) is an eigenstate of the BO Hamiltonian,
�
ĤBO − ϵBO(R)� ϕBO

R (r) = 0, (12)

with the R-dependent eigenvalue ϵBO(R). The evolution of the
nuclear wave function χBO(R, t) is given by an equation that
is formally identical to Eq. (4b),


Nn
ν=1

�
−i~∇ν +ABO

ν (R)�2
2Mν

+ ϵ̃BO(R)

χBO(R, t) = i~∂t χBO(R, t),

(13)

where a time-independent vector potential, ABO
ν (R), and a

time-independent scalar potential,

ϵ̃BO(R) = ϵBO(R) +
Nn
ν=1

~2

2Mν
⟨∇νϕBO

R |∇νϕBO
R ⟩r, (14)

appear. However, for a real electronic state ϕBO
R (r), ABO

ν (R)
identically vanishes, and ϵ̃BO(R) contains the diagonal
correction to the BO energy.34,35 These corrections to the
BO energy, being O(M−1

ν ), are often neglected. The purpose
of Secs. III–V is to describe how Equations (12) and (13) are
recovered from Equation (4).

III. DEFINITION OF THE UNIT SYSTEM

The Hamiltonian introduced in Eq. (1) is

Ĥ =
Nn
ν=1

−~2∇2
ν

2Mν
+

Nel
k=1

−~2∇2
k

2m
−

Nn
ν=1

Nel
k=1

α~c
Zνe2

|Rν − rk |

+

Nel
k=1


k′>k

α~c
e2

|rk − rk′| +
Nn
ν=1


ν′>ν

α~c
ZνZν′e2

|Rν − Rν′| , (15)

where the first two terms on the right-hand-side are the nuclear
and electronic kinetic energy operators, respectively, followed
by the electron-nuclear, purely electronic, and purely nuclear
Coulomb interactions. As in Sec. II, ν and ν′ label the nuclei,
whereas k and k ′ label the electrons; Mν and m are the masses
of the nuclei and of the electrons, respectively; the position
of each nucleus is indicated as Rν and that of each electron
as rk; α is the fine structure constant, c the speed of light,
and Zνe (or Zν′e) is the charge corresponding to the nucleus ν
(or ν′).

We introduce a unit system36 where mass M0, length λ0,
energy e0, and charge e are the fundamental units, namely,

M0 = N−1
n


ν

Mν; λ0 =
~

mαc
; e0 = mα2c2; e. (16)

Notice that the new units of length, energy, and charge are the
same as in the atomic unit (a.u.) system, whereas the average
nuclear mass, rather than the electronic mass, is used as unit
of mass. All other units can be derived starting from the basic
ones chosen above. For instance, the units of time, action and
velocity are

[t] =


M0

e0
λ0; [a] = 

M0e0λ0; [v] =


e0

M0
. (17)

In order to express Hamiltonian (15) in the new units, we have
to derive the values of fundamental constants c and ~ in our
unit system,

c = c′[v] = c′


e0

M0
= c′
√
µαc → c′ =

1
√
µα

, (18a)

~ = ~′[a] = ~′M0e0λ0 = ~
′ 1
√
µ
~ → ~′ = √µ. (18b)

Henceforth, primed symbols will indicate dimensionless
quantities with the only exception of the electron-nuclear
mass ratio µ = m/M0. Our particular choice of units leads
to two interesting results. First, the speed of light is scaled
with µ−

1
2 , thus if µ → 0, i.e., if the nuclei become infinitely

massive compared to the electrons, c′ tends to infinity. Second,
Planck’s constant is the square root of the electron-nuclear
mass ratio, thus if µ → 0 also ~′ becomes zero. We will
refer to the limit µ → 0 as the “adiabatic limit.” Since µ is
a dimensionless mass ratio, the adiabatic limit means that
m ≪ M0, i.e., the mass of the electron is much smaller than
the average nuclear mass.

