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Abstract. A procedure is put forward for the specification of a suitable phase diagram for a
uniaxial system with higher-order anisotropy which undergoes a spin-reorientation transition
via coherent rotation of magnetization in an applied field of arbitrary strength and direction.
The approach generalizes recent studies for a field applied in one of the principal directions.
The analysis is valid for bulk and thin-film systems and is relevant to all experimental
techniques that involve the implementation of an external field. The representation is
especially promising in the context of thickness-driven transitions in ultrathin systems. It is
generally valid, beyond the uniaxial restriction, for any remagnetization process which takes
place within a given plane.

1. Introduction

The motivation for this work is to understand the equilibrium
behaviour of a system with higher-order uniaxial anisotropy
in an external field ofarbitrary directionandstrength. This is
pursued by finding a suitable representation (phase diagram)
where the possible remagnetization processes and eventual
spin-reorientation transitions are more easily described and
comprehended. In particular, a parametric approach is
introduced for the delineation of the phase boundaries, which
lifts some of the complications arising from the assumption
of a general (non-symmetric) orientation of the applied field.
Usually, only the principal field configurations with the field
pointing either along the axis of symmetry or perpendicularly
to it are theoretically considered and practically exploited.

While the description is rather general and is valid for the
coherent (Stoner–Wohlfarth) mode of remagnetization [1] in
both bulk and small systems, our ultimate interest lies with
the implications of the analysis to ultrathin ferromagnetic
systems [2, 3]. There, considerable anisotropies are induced
due to the symmetry breaking at the interfaces, whereby the
anisotropy energy per spin may well be an order of magnitude
larger than in the respective bulk [4]. On the other hand, the
overall magnetic moment is driven into the single-domain
state even by rather weak external fields.

2. The analysis

2.1. General aspects

The basis for the analysis is provided by the appropriate
phenomenological anisotropy energy densitygA, which is
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the sum of the intrinsic uniaxial anisotropy densityfA and
the unidirectional Zeeman contribution [5]:

gA = fA −H ·M = fA −HM cos(θ − φ) (1)

with fA = a sin2 θ + b sin4 θ , where θ stands for the
angle between the magnetizationM and the axis of
symmetry, while φ is the angle between the external
field H and the same axis (figure 1). The anisotropy
constantsa andb may encompass contributions other than
the purely magnetocrystalline, for instance, contributions due
to magnetoelastic coupling [6]. In both bulk and thin-film
systems, there exists a dipolar (shape, self-energy) anisotropy
contribution to the lowest-order constanta. Orientational
transitions may be triggered [7] as the balance of the various
contributions to the free energy is sensitive to temperature-
driven [8–10] or thickness-driven changes [3]. For the
general analysis, however, it is not necessary to specify
the constitution of the anisotropy constants from the very
beginning.

Working at a given temperature(T ) and thickness(d)
and in a fixed external field of general orientation, one has
to determine the equilibrium orientation ofM by looking
for minima ofgA(θ) via solving the equation dgA/dθ = 0
with d2gA/dθ2 > 0 at the points where the extremum
condition is fulfilled [5]. The solutions of the minimization
problem are treated aspossible orientational phasesfor
the uniaxial system. The problem appears standard, but
leads very quickly to expressions which, for a general
orientation ofH, could only be manipulated numerically.
The important special cases of the field pointing in one of the
principal directions have recently been considered in detail
and on the same footing for both bulk and thin-film systems
[11]. The dissatisfaction with the forbidding aspect of the
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Figure 1. The relevant vectors and angular variables. Thez-axis
is the one of uniaxial symmetry.

solutions when higher-order anisotropies and arbitrary fields
are involved is part of the motivation to look for a more
insightful approach.

Most of the important work onbulk spin-reorientation
transitions with anisotropy as high as the third non-vanishing
constant was reviewed in [12] (see also [13]). It has been
the rule that only the two principal field configurations were
examined. Our analysis provides a parametric solution
for the phase boundaries in fields ofarbitrary orientation
and strengthwhich is valid for both bulk systems and thin
ferromagnetic films. In the thin-film context further progress
is achieved due to the characteristic thickness dependence of
the anisotropies. The advance is disclosed as a realization of a
general anisotropy-flow concept with especially simple and,
hence, easily implementable linear trajectories, which are
related to the relevant physical changes as described below.
In the following, all of the statements and results that do
not refer to, or make use of, the linearity of the trajectories
are valid for both bulk and thin systems. Those statements
which explicitly derive from the thickness dependence and/or
the linear anisotropy flows relate to thin films†.

