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Abstract. A procedure is put forward for the specification of a suitable phase diagram for a
uniaxial system with higher-order anisotropy which undergoes a spin-reorientation transition
via coherent rotation of magnetization in an applied field of arbitrary strength and direction.
The approach generalizes recent studies for a field applied in one of the principal directions.
The analysis is valid for bulk and thin-film systems and is relevant to all experimental
technigues that involve the implementation of an external field. The representation is
especially promising in the context of thickness-driven transitions in ultrathin systems. Itis
generally valid, beyond the uniaxial restriction, for any remagnetization process which takes
place within a given plane.

1. Introduction the sum of the intrinsic uniaxial anisotropy densjty and
the unidirectional Zeeman contribution [5]:
The motivation for this work is to understand the equilibrium

behaviour of a system with higher-order uniaxial anisotropy ga=fa—H -M= f, — HM cos0 — ¢) 1)
in an external field o&rbitrary directionandstrength Thisis
pursued by finding a suitable representation (phase diagramith fx = asio + bsin'o, where¢ stands for the

where the possible remagnetization processes and eventugéingle between the magnetizatiod and the axis of
spin-reorientation transitions are more easily described andsymmetry, while ¢ is the angle between the external
comprehended. In particular, a parametric approach isfield H and the same axis (figure 1). The anisotropy
introduced for the delineation of the phase boundaries, which constants: andb may encompass contributions other than
lifts some of the complications arising from the assumption the purely magnetocrystalline, for instance, contributions due
of a general (non-symmetric) orientation of the applied field. to magnetoelastic coupling [6]. In both bulk and thin-film
Usually, only the principal field configurations with the field ~systems, there exists a dipolar (shape, self-energy) anisotropy
pointing either along the axis of symmetry or perpendicularly contribution to the lowest-order constant Orientational
to it are theoretically considered and practically exploited. transitions may be triggered [7] as the balance of the various
While the description is rather general and is valid for the contributions to the free energy is sensitive to temperature-
coherent (Stoner—Wohlfarth) mode of remagnetization [1] in driven [8-10] or thickness-driven changes [3]. For the
both bulk and small systems, our ultimate interest lies with general analysis, however, it is not necessary to specify
the implications of the analysis to ultrathin ferromagnetic the constitution of the anisotropy constants from the very
systems [2, 3]. There, considerable anisotropies are inducedbeginning.
due to the symmetry breaking at the interfaces, whereby the Working at a given temperatur@’) and thicknessd)
anisotropy energy per spin may well be an order of magnitude and in a fixed external field of general orientation, one has
larger than in the respective bulk [4]. On the other hand, the to determine the equilibrium orientation &ff by looking
overall magnetic moment is driven into the single-domain for minima of g4(9) via solving the equationg,/d6 = 0

state even by rather weak external fields. with d?g4/dP? > O at the points where the extremum
condition is fulfilled [5]. The solutions of the minimization
2. The analysis problem are treated agossible orientational phasefr
the uniaxial system. The problem appears standard, but
2.1. General aspects leads very quickly to expressions which, for a general

. L . _orientation of H, could only be manipulated numerically.
The basis for the analysis is provided by the appropriate The important special cases of the field pointing in one of the

phenomenological anisotropy energy dengity which is principal directions have recently been considered in detail

+ On leave from the CPCS Laboratory, Institute of Solid State Physics, @nd on the same footing for both bulk and thin-film systems
Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria. [11]. The dissatisfaction with the forbidding aspect of the
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Figure 1. The relevant vectors and angular variables. F4ais
is the one of uniaxial symmetry. -1
conforming
solutions when higher-order anisotropies and arbitrary fields 2F

are involved is part of the motivation to look for a more
insightful approach.

Most of the important work otbulk spin-reorientation 3+
transitions with anisotropy as high as the third non-vanishing
constant was reviewed in [12] (see also [13]). It has been e o U trajectories between inifial dfinal
the rule that only the two principal field configurations were stlgtjerz for tr']inciiresrzj_zﬁ\?éffe o?i enetztr;olﬂlsl. In(‘(tziaz,r;) p'ﬂ:s(g“)

examined. Our analysis provides a parametric solution giagram, this linearity is preserved for any orientation of the
for the phase boundaries in fields afbitrary orientation applied field.