Using Eq. (18) it is straightforward to express the
Hamiltonian (15) in our new unit system,

Ĥ = e0


µ

ν

−
∇′2ν
2M ′ν

+

k

−
∇′2
k

2
−

Nn
ν=1

Nel
k=1

Zν�
R′ν − r′

k

�

+

Nel
k=1


k′>k

1�
r′
k
− r′

k′
� +

Nn
ν=1


ν′>ν

ZνZν′�
R′ν − R′

ν′
�


= e0
�
µT̂ ′n + Ĥ ′BO

�
. (19)

Obviously the nuclear kinetic energy, µT̂ ′n, scales linearly with
the electron-nuclear mass ratio µ. This outcome is intuitively
clear, since we expect that in the limit of nuclei that are much
heavier than the electrons the nuclear kinetic energy becomes
irrelevant. We point out that Hamiltonian (15) has the same
form in standard atomic units. The crucial difference in using
units (16) appears when we look at the TDSE. The time
derivative in our unit system reads

i~∂t = ie0
√
µ∂t′, (20)

i.e., it scales with
√
µ due to the scaling of ~. This is crucial

to obtain a static electronic equation for µ → 0 when the new
units are used in Eq. (4a). Similarly the spatial derivatives
(momentum operators) are

− i~∇ = −i
√
µ


M0e0∇′, (21)

in our unit system.

IV. ELECTRONIC EQUATION

Equipped with the results from Sec. III, we rewrite the
TDVP in our new units. From Eq. (21), it follows that

Aν(R, t) → √µM0e0A′ν(R′, t ′), (22)

with

A′ν(R′, t ′) =


dr′Φ′∗R′(r′, t)
�
−i∇′νΦ′R′(r′, t ′)

�
. (23)
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Similarly we have

−i~∇ν χ(R, t)
χ(R, t) → √µ


M0e0

−i∇′ν χ′(R′, t ′)
χ′(R′, t ′) , (24)

which leads to the ENCO in our new units, i.e.,

Ûen(t) → e0µÛ ′en(t ′), (25)

with

Û ′en(t ′) =
Nn
ν=1

1
M ′ν



�
−i∇′ν − A′ν(R′, t ′)

�2

2
+

(
−i∇′ν χ′(R′, t ′)

χ′(R′, t ′) + A′ν(R′, t ′)
)
(−i∇′ν − A′ν(R′, t ′))


. (26)

Finally, we turn to the TDPES. It is the sum of three
contributions, i.e.,

ϵ(R, t) = ⟨ΦR(t)| ĤBO + Ûen − i~∂t |ΦR(t)⟩r

= ϵBO(R, t) + ϵbBO(R, t) + ϵ td(R, t), (27)

the BO term, the bBO (beyond BO) term, and the td (time
derivative) term, where ϵbBO only contains the first term on
the right-hand-side of Eq. (5), since the second term does not
contribute (by construction) to the expression of the TDPES.
When using the new unit system, we determine the explicit
dependence on µ of these three contributions, namely,

ϵ(R, t) → e0
�
ϵ ′BO(R′, t ′) + µϵ ′bBO(R′, t ′) +

√
µϵ ′td(R′, t ′)

�
.

(28)

The electronic equation given in Eq. (4a) thus becomes(
Ĥ ′BO − ϵ

′
BO

)
Φ
′
R′ =

√
µ
�
i∂t′ + ϵ ′td

�
− µ

(
Û ′en − ϵ ′bBO

)
Φ
′
R′.

(29)

The new units single out the explicit dependence on µ of each
term in the evolution equation for the electronic factor. As
anticipated above, this dependence also appears in the term
containing the time derivative of the electronic factor. When
the adiabatic limit is approached as µ → 0, this term vanishes
as the square root of the mass ratio: we recover the BOA for
the coupled electron-nuclear dynamics, the electronic state is
static, in the sense that the electronic system is always found
in the same eigenstate (solution of the eigenvalue problem
associated with ĤBO).