2.2. The (α, β)-space

There are three characteristic energy densities in the problem,
namely, the coefficients in equation (1). We choose to
scale against the Zeeman amplitudeHM and remain with
a dimensionless representation [11]

ḡA ≡ gA/HM = α sin2 θ + β sin4 θ − cos(θ − φ) (2)

whereα = a/HM andβ = b/HM. We denote it as the
(α, β)-representation.

It is the union of two concepts, which is especially
promising for the study of reorientation transitions. The first
is the stability analysis of allowed phases. It suggests the
suitable phase space and serves, eventually, to analytically
determine its structure, i.e. the domain of existence and
stability of the different competing phases. In particular, this
is the reason for studying exhaustively the (α, β)-space here,
since it is especially useful for the investigation of thickness-
driven transitions. The second constituent is the anisotropy-
flow concept within whose framework one attempts to

† This does not preclude linear anisotropy flows in bulk systems driven by,
say, concentration variation or when the anisotropy flow is approximately
linear over a restricted temperature range.

Figure 2. Linear trajectories between initial (Aµ) and final (Bµ)
states for thickness-driven reorientations. In the(α, β) phase
diagram, this linearity is preserved for any orientation of the
applied field.

trace down the evolution of the system under variations of
the relevant physical parameters. Even if a microscopic
computational scheme‡ for the variation of the material
parameters is lacking, physical restrictions and experimental
conditions might help sort out a small number ofgeneric
scenarios [7] for the reorientation phenomenon. Thus,
stability analysis sets the stage where the system is expected
to evolve; in particular, crosspoints of trajectories with
phase boundaries are related to spin-reorientation transitions,
while the coexistence of possible phases signals hysteresis
phenomena.

Concentrating on thickness-driven spin-reorientation
transitions in ultrathin ferromagnetic films, what makes
the (α, β)-representation so special is the fact that the
corresponding trajectories in the (α, β)-diagram arelinear
under rather general conditions. To see this, one needs to
look into the internal structure of the anisotropy constants
that are characteristic of ultrathin ferromagnetic films. Quite
generally, the constants are comprised of two additive
contributions, a bulk-like contribution (b) and an interface
of surface (s) contribution, the latter being identified by its
dependence on the thickness of the sample:

a = K1b +K1sf (d) = a(d) (3)

b = K2b +K2sg(d) = b(d). (4)

The anisotropy constantsK1b, K1s , K2b, K2s are material
parameters which may, and normally do, depend on the
temperature, but not on the thickness. Additionally,
K1b encompasses the demagnetization (dipolar) anisotropy
energy which is1

2µ0M
2 in ultrathin geometry and favours

‡ The study by Millev and F̈ahnle [14] provides an example where a
microscopic computation of thetemperaturedependence of anisotropy
within a general class of statistical–mechanical theories is possible and can
be used to generate the temperature-driven anisotropy flows.
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in-plane orientation of magnetization;K1b also includes the
magnetoelastic contributions to the anisotropy energy [6].
Wheneverf (d) andg(d) are of the same functional form,
the thickness dependence can straightforwardly be eliminated
from (3) and (4) and one remains with a simplelinear
dependence betweena andb:

b = sa + p⇒ b = b(a) (5)