and strengthwhich is valid for both bulk systems and thin

ferromagnetic films. In the thin-film context further progress  ta3ce down the evolution of the system under variations of
is achieved due to the characteristic thickness dependence of,e relevant physical parameters. Even if a microscopic
the anisotropies. The advance is disclosed as arealization Of%omputational schemet for the variation of the material

general anisotropy-flow concept with especially simple and, yarameters is lacking, physical restrictions and experimental
hence, easily implementable linear trajectories, which are .gngitions might help sort out a small number ggineric
related to the relevant physical changes as described belowgsanarios [7] for the reorientation phenomenon. Thus
In the following, all of the statements and results that do g¢apility analysis sets the stage where the system is expected
not refer to, or make use of, the linearity of the trajectories , eyolve; in particular, crosspoints of trajectories with
are valid for both bulk and thin systems. Those statements y,35e houndaries are related to spin-reorientation transitions,

which explicitly derive from the thickness dependence and/or \yhile the coexistence of possible phases signals hysteresis
thelinear anisotropy flows relate to thin filmst. phenomena.

Concentrating on thickness-driven spin-reorientation
2.2. The @, 3)-space transitions in ultrathin ferromagnetic films, what makes

There are three characteristic energy densities in the problem,the (. p)-representation so special is the fact that the

namely, the coefficients in equation (1). We choose to corresponding trajectories in the,(8)-diagram ardinear

scle against e Zeeman ampituler an remain i "0 ST Eners) condons, Yo see i one neecs (o
a dimensionless representation [11] Py

that are characteristic of ultrathin ferromagnetic films. Quite
Ga=gu/HM = asin?0 +Bsin*0 —cos —¢) (2) generally, the constants are comprised of two additive
contributions, a bulk-like contributiorb] and an interface
wherea = a/HM andp = b/HM. We denote it as the  of surface ) contribution, the latter being identified by its

(o, B)-representation. dependence on the thickness of the sample:
It is the union of two concepts, which is especially
promising for the study of reorientation transitions. The first a = Ky, + Ky, f(d) = a(d) (3)

is the stability analysis of allowed phases. It suggests the
suitable phase space and serves, eventually, to analytically b= Kz + Ka:g(d) = b(d). “)
determine its structure, i.e. the domain of existence and The anisotropy constant&y,, Ki,, K»,, Ko, are material
stability of the different competing phases. In particular, this parameters which may, and normally do, depend on the
is the reason for studying exhaustively tbe §)-space here,  temperature, but not on the thickness.  Additionally,
since itis especially useful for the investigation of thickness- K, encompasses the demagnetization (dipolar) anisotropy
driven transitions. The second constituent is the anisotropy-energy which is%qu2 in ultrathin geometry and favours

flow concept within whose framework one attempts to

¥ The study by Millev and &hnle [14] provides an example where a
1 This does not preclude linear anisotropy flows in bulk systems driven by, microscopic computation of theemperaturedependence of anisotropy
say, concentration variation or when the anisotropy flow is approximately within a general class of statistical-mechanical theories is possible and can
linear over a restricted temperature range. be used to generate the temperature-driven anisotropy flows.
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in-plane orientation of magnetizatiok;y, also includes the  the linear trajectories. What is specific here are the thick
magnetoelastic contributions to the anisotropy energy [6]. phase boundaries, while for a given system (a given set
Wheneverf(d) andg(d) are of the same functional form, of material parameters) the trajectories are invariant. For

the thickness dependence can straightforwardly be eliminatedthe perpendicular configuration showg, = —2%0:3 (the
from (3) and (4) and one remains with a simpieear curvilinear boundary) and =  —a/2 (the linear boundary).
dependence betweerandb: The problem addressed in the paper is to determine the phase

boundaries fomny orientation of the applied field.

With this knowledge, we proceed to determine the
structureof the chosen phase space,(8)-representation)
by delineating the boundaries of stability of the possible
solutions foranyorientation of the applied field. We remind
the reader that the possible stable solutions are also referred
do as ‘phases’.

b=sa+p=b=>b(a) 5)

where the slopes and the interceptp depend on the
material parameters [7]. Equation (5) represents the linear
trajectories forthickness-driverorientational transitions at
fixed temperature. Obviously, the normalization against the
Zeeman amplitude does not change the linearity and one get
B =sa+p = B = B(x) with the sames and p as in
(5)t. Obviously, the requirement for linearity, that in (3) 2.3. The field-aligned (conforming) solutions
f(d) is of the same functional form agd), is met by the
widely used semi-phenomenologicakitdependence of the
interface anisotropies of all orders in very thin films [15-17].
Since the major effort in this paper is related to defining
the phase boundaries for arbitrary field, rather than
implementing the said linearity, here we only summarize the
important features of the linear anisotropy flows in tef)-
space relevant for an anisotropy energy expansion with only
the first two terms kept (see also figure 2). First, the slagfe
any trajectory is independent of the field and equals the ratio