The alert reader may have noticed that the ENCO
[cf. Eq. (26)] contains a sum over all nuclei. Each term
contains a prefactor µ/M ′ν, i.e., the ratio of the dimensionless
electron mass µ and the dimensionless nuclear mass M ′ν. So
far we have implicitly assumed that all the M ′ν are of order
one, which means that the molecule is comprised of nuclei
with similar masses. If, however, the molecule contains nuclei
which are much lighter than the average nuclear mass, e.g., if
the molecule contains hydrogen, the corresponding M ′ν might
not be of order one but instead M ′ν < 1. Note that this is not in
conflict with our general discussion, for it simply means that
the adiabatic limit may not be suited to describe the present
system.

In the adiabatic limit, the time dependence is solely
carried by the nuclear wave function, which evolves according
to a TDSE where the potential is given by the BO energy

eigenvalue at each nuclear position, as will be argued in
Sec. V. This result depends on the viewpoint adopted in the
XF, as we have already mentioned in the Introduction. The
coupled equations, in fact, describe how the nuclei move and
how the electrons follow their motion, thus the explicit time
dependence of the electronic factor only arises as effect of
the coupling to the nuclei. If the nuclear mass increases, then
nuclear motion becomes slower and define a time scale over
which the electrons are able to react instantaneously. This is the
reason why the XF equations lead to the BOA in the adiabatic
limit. In the time-dependent version of BOA, the electronic and
nuclear systems are not treated on equal footing: the electronic
equation is static, whereas the nuclear equation is an evolution
equation. The electronic equation is an eigenvalue problem,
satisfied only by the eigenstate of Ĥ ′BO with eigenvalue ϵ ′BO
(see the left-hand-side of Eq. (29)). Therefore, at all times
during the evolution of the nuclear wave function (and also
at the initial time), the electronic state must be an eigenstate
of the BO Hamiltonian. Furthermore, in Eq. (29) the term
responsible for the coupling with the nuclear motion, Ûen,
is eliminated as the mass ratio goes to zero. Clearly, non-
adiabatic effects disappear in the adiabatic limit. However,
if we set now the gauge such that ϵ ′td = 0 (or equivalently
ϵ td = 0), which is possible in general, the electronic equation
becomes(

Ĥ ′BO− ϵ ′BO

)
Φ
′
R′ =

√
µi∂t′ − µ

(
Û ′en − ϵ ′bBO

)
Φ
′
R′. (30)

Non-adiabatic contributions, induced by Û ′en, seem to appear
only at a higher order than the time derivative itself. This is
somehow unexpected, as the explicit dependence on time of
the electronic state arises as a consequence of the coupling
to nuclear motion, which is encoded in the ENCO. However,
it has to be borne in mind that so far we have only analyzed
the explicit dependence on µ in the evolution equation for
the electrons. At this point we have only established that in
the limit µ → 0 the electronic equation reduces to the static
BOA for the electronic factor under the assumption that the
µ → 0 limit of Eq. (24) does not diverge as µ−

1
2 or stronger.

We investigate this issue in Sec. V.

V. NUCLEAR EQUATION

Let us suppose that the nuclear wave function is a coherent
state, with Gaussian-shape density and propagating with a
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certain momentum. Then, as the adiabatic limit is approached,
one would intuitively expect that the density localizes and that
the motion becomes slower.22 This effect can be understood
classically as the consequence of the increase of the nuclear
mass. Therefore, in the analysis reported below, we will also
take into account the dependence of the nuclear wave function
on the mass ratio. We consider explicitly this dependence here,
since only the nuclear term in the factorization (2) is a proper
nuclear wave function; the electronic factor has simply a
parametric “conditional” dependence on R, which we assume
not being affected by the nuclear mass.

In order to motivate this assumption let us consider
the probabilities | χ(R, t)|2 and |ΦR(r, t)|2, rather than the
probability amplitudes. It is natural to expect that a massive
nucleus yields a density which is very localized in space,
associated with a large marginal probability, | χ(R, t)|2, in
certain regions of space. As the nuclear mass decreases, the
value of the probability decreases as well, the consequence of
the delocalization of a light particle (and of the normalization
of the probability). At the same time, |ΦR(r, t)|2 is a conditional
probability, providing the probability of finding the electronic
configuration r at time t, given that the nuclei are in the
configuration R. Such a condition, translated to the language
of quantum mechanics, could be expressed as a nuclear
probability density in the form of a δ-function centered
at R, as the δ-function yields the certainty of finding the
nuclear configuration R at time t. In this sense, it seems that
the conditional probability can be defined without explicit

knowledge of the marginal probability | χ(R, t)|2. However,
ΦR(r, t) and χ(R, t), and the associated probabilities, are
intimately related via the Schrödinger equation and the fact
that they yield the full wave function. Keeping this relation in
mind, we will still consider that the parametric dependence of
the conditional wave function is not affected by the adiabatic
limit, leaving open the possibilities for further investigations
in this direction.