where the slopes and the interceptp depend on the
material parameters [7]. Equation (5) represents the linear
trajectories forthickness-drivenorientational transitions at
fixed temperature. Obviously, the normalization against the
Zeeman amplitude does not change the linearity and one gets
β = sα + p ⇒ β = β(α) with the sames andp as in
(5)†. Obviously, the requirement for linearity, that in (3)
f (d) is of the same functional form asg(d), is met by the
widely used semi-phenomenological 1/d-dependence of the
interface anisotropies of all orders in very thin films [15–17].
Since the major effort in this paper is related to defining
the phase boundaries for anarbitrary field, rather than
implementing the said linearity, here we only summarize the
important features of the linear anisotropy flows in the (α, β)-
space relevant for an anisotropy energy expansion with only
the first two terms kept (see also figure 2). First, the slopes of
any trajectory is independent of the field and equals the ratio
of the first twosurfaceanisotropy constantsK2s/K1s . Hence,
trajectories corresponding to different field magnitudes are
parallel to each other. Second, for a given system the intercept
of any trajectory with the ordinate is inversely proportional
to the field. ForH → ∞, the intercept goes to zero. Both
statements are true forany orientationφ of the field; this
extends previous findings on these aspects of the trajectories
[11]. ForH → 0, the intercept and the trajectory itself go
to infinity in accordance with the fact that, by the chosen
normalization, the zero-field case cannot be ‘observed’ in
this representation. Like the slope mentioned above, the sign
of the intercept is independent of the field. Hence, for a
given system, the sign of intercept and the slope of trajectory
are invariants of this representation and do not depend on
the field strength for any field orientation. In summary, the
isolines of constant thickness are represented by the family
of rays going into the origin with increasing field, while
the isolines of constant field are given by the family of
parallel segments{AµBµ} connecting initial and final states
of the system, as represented by the respective points in
the diagram (figure 2). These are the eventual thickness-
driven trajectories. In figure 2 we have chosen the principal
configuration of an external field applied perpendicularly
to the easy axis in order to illustrate the(α, β)-space and

† To make the terminology absolutely transparent, we refer to the case of
a classical motion of a system with two degrees of freedom, say,x andy.
The lawsof motion are found by eventually solving Newton’s equations of
motion and have the formx = x(t), y = y(t), while the trajectories in
the two-dimensional space are eventually obtained by the elimination of the
evolution parameter (time), so thaty = y(x) or x = x(y) is the equation
of the trajectory. The solution of the Keplerian problem is a good example
to think about (with the polar coordinatesρ andφ instead ofx and y).
Other enlightening analogies are provided by phase portraits of dynamical
systems where coordinate and conjugate momentum are directly related after
eliminating time; a vast group of examples is provided by renormalization-
group flows as driven by a scaling transformation in the parameter space of
the Hamiltonian of the problem.

the linear trajectories. What is specific here are the thick
phase boundaries, while for a given system (a given set
of material parameters) the trajectories are invariant. For
the perpendicular configuration shown,β = − 8

27α
3 (the

curvilinear boundary) andβ = 1
4−α/2 (the linear boundary).

The problem addressed in the paper is to determine the phase
boundaries foranyorientation of the applied field.

With this knowledge, we proceed to determine the
structureof the chosen phase space ((α, β)-representation)
by delineating the boundaries of stability of the possible
solutions foranyorientation of the applied field. We remind
the reader that the possible stable solutions are also referred
to as ‘phases’.

2.3. The field-aligned (conforming) solutions

As might be expected, these are the easiest to describe. Still,
when the field is of an arbitrary orientation, there are some
aspects which have not been sufficiently elucidated. We
impose the condition of a conforming magnetizationθ = φ.
The respective solutions have the same formal appearance
as those characteristic of the case without an applied field
[7], namely, (i) θ = φ = 0, the coaxial conforming
solution‡, which is stable forα > − 1

2; (ii) θ = φ = π/2,
the perpendicular conforming solution which is stable for
β 6 −α/2; (iii) θ = φ 6= 0, π/2, a generalized canted
solution which deserves a more careful description. If the so-
called anisotropy fields [18] are introduced asHA1 ≡ 2|a|/M
andHA2 ≡ |2a + 4b|/M, the conditions for the principal
configurations (i) and (ii) are often expressed as|H| > HA1

and|H| > HA2, respectively. In case (iii), the magnetization
must point alongH in a direction different from any of the
two principal orientations. For a fixedφ, the solution is
specified by

sin2 θ = sin2 φ = −α/2β = −a/2b (6)

with the additional restriction of−2 6 α/β 6 0, stemming
from the obvious condition 06 sin2 (x) 6 +1. It transpires
that, for a strictly field-aligned phase in a field of general
orientation to exist, it is necessary thatαβ < 0, i.e. the
intrinsic anisotropy constantsa andb must be of different
signs. Thus, in both the(a, b)- and (α, β)-representations
which have been introduced as especially informative for
the analysis of no-field [7] and in-field [11] reorientation
transitions in thin films and bulk systems, the generalized
conforming solution is tolerated within (portions of) the
second or fourth quadrants. The precise delineation of its
existence and stability is given by the conditions:

β > 0, α < 0 : β > −α/2 (7)

‡ The terminology we use is simply related to the important features of
the corresponding solutions (cf figure 1). Thus, ‘coaxial’ means that
the direction ofM coincides with that of the crystallographic axisn of
rotational (uniaxial) symmetry (θ = 0), ‘perpendicular’ refers toM being
perpendicular ton (θ = π/2), while ‘conforming’ and ‘non-conforming’
refer to the mutual orientation of the pair of vectorsM andH. M conforms
with H whenφ = θ and is non-conforming otherwise. Finally, the term
‘canted’ is used for a situation whenM is canted with respect ton, i.e. the
angleθ is neither zero or ninety degrees. Since a canted solution in a system
with two anisotropy constants exists even without an external field, we use
the term ‘generalized canted solution’ for a canted solution in an applied
field.
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Figure 3. Regions in the(α, β)-diagram where a field-aligned
(conforming) solution is possible are given shaded. The thick
boundaries are defined in (7)–(9).

β < 0, 0< α < 1/4 : β < −α/2 (8)

β < 0, α > 1/4 : −α/2> β > 2α2/(1− 4α). (9)

In figure 3, the shaded regions correspond to the existence and
stability of a generalized conforming phase (i.e. saturation
in a field pointing in a non-principal direction). It follows
immediately that there are large portions of the phase diagram
where no saturation is possible, i.e. the normalized field-
resolved magnetization can never be equal to unity. Ideally,
even a very strong field, which corresponds to the vicinity
of the origin in this representation, will not be able to
force the magnetization vector into alignment if the material
parameters are such that the system belongs to either of
the larger unshaded symmetric wedges coming together at
the origin (figure 3)†. It is the physical counteraction of
torques caused by the external magnetic field and the effective
anisotropy fields which underlies the outcome of the analysis.
One should view figure 3 as the pictorial expression of this
competition. While the lack of saturation and the related
approach to saturation belong to the established operational
notions of magnetism [19], a diagram such as that given in
figure 3 appears new and has the advantage of shedding light
on the problem of saturation in the present context. Note, that
for a field of prescribed orientation the conforming solution
is possible on that portion of the unique lineβ = −α/2 sin2 φ

which falls within the shaded region in figure 3. Thus,
full saturation along the field direction is only realized if
the varying parameter (thickness, temperature, etc) drives
the system across this line by modifying the anisotropies in
the system. Note, that this diagram is very general and is
not restricted to thickness-driven transitions. In the latter
case, the trajectories under variation would be lines which
facilitates the analysis.

† Note that in an experimental setting it might be difficult to distinguish a
complete saturation from a ‘near-saturation’; the latter will appear to take
place even in the ‘forbidden’ (unshaded) regions of figure 3 when the field
is strong enough.

Furthermore, the shaded region in the second quadrant of
figure 3 corresponds precisely to the region in the anisotropy
space(a, b) of the system, where a ‘true’ canted phase
is possible even in the absence of an applied field. Its
centrosymmetric wedge in the fourth quadrant (the one
obtained by changing the signs of both anisotropy constants
simultaneously) corresponds to the case of coexistence of
the perpendicular and coaxial phases in zero field. In view
of the competition between these two zero-field phases, one
needs fields of sufficient magnitude to be able to saturate the
system. In terms of the diagram in figure 3, this means that the
system has to be forced into the shaded portion by increasing
the field (remember that stronger fields here correspond to
locations closer to the origin). Thus, the asymmetry of the
zero-field anisotropy space reappears in the (α, β) with-field
representation in a remarkable way.

The diagram of figure 3 also gives a clue to the
understanding of the complicated asteroids inH-space,
which come about in the presence of higher-order
anisotropies [20]; in particular, it has been noted [20] that
the asteroids which differ by the interchange of signs of
the two constants have an identical appearance, while the
reversal processes are, of course, different [21–24]. With the
help of the diagram in figure 3, one can identify the relevant
branches for each set of signs ofα andβ, thereby removing
an undesired and unphysical ambiguity already at the general
level of the analysis.