?rggitfgrs.g”g;;’rrézcarg.sftrfopﬁ%%2Zﬁn§7:j/ ﬁ las ’ :frg;es’ are solution which deserves a more careful description. If the so-
J ! ponding ! nt i gnitu called anisotropy fields [18] are introducedras = 2|a|/M
parallelto each other. Second, for a given systemtheintercept

of any trajectory with the ordinate is inversely proportional and Haz = |2a + 4bl/M, the conditions for the principal
. . configurations (i) and (ii) are often expressed H§ > H
to the field. ForH — oo, the intercept goes to zero. Both 9 () and (i) b dBS > Hy

. X . . and|H| > H,o, respectively. In case (iii), the magnetization
statements are true famy orientationg of the field; this [H| > Ha P Y (i) 9

extends previous findings on these aspects of the trajectorie must point along in a direction different from any of the

. . . fwo principal orientations. For a fixed, the solution is
[11]. For H — 0, the intercept and the trajectory itself go specified by
to infinity in accordance with the fact that, by the chosen
normalization, the zero-field case cannot be ‘observed’ in Sif0 = sif ¢ = —a/28 = —a/2b (6)
this representation. Like the slope mentioned above, the sign
of the intercept is independent of the field. Hence, for a with the additional restriction of£2 < a/B8 < 0, stemming
given system, the sign of intercept and the slope of trajectory from the obvious condition & sir? (x) < +1. It transpires
are invariants of this representation and do not depend onthat, for a strictly field-aligned phase in a field of general
the field strength for any field orientation. In summary, the orientation to exist, it is necessary thg8 < O, i.e. the
isolines of constant thickness are represented by the familyintrinsic anisotropy constants andb must be of different
of rays going into the origin with increasing field, while signs. Thus, in both thé:, )- and («, 8)-representations
the isolines of constant field are given by the family of which have been introduced as especially informative for
parallel segmentgA,, B,,} connecting initial and final states  the analysis of no-field [7] and in-field [11] reorientation
of the system, as represented by the respective points intransitions in thin films and bulk systems, the generalized
the diagram (figure 2). These are the eventual thickness-conforming solution is tolerated within (portions of) the
driven trajectories. In figure 2 we have chosen the principal second or fourth quadrants. The precise delineation of its
configuration of an external field applied perpendicularly existence and stability is given by the conditions:
to the easy axis in order to illustrate tlie, g)-space and

As might be expected, these are the easiest to describe. Still,
when the field is of an arbitrary orientation, there are some
aspects which have not been sufficiently elucidated. We
impose the condition of a conforming magnetizatios: ¢.

The respective solutions have the same formal appearance
as those characteristic of the case without an applied field
[7], namely, ()6 = ¢ = 0, the coaxial conforming
solutiont, which is stable fax > —%; (i) 6 =¢ =m/2,

the perpendicular conforming solution which is stable for
B < —a/2; (i) 8 = ¢ # 0, /2, a generalized canted

B>0a<0: B>-«a/2 @)
T To make the terminology absolutely transparent, we refer to the case of
a classical motion of a system with two degrees of freedom,xsapd y. T The terminology we use is simply related to the important features of
Thelawsof motion are found by eventually solving Newton’s equations of the corresponding solutions (cf figure 1). Thus, ‘coaxial’ means that
motion and have the form = x(z), y = y(¢), while the trajectories in the direction of M coincides with that of the crystallographic axisof
the two-dimensional space are eventually obtained by the elimination of the rotational (uniaxial) symmetryd(= 0), ‘perpendicular’ refers td1 being
evolution parameter (time), so that= y(x) or x = x(y) is the equation perpendicular tm (¢ = 7/2), while ‘conforming’ and ‘non-conforming’
of the trajectory. The solution of the Keplerian problem is a good example refer to the mutual orientation of the pair of vectd'sandH. M conforms
to think about (with the polar coordinatgsand ¢ instead ofx and y). with H when¢ = 6 and is non-conforming otherwise. Finally, the term