In the same spirit as what has been presented above, we
analyze the nuclear equation (4b). To this end it is necessary
to extract the dependence on µ of the quantities appearing in
the equation. Remembering that we have chosen the gauge
such that ϵ ′td = 0, we obtain



Nn
ν=1

µ
�
−i∇′ν + A′ν(R′, t ′)

�2

2M ′ν
+ ϵ ′BO(R′, t ′) + µϵ ′bBO(R′, t ′)


× χ′(R′, t ′) = i

√
µ∂t′χ

′(R′, t ′). (31)

Note that Eq. (31) is the standard TDSE with ~ replaced by√
µ. Furthermore, the equation is linear in χ′(R′, t ′), however,

it depends on the electronic factor through the TDVP and
the TDPES. In order to proceed, we use the complex phase
representation30,37–39 of the nuclear wave function

χ′(R′, t ′) = exp


i
√
µ
S ′(R′, t ′)


, (32)

with S ′ a complex function of R′ and t ′. Inserting this
expression into the nuclear TDSE (31), we arrive at

− ∂t′S ′ =

ν

1
2M ′ν

(∇′νS ′)2 − i
√
µ∇′2ν S ′ + 2µA′ν · ∇′νS ′ − iµ∇′ν · A′ν + µA′2ν


+ ϵ ′BO + µϵ ′bBO. (33)

At this point we are at the same level as in our discussion
of the electronic equation in Sec. IV, i.e., we have singled
out the explicit dependence on

√
µ in the evolution equation.

Similarly to the discussion reported above on the adiabatic
limit of the ENCO, the sum over the nuclei ν in the kinetic
energy of the nuclei contains prefactors µ/M ′ν. This means
that for heteronuclear molecules the validity of the adiabatic
description has to be critically examined. In contrast to the
evolution equation for the electronic factor we are here dealing
with a proper TDSE. Accordingly we can use that the complex
phase S ′ can be expanded37 as an asymptotic series in powers
of ~′ =

√
µ, leading to the expression

χ′ = exp


i
√
µ

�
S′0 +
√
µS′1 + µS′2 + · · ·

�
, (34)

for the nuclear wave function. Combining Equations (34) and
(33) we can take the limit µ → 0 to obtain

− ∂t′S′0 =

ν

1
2M ′ν

�
∇′νS′0

�2
+ ϵ ′BO. (35)

This is formally a Hamilton-Jacobi equation for the function
S′0 where the potential energy is simply given by the BO
contribution to the TDPES. The nuclear equation does not
become a static eigenvalue equation in the adiabatic limit, as
it happens for the electronic equation. The nuclear equation is
still a dynamical equation which yields the adiabatic evolution
of the nuclear wave function. In fact, it is easy to see that the
same expression would be recovered starting from Eq. (13),
or equivalently from




ν

−µ∇′2ν
2M ′ν

+ ϵ ′BO(R′)

χ′(R′, t ′) = i

√
µ∂t′χ

′(R′, t ′), (36)

expressed in the new unit system, which is the nuclear
TDSE (31) without the TDVP where the only potential is
ϵ ′BO. In the adiabatic limit µ → 0 the nuclear TDSE turns
into a Hamilton-Jacobi equation (35). It can be solved
by means of its characteristics, corresponding to classical
trajectories in phase space with momenta given by the gradient
of S′0.
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Now we are able to address the issue raised at the end of
Sec. IV, i.e., whether the µ dependence of the nuclear wave
function spoils the conclusions regarding the µ → 0 limit
of the electronic equation. Based on Eq. (34), we analyze
the term in the expression of the ENCO which depends on
χ′. In Eq. (24) we consider the term on the right-hand-side,
removing the explicit dependence on the units of momentum,
i.e.,
√