2.4. The phase boundaries for the non-conforming
solutions

These are determined as the critical lines where some of the
physically allowed solutions grow unstable. Hence, keeping
the orientationφ as a parameter, the defining equations for
these lines are

dḡA/dθ = d2ḡA/dθ
2 = 0. (10)

We arrange the two equations as a simple linear system for
the determination ofα = a/HM andβ = b/HM which is
then solved. Explicitly, and this is our parametric solution,

αc(θ;φ) = sin2 θ

sin3 2θ
[sin 2θ cos(θ − φ)

+2(4 sin2 θ − 3) sin(θ − φ)] (11)

βc(θ;φ) = 1

2 sin3 2θ
[cos 2θ sin(θ − φ)− sin(θ + φ)].

(12)

In this solution, the critical curveβc(αc) is obtained
by fixing the orientationφ of the external field and letting
the sweeping parameterθ vary within the range(−π,+π).
Thus, one has at once a versatile tool for extracting the most
important features of the behaviour of a uniaxial system in
an external field of arbitrary orientation.

The solution just given encompasses as particular cases
the two principal field orientations. For the coaxial field
configuration, setφ = 0 in (7)–(8), eliminateθ to get

α = α(β) = −2β + 3
2β

1/3. (13)
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Figure 4. Phase boundaries for a field making an angleφ = π/4
with the crystallographic axis. The shaded region is where two
non-conforming minima exist. The line is the particularφ = π/4
case of the equation for the canted conforming solution,
β = −α/2 sin2 φ. Only the portion of the line above the point C
corresponds to a canted conforming minimum (M is aligned with
H, while both are askew to the crystallographic axis). The point C
is a tricritical point. There, the canted conforming solution ceases
to be a minimum. The precise location of C is specified for any
givenφ by reading its coordinates off from the corresponding
parametric solution for that value ofφ.

For the perpendicular configuration, setφ = π/2 and
eliminateθ to get

α = α(β) = − 3
2β

1/3 (β(α) = − 8
27α

3). (14)

These were the explicit critical lines found in [11]. One
recognizes the availability of a substantially more general
solution for the critical boundary.

In figure 4, the critical boundary for the particular
caseφ = π/4 is given. There is only one minimum of
the free energy along any path outside the wedge ACB.
The portion within the curvilinear wedge tipping at C is
that part of the(α, β)-space where two non-conforming
minima 0< θ < π/2 coexist (magnetization non-aligned
with field). This can be seen from continuity arguments
based on the respective(α, β)-diagrams for the principal
field configurations [11], or by looking directly at the free
energy landscape along a representative cut across the wedge
of coexistence. This is done in figure 5, where we took
the cut S1S2S3 as defined in figure 4 forφ = π/4 with
S1(0.5,−1.5), S2(1.5,−1.5), and S3(3,−1.5). Outside
the domain of coexistence ACB, one finds a unique
minimum corresponding to a unique non-conforming phase
(θ 6= 0;π/2). Within, there are two minima corresponding
to orientations of magnetization that are canted with respect

Figure 5. The anisotropy energy profiles for an external field at an
angleφ = 45◦ with the crystallographic axis. The curves
correspond, from the top, to the pointsS1, S2, andS3 in figure 4.
Within the region of coexistence (shaded region in figure 4), there
are two competing stable states.

to the principal directions and are separated by a certain
barrier. The height of the barrier, which might be of
interest for the study of relaxation phenomena, can be easily
determined from such plots with the relevant values for the
pair (α, β). The middle curve is taken precisely at the pointS2

where both competitors are equally stable (their minima are
equally deep). The maximum separating them is precisely at
θ = φ = 45◦. Note that on moving along theS2C in figure 4
towards C this maximum gets lower and the two minima get
closer until at C they merge together; beyond that point, the
ray CO is a locus of stable generalized conforming states for
this orientation of the applied field (φ = 45◦). The point C
in this phase diagram is a tricritical point [5]. Geometrically,
C lies on the unique common tangent to the two curvilinear
boundaries which is precisely the lineβ = −α/2 sin2 φ. Its
origin can be traced back to the respective tricritical points
described in detail for the two principal field configurations
[11]. Precisely at the tricritical point C whose coordinates
for φ = π/4 are given byα = −β = 1

2, the free energy
minimum is very flat, as can be easily checked by plotting the
energy landscape. With the help of the parametric approach
as outlined above, one can easily see that small deviations
of the field orientation out of the principal directions causes
small continuous deformations of the region of coexistence.
The same is true for the shift of the tricritical point. Since
our solution allows one to work withanyφ ∈ [0, π ], one can
also actually describe the trajectory of this very special point
as driven by the change of orientation of the applied field†.