Other enlightening analogies are provided by phase portraits of dynamical ‘canted’ is used for a situation whe¥{ is canted with respect to, i.e. the
systems where coordinate and conjugate momentum are directly related afterangled is neither zero or ninety degrees. Since a canted solution in a system
eliminating time; a vast group of examples is provided by renormalization- with two anisotropy constants exists even without an external field, we use
group flows as driven by a scaling transformation in the parameter space ofthe term ‘generalized canted solution’ for a canted solution in an applied
the Hamiltonian of the problem. field.
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Furthermore, the shaded region in the second quadrant of
figure 3 corresponds precisely to the region in the anisotropy
space(a, b) of the system, where a ‘true’ canted phase
is possible even in the absence of an applied field. Its
centrosymmetric wedge in the fourth quadrant (the one
obtained by changing the signs of both anisotropy constants
simultaneously) corresponds to the case of coexistence of
the perpendicular and coaxial phases in zero field. In view
of the competition between these two zero-field phases, one
needs fields of sufficient magnitude to be able to saturate the
system. Interms ofthe diagramin figure 3, this meansthatthe
system has to be forced into the shaded portion by increasing
the field (remember that stronger fields here correspond to
locations closer to the origin). Thus, the asymmetry of the
zero-field anisotropy space reappears in thed) with-field
representation in a remarkable way.

The diagram of figure 3 also gives a clue to the
o understanding of the complicated asteroids HEhspace,
which come about in the presence of higher-order
anisotropies [20]; in particular, it has been noted [20] that

Figure 3. Regions in thew, B)-diagram where a field-aligned
(conforming) solution is possible are given shaded. The thick

boundaries are defined in (7)—(9). the asteroids which differ by the interchange of signs of
the two constants have an identical appearance, while the
B<00<a<1l/d: B<—ay2 @8) reversal processes are, of course, different [21-24]. With the

help of the diagram in figure 3, one can identify the relevant
B<0,a>1/4: —a/2>pB>2a°/1—4a). (9) branches for each set of signscofind 8, thereby removing

) . ) an undesired and unphysical ambiguity already at the general
Infigure 3, the shaded regions correspond to the existence angl, o/ of the analysis.

stability of a generalized conforming phase (i.e. saturation

in a field pointing in a non-principal direction). It follows

immediately that there are large portions of the phase diagram2-4- The phase boundaries for the non-conforming
where no saturation is possible, i.e. the normalized field- Solutions

resolved magnetization can never be equal to unity. Ideally,
even a very strong field, which corresponds to the vicinity
of the origin in _th's_ represen_tatlon,_ will not_ be able tp the orientationp as a parameter, the defining equations for
force the magnetization vector into alignment if the material these lines are

parameters are such that the system belongs to either of

the larger unshaded symmetric wedges coming together at dga/do = d?g,/d6? = 0. (10)
the origin (figure 3)t. It is the physical counteraction of

torques caused by the external magnetic field and the effectivewe arrange the two equations as a simple linear system for
anisotropy fields which underlies the outcome of the analysis. the determination of = a/HM andg = b/H M which is

One should view figure 3 as the pictorial expression of this then solved. Explicitly, and this is our parametric solution,
competition. While the lack of saturation and the related

approach to saturation belong to the established operationahc(e; b) = sin’ 0 [sin 29 cos(d — ¢)

notions of magnetism [19], a diagram such as that given in sin® 26

figure 3 appears new and has the advantage of shedding light ~ +2(4 sirf 6 — 3) sin(6 — ¢)] (11)
on the problem of saturation in the present context. Note, that ) )

for a field of prescribed orientation the conforming solution 8¢5 ¢) = m[cos B sin® — ¢) — sin@® +¢)].

These are determined as the critical lines where some of the
physically allowed solutions grow unstable. Hence, keeping

is possible on that portion of the unique life= —a«/2 sirf ¢ (12)
which falls within the shaded region in figure 3. Thus,
full saturation along the field direction is only realized if In this solution, the critical curves.(«.) is obtained

the varying parameter (thickness, temperature, etc) drivesby fixing the orientationp of the external field and letting

the system across this line by modifying the anisotropies in the sweeping parametérvary within the rang&—, +7).

the system. Note, that this diagram is very general and is Thus, one has at once a versatile tool for extracting the most

not restricted to thickness-driven transitions. In the latter important features of the behaviour of a uniaxial system in

case, the trajectories under variation would be lines which an external field of arbitrary orientation.

facilitates the analysis. The solution just given encompasses as particular cases
the two principal field orientations. For the coaxial field