M0e0, and we insert the expansion (34), to get

√
µ
−i∇′ν χ′

χ′
= ∇′νS0 +

√
µ∇′νS1 + · · ·, (37)

meaning that the leading term of contribution (37) is actually
O(1) rather than O(√µ). However, this does not affect the
µ → 0 limit of the electronic equation and confirms that the
electronic equation reduces to the static BOA in the adiabatic
limit. Furthermore, we can rewrite the expression of the ENCO
as the sum of

√
µ Û ′Ien =


ν

�
∇′νS′0

�

M ′ν

√
µ (−i∇′ν − A′ν)


(38)

and

µ Û ′IIen =

ν

1
M ′ν


µ
[−i∇′ν − A′ν]2

2
+ µ

(�
∇′νS1 + O(µ 1

2 )� + A′ν
) (−i∇′ν − A′ν)


. (39)

In Eq. (30) it is clear that the ENCO appears with a prefactor µ,
i.e., µ Û ′en. However, due to the dependence on µ of the nuclear
wave function, we can distinguish two different contributions,√
µ Û ′Ien and µ Û ′IIen , leading to the electronic equation(

Ĥ ′BO− ϵ ′BO

)
Φ
′
R′ =

√
µ
�
i∂t′ − Û ′Ien

�
− µ

�
Û ′IIen − ϵ ′bBO

� 
Φ
′
R′.

(40)

The coupling to the nuclear motion, expressed at leading
order by Û ′Ien, induces an explicit time dependence in the
electronic equation, as described by the first term on the
right-hand-side of the above equation (the term O(√µ)). Note
that this resolves also the puzzle mentioned earlier in that it
shows that the ENCO enters already at order

√
µ. It is worth

stressing again that in Eqs. (38) and (39) the ratios
√
µ/M ′ν

and µ/M ′ν enter, respectively.40 As mentioned earlier, this is
important only if some of the nuclei in the molecule are much
lighter than others.

It is clear that the leading order correction to the adiabatic
limit is O(√µ) and only affects the dynamics of the electronic
system. The contribution to the energy5,15 of the term O(√µ)
is identically zero, since



Φ
′
R′(t ′)

�
i∂t′ − Û ′Ien

�
Φ
′
R′(t ′)

�
r′ = 0. (41)

The first term on the left-hand-side of Eq. (41) is zero due to
the choice of the gauge, the second is zero by construction.
The correction to the BO energy, namely, ϵbBO(R, t), only
appears at a higher order, i.e., O(µ).

In the adiabatic limit µ → 0, ϵ ′BO is determined as the
solution of an eigenvalue problem with Ĥ ′BO. This PES is
not a time-dependent quantity and appears in the nuclear
equation (35) as unique effect due to the electrons. In fact, as
we have shown in Eq. (33), the TDVP appears at O(µ).

VI. NUMERICAL ANALYSIS

We have performed numerical simulations with the aim
of analyzing the dependence of the nuclear wave function on

the mass ratio µ. In particular we focus here on the term that
in the ENCO depends explicitly on the nuclear wave function.
As clear from Eq. (37), this contribution,

−i∇′ν χ′

χ′
= µ−

1
2

∇′νS′0 + O(

√
µ) , (42)

is at least O(µ− 1
2 ), and it is the leading non-adiabatic, or

beyond BO, effect on electronic dynamics.
In Eq. (35) we have shown that S′0 satisfies a

Hamilton-Jacobi equation, where ∇′νS′0 appears as momentum
contribution. In previous work30,38 based on the ~-expansion
of the complex phase representation of the nuclear wave
function, in fact, we have shown that the lowest order term
can be interpreted as the classical action, whose gradient is
indeed the momentum evaluated along the classical trajectory.
In the present work, we have related the ~-expansion to the√
µ-expansion. It seems therefore natural to interpret also in

this context the leading contribution ∇′νS′0, in Eq. (42), as
the classical nuclear momentum expressed in the unit system
defined in Eq. (16). The dependence on the electron-nuclear
mass ratio is shown analytically to be µ−

1
2 . Several numerical

schemes have been proposed12,14,15,17,30,41–46 which consider
only non-adiabatic effects induced by the dependence of
electronic motion on the nuclear momentum. Higher order
terms38 are usually discarded. Highlighting the dependence
on the electron-nuclear mass ratio of all terms beyond BO in
the framework of the XF has led us to rationalize the impor-
tance of the nuclear momentum in inducing non-adiabatic
effects.