† Forφ = 0, the tricritical point is at(α = −1/2, β = −1/8), while for
φ = π/2 it is at (α = 3/4, β = −1/8). For an arbitrary field orientation
(arbitraryφ), the coordinates can be read off from the parametric plot with
the corresponding value ofφ.
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The full analysis requires that the regions and conditions
of stability of both conforming and non-conforming solutions
be examined together. Hence, a ‘superposition’ of figures 3
and 4 must be considered. There arise no interpretational
difficulties in the process. Fixingφ = π/4 as for figure 4,
one singles out the lineβ = kα with k = −1/2 sin2 φ = −1.
It hits the tricritical point. Only on the ray CO can there
exist a full alignment. On the other hand, a thickness-
driven process is described by a linear trajectory in the
(α, β)-space, as explained above (see figure 2). Hence, the
generalized conforming phase (complete alignment) has to
be considered at a unique point in the diagram, if at all, and
this is the eventual crossing point of the linear trajectory with
the ray CO (β = −α). From our diagrams of stability, it is
obvious that such a situation can only arise, if at all, in the
second or fourth quadrants. Keepingφ fixed and working
in successively weaker|H|, one may deduce information
about the relevant quadrant, since the eventual full-alignment
crosspoint will necessarily disappear forH → 0 in the fourth
quadrant, but will definitely persist the whole way down to
H = 0 in the second quadrant (wherebyα and β go to
infinity by definition) as the explicit equations we derived for
the boundaries in figure 2 indicate. From an experimental
point of view, however, it is much more promising to use
the information given in this paper to study the response
to a small perturbing field in susceptibility, ferromagnetic-
resonance, or Brillouin-light-scattering experiments. Such
methods should allow one to sense the peculiarities and
singularities related to crosspoints between trajectories and
phase boundaries by choosing properly the external (bias)
field and exploiting specific information about the material
parameters of the given system which is explored.

3. Summary

Using an appropriate parametric approach combined with
a suitable two-dimensional representation, we describe the
region of coexistence of competing minima for a uniaxial
system in a field of arbitrary orientation and magnitude.
Because of the linearity of the thickness-driven evolution in
the chosen representation, simple topological considerations
are possible, which provide the necessary qualitative and
quantitative insights in a rather straightforward way. One
of the important reasons to investigate the uniaxial case in
sufficient detail is that the method applies to any process in an
external field, regardless of whether the anisotropy symmetry
is uniaxial or not, given that the magnetization remains
within the same plane all along. In particular, reorientations
within the plane of an ultrathin film in an external field
can be described successfully [25, 26]. The case of the
so-calledfourfold in-plane anisotropy is also a particular
case of our study withα/β = a/b = −1. The effects
of the additional characteristic step-induced uniaxial surface

anisotropies [27, 28], whether large or small in comparison
with the fourfold one, are readily illuminated for any direction
of the in-plane field. The phase diagrams which can now be
constructed for a field of arbitrary orientation provide a basis
for systematic studies of the response of ultrathin systems
with orientational transitions to small perturbing fields.

References

[1] Stoner E C and Wohlfarth E P 1948Phil. Trans. R. Soc.A
240599

[2] Heinrich B and Cochran J F 1993Adv. Phys.42523
[3] Bland J A C andHeinrich B (eds) 1994Ultrathin Magnetic

Structures I(Berlin: Springer)
[4] Farle M 1998Rep. Prog. Phys.61755
[5] Landau L D and Lifshitz E M 1960Electrodynamics of

Continuous Media(Oxford: Pergamon) ch 5
[6] du Tremolet de Lacheisserie E 1993Magnetostriction:

Theory and Applications of Magnetoelasticity
(Boca Raton, FL: CRC Press)

[7] Millev Y and Kirschner J 1996Phys. Rev.B 544137
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