T Note that in an experimental setting it might be difficult to distinguish a : : A _ .
complete saturation from a ‘near-saturation’; the latter will appear to take configuration, sep = 0in (7)~(8), eliminate to get

place even in the ‘forbidden’ (unshaded) regions of figure 3 when the field 3 ,1/3
is strong enough. a=a(f)=-28+3p 73 (13)
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Figure 5. The anisotropy energy profiles for an external field at an
angle¢ = 45° with the crystallographic axis. The curves

Figure 4. Phase boundaries for a field making an angle = /4 correspond, from the top, to the poirfts S, andsS; in figure 4.
with the crystallographic axis. The shaded region is where two Within the region of coexistence (shaded region in figure 4), there
non-conforming minima exist. The line is the particutas= 7 /4 are two competing stable states.

case of the equation for the canted conforming solution,
p = —a/2sirf ¢. Only the portion of the line above the point C to the principal directions and are separated by a certain

corresponds to a canted conforming minimuM {s aligned with . . ) ) .
H, while both are askew to the crystallographic axis). The point C Pa”'ef- The height of the parrler, which might be Of.
is a tricritical point. There, the canted conforming solution ceases interest for the study of relaxation phenomena, can be easily

to be a minimum. The precise location of C is specified for any determined from such plots with the relevant values for the
given by reading its coordinates off from the corresponding pair @, 8). The middle curve is taken precisely at the psint
parametric solution for that value g where both competitors are equally stable (their minima are

equally deep). The maximum separating them is precisely at
For the perpendicular configuration, setp = =/2 and # = ¢ = 45°. Note that on moving along th&C in figure 4

eliminated to get towards C this maximum gets lower and the two minima get
31/ s 3 closer until at C they merge together; beyond that point, the
a=a(f)=-38 (Bla) = —55a”). (14) ray CO is a locus of stable generalized conforming states for

L ) ) this orientation of the applied field(= 45°). The point C

These were the explicit critical lines found in [11]. One , his phase diagram is a tricritical point [5]. Geometrically,
recognizes the availability of a substantially more general ¢ jies on the unique common tangent to the two curvilinear
solution for the critical boundary. _ boundaries which is precisely the life= —a/2 sir? ¢. Its

In figure 4, the critical boundary for the particular  origin can be traced back to the respective tricritical points
case¢ = n/4 is given. There is only one minimum of  described in detail for the two principal field configurations
the free energy along any path outside the wedge ACB. [11], Precisely at the tricritical point C whose coordinates
The portion within the curvilinear wedge tipping at C is  for ¢ = 7/4 are given by = —8 = 1, the free energy
that part of the(a, #)-space where two non-conforming  minimum s very flat, as can be easily checked by plotting the
minima 0< 6 < /2 coexist (magnetization non-aligned energy landscape. With the help of the parametric approach
with field). This can be seen from continuity arguments a5 outlined above, one can easily see that small deviations
based on the respective, 8)-diagrams for the principal  of the field orientation out of the principal directions causes
field configurations [11], or by looking directly at the free  small continuous deformations of the region of coexistence.
energy landscape along a representative cut across the wedgehe same is true for the shift of the tricritical point. Since
of coexistence. This is done in figure 5, where we took our solution allows one to work withny¢ € [0, 7], one can
the cut $15,53 as defined in figure 4 fop = 7/4 with also actually describe the trajectory of this very special point
81(0.5,—15), 52(1.5 —15), and S3(3, —1.5). Outside  as driven by the change of orientation of the applied fieldt.
the domain of coexistence ACB, one finds a unique o o )
i cotosponding . uicue nom conoming phase | %, . et et Y2 £ 413, uetr
(0 # 0; 7/2). Within, there are two minima corresponding (arbitraryg), the coordinates can be read off from the parametric plot with
to orientations of magnetization that are canted with respectthe corresponding value gt
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The full analysis requires that the regions and conditions anisotropies [27, 28], whether large or small in comparison
of stability of both conforming and non-conforming solutions  with the fourfold one, are readily illuminated for any direction
be examined together. Hence, a ‘superposition’ of figures 3 of the in-plane field. The phase diagrams which can now be
and 4 must be considered. There arise no interpretationalconstructed for a field of arbitrary orientation provide a basis
difficulties in the process. Fixing = x/4 as for figure 4, for systematic studies of the response of ultrathin systems
one singles out the ling = ko withk = —1/2sirf ¢ = —1. with orientational transitions to small perturbing fields.

It hits the tricritical point. Only on the ray CO can there
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