A. Simulation details

In order to numerically validate the discussion presented
in Sec. V, we have simulated the non-adiabatic dynamics
of a simple system representing a model for the process of
proton-coupled electron transfer.47 The system is composed
of three ions and one electron in one dimension, as shown in
Fig. 1: two ions are fixed at a distance L = 19.0a0, the moving
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FIG. 1. Schematic representation of the model proton-coupled electron
transfer.

ion interacts with the fixed ions via a Coulomb potential,
the moving electron interacts with all ions via soft-Coulomb
potentials. The Hamiltonian of the system reads

Ĥ(r,R) = − µ
2

∂2

∂R2 −
1
2
∂2

∂r2 +
1�

L
2 − R

� + 1�
L
2 + R

�

−
erf

( |R−r |
Rc

)
|R − r | −

erf
( |r− L

2 |
Rr

)
�
r − L

2

� −
erf

( |r+ L
2 |

Rl

)
�
r + L

2

� .

(43)

The parameters of the soft-Coulomb interaction, Rc (relative
to the moving ion), Rr (relative to the right ion) and Rl

(relative to the left ion), are chosen in order to induce non-
adiabatic coupling mainly between the two lowest electronic
states. The values of the parameters are Rr = Rl = 3.5 a0,
whereas, in order to investigate different situations of
coupling, Rc = 4.0,5.5,7.0 a0. We refer to the three situations
as “weak,” “intermediate” and “strong” coupling regimes,
respectively. We will prove numerically that the theoretical
development discussed in the present work applies to all
situations.

The BO PESs, along with the non-adiabatic coupling
vector (NACV) ⟨ϕ(0)

R |∂Rϕ(1)
R ⟩r between the ground ϕ

(0)
R (r)

and first excited ϕ
(1)
R (r) (real) adiabatic states, are shown

in Fig. 2 for the three coupling situations. Dynamics is
simulated by solving the full TDSE, using as initial condition
Ψ(r,R, t = 0) = Gσ(R − R0)ϕ(0)

R (r), where Gσ(R − R0) is a real
normalized Gaussian centered at R0 = 5.0 a0 with variance σ.
Different values of the nuclear mass have been chosen, such
that µ−1 = 500, 1000, 2000, 5000, 10 000.

The simulations are performed by fixing the energy of
the systems with different mass ratios such that all differences
in the dynamics can be solely attributed to the difference in
µ. With this idea in mind, we have constructed a set of initial
conditions with the same total energy for all values of µ. The
expression of the total energy of the electron-nuclear system
can be written as

E(t = 0) = ⟨Ψ(t = 0)| Ĥ |Ψ(t = 0)⟩r,R
=


dR Gσ(R − R0)


T̂n + ϵ

(0)
BO(R)


Gσ(R − R0).

(44)

The Gaussian wave packets are real, thus yielding an average
zero momentum. The contributions to the kinetic energy due
to the spread of the Gaussian, i.e., µ/(4σ2) expressed in the
unit system (16), for different µ are determined as follows:

FIG. 2. Adiabatic potential energy surfaces corresponding to the two lowest
electronic states (black lines), non-adiabatic coupling vectors (reduced 20
times) between the two lowest electronic states (cyan lines) for the strong
coupling (top), intermediate coupling (middle) and weak coupling (bottom)
situations; initial nuclear densities for all values of µ−1= 500 (green line,
reduced 20 times), 1000 (red line, reduced 20 times), 2000 (blue line, re-
duced 20 times), 5000 (orange line, reduced 20 times), 10 000 (magenta line,
reduced 40 times). The curves corresponding to the coupling vectors and to
the densities have been shifted along the y-axis to superimpose them to the
energy curves. The energy is measured in Hartree (Eh).

given σ0 = 0.15 a0 (this is an arbitrary choice, made simply
for numerical convenience) for µ−1

0 = 2000, all other values
of the variance are selected according to σ = σ0


µ/µ0. It

is then guaranteed that µ/(4σ2) is constant for all µ. The
initial nuclear densities are shown in Fig. 2 for all values
of the mass ratio and are all the same in the three cases
studied here. The part concerning the potential energy is
more complicated because quantum mechanically it depends
on the particular shape of the ground state potential and on
the spreading of the nuclear density. However, the more the
nuclear density localizes at R0, the more the potential energy
only depends on R0. Therefore, the total (conserved) energy
of the system results to be E ≈ −0.166 for the strong coupling
case, E ∈ (−0.196,−0.197) for the intermediate coupling case,
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TABLE I. Final populations of the electronic ground state for all values of
µ−1 and for the different non-adiabatic coupling strengths.

µ−1 Strong Intermediate Weak

500 0.02 0.13 1.0
1 000 0.03 0.18 1.0
2 000 0.04 0.24 1.0
5 000 0.07 0.35 1.0
10 000 0.10 0.45 1.0

and E ∈ (−0.246,−0.247) for the weak coupling case, for all
values of the mass ratio.

The split-operator-technique48 is used to solve the TDSE
for Ψ(r,R, t). The length of the simulation is chosen such that
the nuclear wave packet passes through the avoided crossing
at the origin only once, until the non-adiabatic process is
complete. The final values of the populations of the ground
state are reported in Table I for all coupling strengths and for
all values of µ−1. As µ−1 increases the non-adiabatic event
is less effective as the nuclear wave packet tends to move
adiabatically on the ground state potential rather than transfer
onto the excited state. In order to reach the same final position
in the same number of integration steps, the time steps have
been selected to satisfy the relation dt = dt0


µ0/µ, with

µ0 = 2000 and dt0 = 0.024 fs (0.1 a.u.), similarly to what has
been done for the variance of the initial nuclear densities. This
rule follows from the dependence of the time variable on the

FIG. 3. Nuclear densities in all coupling situations for µ−1= 500 (green
lines), 2000 (blue lines), and 10 000 (magenta lines) at the final time step.
The figure shows that the densities are indeed different for different values of
the mass ratio but they are all located in the same region. This follows from
the fact that the integration time steps have been scaled with the mass ratio as
discussed in the text.

mass ratio, as shown in Eq. (20). We obtain that as the nuclear
mass increases also the time step, and therefore the length
of the simulation, increases. Figure 3 shows for µ−1 = 500,
2000, 10 000 that indeed the nuclear densities reach the same
positions after the same number of integration time steps.

B. Dependence on the mass ratio

In the situations described above, we have computed
the average nuclear momentum for the different values of
the electron-nuclear mass ratio. The leading term that in
the expression of the ENCO induces non-adiabatic effects
on electronic dynamics, i.e., −i~∇ν χ/χ, can be interpreted
classically as the nuclear momentum. The order of this leading
term has been shown in Eq. (42) to be µ−

1
2 , when the unit

system defined in Sec. III is introduced. Therefore, we have
identified an observable, the average nuclear momentum, to
be used as an indicator of the validity of this observation. We
expect that the nuclear momentum is a linear function of µ−

1
2 .

FIG. 4. Average nuclear momentum as a function of the integration time
steps for the different coupling situations and for all values of the mass ratio.
The color code for different values of µ−1 is the same as in Fig. 2. The arrows
in the middle panel, labeled by t ′= 4, t ′= 8, and t ′= 12, indicate the time
steps that have been selected for the analysis shown in Fig. 5.
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FIG. 5. At the time steps selected in Fig. 4, namely, t ′= 4 (green dots),
t ′= 8 (red dots), and t ′= 12 (blue dots), the values of the average nuclear
momentum are plotted as function of µ−

1
2 . The dashed black lines are the

results of the linear fit.

First of all, let us show the average nuclear momentum
computed along the dynamics in the three non-adiabatic
situations and for all values of µ−1. The momentum is plotted
as a function of the integration time steps. We observe in
Fig. 4 that, according to the discussion presented in Sec. VI A,
the behavior of the nuclear momentum is the same for all
values of the mass ratio, but indeed the absolute values are
different. It is such difference that we will investigate further
because it can be uniquely ascribed to the difference in the
nuclear masses. To this end, we select three time steps, that
are indicated by the arrows in the middle panel of Fig. 4. At
those time steps, we plot the values of the momentum as a
function of µ−

1
2 in Fig. 5. The dependence on the inverse of

the square root of the mass ratio is clearly linear, as predicted
by the analysis discussed in this work.

VII. CONCLUSIONS

We have developed a procedure that shows how the BOA
is recovered from the XF in the limit of infinite nuclear mass,

µ → 0, the adiabatic limit. The adiabatic hypothesis is based
on the assumption that the coupled electron-nuclear motion
can be split by solving first the electronic problem at a fixed
nuclear geometry, and then the nuclear problem where the
potential is the eigenvalue of the electronic Hamiltonian for
that geometry.

The XF provides equations of motion for the electronic
and nuclear wave functions, thus we have been able to
analyze separately the dependence of the two equations on
µ and to show that indeed all terms inducing an explicit
coupling between electronic and nuclear motion disappear
in the adiabatic limit. Therefore, we have formally and in
general shown what has been already observed numerically26

in a particular case, namely, that the XF contains features of
the BOA in the infinite nuclear mass limit.

Non-adiabatic, or beyond BO, effects appear at different
orders in

√
µ. The leading terms only affect electronic

dynamics, but do not contribute to the potential that is
used in the nuclear equation. Such terms depend explicitly
on the nuclear wave function, and the dependence can
be approximated as the (classical) nuclear momentum.
Therefore, we have justified in a rigorous way that in
the limit of small, but finite, µ, non-adiabatic effects can
be treated perturbatively, an idea that has been already
employed to correct vibrational spectra5,15 and to compute
electronic current densities12 beyond the BOA. In these
cases, only the lowest order term, i.e., O(√µ), in the
electronic equation has been considered, exactly in the
form derived here, while the nuclear problem is treated
within the adiabatic approximation. The perturbed electronic
Hamiltonian induces in this way corrections to electronic
wave function that are purely imaginary. This property is
essential to obtain an electronic state sustaining a current12

and yielding a non-vanishing TDVP.15 In turn, the TDVP
has been expressed5 as an electronic mass contribution in
the nuclear Hamiltonian, up to within the lowest order in
the perturbation. Furthermore, we have observed that the
coefficients appearing in the expansion in powers of

√
µ

depend on the nuclear masses. As those nuclear masses, M ′ν,
are unit-less quantities, they can be used to estimate the
importance of the corresponding nuclei for such coefficients,
and thereby partition the beyond BO effects among different
nuclei. This observation deserves further investigation as it
may prove useful to quantify the role of light nuclei in
non-adiabatic corrections.

We have presented an analytical derivation of the adiabatic
limit and supported some of the observations with a numerical
analysis. In particular, we have tested the dependence on

√
µ

of the leading order correction in the electronic equation,
related to the nuclear momentum.

In conclusion we have established that the framework of
the exact factorization of the electron-nuclear wave function
reduces to the static Born-Oppenheimer approximation for
the electronic wave function in the limit of the vanishing
electron-nuclear mass ratio. Moreover, we have shown that
in the same limit the nuclear equation reduces to the
classical limit of the time-dependent Schödinger equation
with the Born-Oppenheimer potential energy surface entering
as potential for the classical nuclei. Going beyond the

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  192.108.69.30 On: Mon, 22 Aug

2016 10:25:11



054110-10 F. G. Eich and F. Agostini J. Chem. Phys. 145, 054110 (2016)

adiabatic limit in both equations the leading order corrections
enter with the square root of the electron-nuclear mass
ratio.
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